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ABSTRACT
The majority of ovarian tumours are of the epithelial type, which can be sub 

classified as benign, borderline or malignant. Epithelial tumours usually have cystic 
spaces filled with cyst fluid, the metabolic profile of which reflects the metabolic 
activity of the tumour cells, due to their close proximity. The approach of metabonomics 
using 1H-NMR spectroscopy was employed to characterize the metabolic profiles of 
ovarian cyst fluid samples (n = 23) from benign, borderline and malignant ovarian 
tumours in order to shed more light into ovarian tumour and cancer development. 
The analysis revealed that citrate was elevated in benign versus malignant tumours, 
while the amino acid lysine was elevated in malignant versus non-malignant tumours, 
both at a 5% significance level. Choline and lactate also had progressively increasing 
levels from benign to borderline to malignant samples. Finally, hypoxanthine was 
detected exclusively in a sub-cohort of the malignant tumours. This metabonomic 
study demonstrates that ovarian cyst fluid samples have potential to be used to 
distinguish between the different types of ovarian epithelial tumours. Furthermore, 
the respective metabolic profiles contain mechanistic information which could help 
identify biomarkers and therapeutic targets for ovarian tumours.

INTRODUCTION

Ovarian cancer is the second most common 
gynaecological malignancy worldwide and the fourth 
most deadly type of cancer in the UK. [1] Around 90% 
of ovarian tumours are of the epithelial type and the 
four most common histological subtypes are: serous, 
endometrioid, mucinous and clear cell carcinomas. [2] 
Epithelial ovarian tumours in general can be categorized 
as benign, borderline or malignant, depending on 
architecture, cytological atypia and the presence of stromal 
invasion. [3] The majority of borderline ovarian tumours 
behave in a benign fashion, but a small proportion may 
recur or show progressive disease in a manner similar 
to malignant tumours. [4] All types of epithelial ovarian 
tumours may typically include a cystic component which 
encapsulates variable amounts of cyst fluid. [5]

Even though during the past few decades there 
have been advances in surgery and taxol/platinum-based 
chemotherapies, the drop in mortality rates of patients 
suffering from ovarian cancer has been very modest. [6] 
This disappointing rate of progress can be partly attributed 
to the high relapse rate of patients with a drug-resistant 
disease [7], and the five year survival rate of patients with 
an advanced stage of the disease is only 5-30%. [8] Another 
reason why there has been a limited success in ovarian 
cancer therapy is the difficulty in detection at an early stage 
due to the lack of an adequate screening method as well as 
the late development of the symptoms. As a result ovarian 
cancer is often called the “silent killer”. [3, 9]

The ability to detect the presence of cancer at an 
early stage or to distinguish between the different types 
of tumours has been strengthened by the use of tumour 
biomarkers. Biomarkers can be detected in a variety of 
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sample matrices but in the context of ovarian cancer; 
urine, serum or ovarian cyst fluids have been used in the 
past. [3, 10, 11]

Several attempts of identifying biomarkers for 
epithelial ovarian cancer have led to the discovery of 
several candidates but unfortunately none of the currently 
proposed biomarkers is of ideal sensitivity and specificity. 
Enzyme-linked immunosorbent assay (ELISA) of ovarian 
cyst fluids have indicated that the cytokines interleukin-6 
(IL-6) and IL-10 exist at higher levels in patients with a 
more advanced stage of disease. [12] Another example 
of a potential biomarker is the glutathione S-transferase 
P1-1 enzyme which has been discovered to exist in higher 
levels in the ovarian cyst fluid of malignant tumours when 
compared to benign tumours. [13]

A relatively novel approach of detecting biomarkers, 
known as metabonomics, has been a major development, 
especially in the field of toxicology or with diseases such 
as cancer. Metabonomics was first described as: “the 
quantitative measurement of the dynamic multiparametric 
metabolic response of living systems to pathophysiological 
stimuli or genetic modification”. [14] Metabonomics 
thus studies the metabolic profiles of specific biological 
states or the metabolic response to a system change. 
It often relies on multivariate statistical methods to 
process the metabolic profiles, as well as identifying 
any significant patterns or molecular fingerprints which 
could serve as potential biomarkers. Nuclear magnetic 
resonance (NMR) spectroscopy is an often used method 
for obtaining metabolic profiles. [15] As a tool for 
metabolic profiling 1H-NMR spectroscopy has the 
advantages of requiring minimal sample preparation and 
possesses high reproducibility and quantitative precision. 
[16] The coverage of the metabolome is relatively low 
however due to lack of spectral resolution and inherently 
poor sensitivity. Mass-spectrometry based approaches, 
including liquid chromatography mass spectrometry, 
gas chromatography mass spectrometry and capillary 
electrophoresis mass spectrometry (LC-MS, GC-MS 
and CE-MS respectively), have greater sensitivity and 
are usually coupled to derivatisation/chromatography, 
allowing for greater coverage, but are therefore also 
subject to more interferences, matrix effects and sources 
of irreproducibility.

Tumour cells possess altered metabolic behaviour, 
such as a growing dependence on glycolysis and 
increased lactate production (the Warburg effect) [17], 
and increased rates of glucose uptake are linked to 
tumour aggressiveness. [18] Metabonomic analysis of 
serum, urine and ovarian cyst fluid samples from patients 
with epithelial ovarian tumours has been described in 
the literature and how it can provide information on the 
tumour-related alterations in metabolism in these patients. 
[10, 19] Because of the close proximity of the cyst fluid to 
the tumour micro-environment, ovarian cyst fluid samples 
could be the most informative matrix for a more complete 
metabolic profile of these tumours. 1H-NMR spectroscopic 

analysis on ovarian cyst fluid has led to the identification 
of several metabolites which seem to exist in higher levels 
in malignant tumour samples such as lactate, isoleucine, 
valine, 3-hydroxybutyric acid, methionine and alanine. 
[19]

In this study we investigate the metabolic profile 
of cyst fluid from benign, borderline and malignant 
ovarian epithelial tumours and show the potential of 
high throughput analysis of ovarian tumour cyst fluid in 
identification of biomarkers that discriminate between the 
different tumour categories.

