Research Papers:

Inhibiting tryptophan metabolism enhances interferon therapy in kidney cancer

Josephine F. Trott, Jeffrey Kim, Omran Abu Aboud, Hiromi Wettersten, Benjamin Stewart, Grace Berryhill, Francisco Uzal, Russell C. Hovey, Ching-Hsien Chen, Katie Anderson, Ashley Graef, Aaron L Sarver, Jaime F. Modiano and Robert H. Weiss _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2016; 7:66540-66557. https://doi.org/10.18632/oncotarget.11658

Metrics: PDF 3081 views  |   HTML 3999 views  |   ?  


Josephine F. Trott1,2, Jeffrey Kim1, Omran Abu Aboud1, Hiromi Wettersten1,12, Benjamin Stewart4, Grace Berryhill2, Francisco Uzal5, Russell C. Hovey2, Ching-Hsien Chen1, Katie Anderson6,7,8, Ashley Graef6,7,8, Aaron L Sarver6,8, Jaime F. Modiano6,7,8,9,10 and Robert H. Weiss1,3,11

1 School of Medicine, Division of Nephrology, University of California Davis, Davis, CA, USA

2 Department of Animal Science, University of California Davis, Davis, CA, USA

3 Comprehensive Cancer Center, University of California Davis, Davis, CA, USA

4 Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA

5 California Animal Health and Food Safety Lab, School of Veterinary Medicine, University of California, Davis, San Bernardino, CA, USA

6 Animal Cancer Care and Research Program, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA

7 Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA

8 Masonic Cancer Center, Minneapolis, MN, USA

9 Center for Immunology, Minneapolis, MN, USA

10 Stem Cell Institute University of Minnesota, Minneapolis, MN, USA

11 Medical Service, VA Northern California Health Care System, Sacramento, CA, USA, USA

12 Sanford Consortium for Regenerative Medicine, UC San Diego, La Jolla, CA, USA

Correspondence to:

Robert H. Weiss , email:

Keywords: tryptophan, kynurenine, renal cell carcinoma, interferon-alpha, indolamine-2,3-dioxygenase

Received: July 13, 2016 Accepted: August 01, 2016 Published: August 27, 2016


Renal cell carcinoma (RCC) is increasing in incidence, and a complete cure remains elusive. While immune-checkpoint antibodies are promising, interferon-based immunotherapy has been disappointing. Tryptophan metabolism, which produces immunosuppressive metabolites, is enhanced in RCC. Here we show indolamine-2,3-dioxygenase-1 (IDO1) expression, a kynurenine pathway enzyme, is increased not only in tumor cells but also in the microenvironment of human RCC compared to normal kidney tissues. Neither kynurenine metabolites nor IDO inhibitors affected the survival or proliferation of human RCC or murine renal cell adenocarcinoma (RENCA) cells in vitro. However, interferon-gamma (IFNγ) induced high levels of IDO1 in both RCC and RENCA cells, concomitant with enhanced kynurenine levels in conditioned media. Induction of IDO1 by IFNα was weaker than by IFNγ. Neither the IDO1 inhibitor methyl-thiohydantoin-DL-tryptophan (MTH-trp) nor IFNα alone inhibited RENCA tumor growth, however the combination of MTH-trp and IFNα reduced tumor growth compared to IFNα. Thus, the failure of IFNα therapy for human RCC is likely due to its inability to overcome the immunosuppressive environment created by increased IDO1. Based on our data, and given that IDO inhibitors are already in clinical trials for other malignancies, IFNα therapy with an IDO inhibitor should be revisited for RCC.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 11658