Oncotarget

Research Papers:

Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo

Hyein Jeon, Jae Hwan Kim, Eunjung Lee, Young Jin Jang, Joe Eun Son, Jung Yeon Kwon, Tae-gyu Lim, Sunghoon Kim, Jung Han Yoon Park, Jong-Eun Kim _ and Ki Won Lee

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2016; 7:67223-67234. https://doi.org/10.18632/oncotarget.11615

Metrics: PDF 1613 views  |   HTML 2980 views  |   ?  


Abstract

Hyein Jeon1,2,*, Jae Hwan Kim1,2,*, Eunjung Lee1,2,3,*, Young Jin Jang1,2,4, Joe Eun Son1,2, Jung Yeon Kwon5, Tae-gyu Lim1,2,6, Sunghoon Kim7, Jung Han Yoon Park8, Jong-Eun Kim1,2, Ki Won Lee1,2

1Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea

2Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea

3Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea

4Metabolic Mechanism Research Group, Korea Food Research Institute, Seongnam, Republic of Korea

5Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA

6Division of Strategic Food Research, Korea Food Research Institute, Seongnam, Republic of Korea

7Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Republic of Korea

8Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea

*These authors have contributed equally to this work

Correspondence to:

Jong-Eun Kim, email: idonlik1@snu.ac.kr

Ki Won Lee, email: kiwon@snu.ac.kr

Keywords: methionine, triple-negative breast cancer, metastasis, cancer therapy

Received: March 25, 2016    Accepted: July 27, 2016    Published: August 25, 2016

ABSTRACT

Nutrient deprivation strategies have been proposed as an adjuvant therapy for cancer cells due to their increased metabolic demand. We examined the specific inhibitory effects of amino acid deprivation on the metastatic phenotypes of the human triple-negative breast cancer (TNBC) cell lines MDA-MB-231 and Hs 578T, as well as the orthotopic 4T1 mouse TNBC tumor model. Among the 10 essential amino acids tested, methionine deprivation elicited the strongest inhibitory effects on the migration and invasion of these cancer cells. Methionine deprivation reduced the phosphorylation of focal adhesion kinase, as well as the activity and mRNA expression of matrix metalloproteinases MMP-2 and MMP-9, two major markers of metastasis, while increasing the mRNA expression of tissue inhibitor of metalloproteinase 1 in MDA-MB-231 cells. Furthermore, methionine restriction downregulated the metastasis-related factor urokinase plasminogen activatior and upregulated plasminogen activator inhibitor 1 mRNA expression. Animals on the methionine-deprived diet showed lower lung metastasis rates compared to mice on the control diet. Taken together, these results suggest that methionine restriction could provide a potential nutritional strategy for more effective cancer therapy.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 11615