RESULTS

Cyst fluid samples from 23 ovarian epithelial 
tumours were studied, including 8 benign, 5 
borderline and 10 malignant tumours were analysed. 
Histopathological details of the studied tumours are 
presented in Table 1.

Profiling and statistical analysis of ovarian cyst 
fluid samples

Figure 1 illustrates an average ovarian cyst fluid 
CPMG 1H-NMR spectrum, belonging to a serous 
carcinoma sample. An example of assigned identified 
metabolites including those present in most ovarian 
cyst fluid metabolic profiles are presented in Table 2. 
Some metabolites were tumour specific and could be 
used to distinguish between different types of tumours, 
such as hypoxanthine which was only detected in a 
sub cohort of malignant tumours. There were also 
many unassigned resonances which were consistently 
observed in the spectra, such as the resonance at ~2.03 
ppm, which is thought to belong to N-acetyl functional 
groups. This peak was visibly more abundant in the 
borderline cohort.

PCA showed that the three tumour types could not 
be separated based on the raw spectral data alone but there 
was a degree of clustering observed between benign and 
malignant samples (Figure 2). A waterfall plot of the first 
principal component scores is illustrated in Supplementary 
Figure S1.

The loading scores revealed that lactate was 
at relatively very high levels in a benign mucinous 
cystadenoma and a borderline mucinous tumour sample 
but remodelling the 1H-NMR data without these two 
samples did not lead to a significant difference in the 
statistical parameters or the observed pattern of group 
clustering, while lactate remained a strong discriminatory 
feature. Modelling the data with supervised multivariate 
analyses was also attempted but the resulting models 
were of low predictive ability and were not statistically 
significant.

Univariate analysis was used to compare the 
integral levels of acetate, alanine, choline, citrate, lysine, 
3-hydroxybutyrate, glucose, leucine, phenylalanine, 
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hypoxanthine and valine. The calculated median and 
interquartile range of each metabolite in each tumour 
group are presented in Table 3, while Figure 3 illustrates 
the integral, median and interquartile range values of 
citrate, lysine, lactate, glucose and valine in each sample in 
each group. Supplementary Table S1 presents the integrals 
of all analysed metabolites. The univariate analysis 
revealed that the higher levels of citrate in the benign 
samples were statistically significant with a p-value of 
0.0085. They also revealed that the higher levels of lysine 
in the malignant samples were statistically significant 
when compared to the benign and borderline group, with 
a p-value of 0.0439.

DISCUSSION

In the current work we sought to gain further insight 
into the metabolic profile of the ovarian tumour micro-
environment. The diversity of protein content is one of 
the most important reasons why ovarian cyst fluid samples 

should be a rich medium for metabonomic analysis. It is 
not possible to ascertain whether the metabolic profile of 
the cyst fluid is identical to that of the tumour cells or 
whether it has a separate metabolic signature. However, 
different tumour types are likely to have specific protein, 
lipid and metabolite content which will obviously 
influence their metabolic profile and help distinguish 
between them both via analysis of tumour cells or tumour 
cyst fluid.

In addition to the identified assigned metabolites 
present most ovarian cyst fluid metabolic profiles, there 
were many unassigned resonances which were consistently 
observed in the spectra. One example is the resonance at 
~2.03 ppm, which was also unassigned by Boss et al. 
and is thought to belong to N-acetyl functional groups. 
[10] Even though this peak was visibly more abundant 
in the borderline cohort, it was not further analysed 
quantitatively since it was not possible to integrate the 
peak accurately due to its broadness. Kolwijck et al. 
originally had assigned N-acetylaspartate in that region 

Table 1: Overview of patients’ tumour type, grade and FIGO stage

Patient Tumour type FIGO stage Grade

1 Benign mucinous cystadenoma

2 Benign mucinous cystadenoma

3 Benign mucinous cystadenoma

4 Benign serous cystadenofibroma

5 Benign serous cystadenofibroma

6 Benign serous cystadenofibroma

7 Benign serous cystadenoma

8 Benign serous cystadenoma

9 Borderline mucinous tumour IA

10 Borderline mucinous tumour IA

11 Borderline mucinous tumour IA

12 Borderline mucinous tumour IC

13 Borderline serous tumour IC

14 Clear cell carcinoma IB

15 Mixed serous and endometrioid carcinoma IIIC III

16 Mucinous carcinoma IA II

17 Mucinous carcinoma IA II

18 Serous carcinoma IA III

19 Serous carcinoma IIA III

20 Serous carcinoma IIB II

21 Serous carcinoma IIIC II

22 Serous carcinoma IIIC III

23 Serous carcinoma IV II
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in non-borderline tumours, [20] as also reported and 
further investigated in a more recent publication, [21] 
but we could not detect the remaining resonances of that 
compound and confirm the assignment. However, it was 
also suggested that other N-acetyl functional groups from 
glycosylated proteins or lipids have resonances in this 
region, which could account for the observed resonance 
and future studies with greater borderline tumour sample 
numbers could lead to the identification of a borderline 
tumour specific macromolecule. [20]

The borderline tumour group was not observed to 
have any visible group specific metabolic patterns, apart 
from the N-acetyl resonance. However, some resonances, 
including those of the amino acids were at lower levels 
when compared to the benign group but this could not 
be explained. In the case of the malignant group, the 
qualitative analysis revealed that hypoxanthine was only 
identified in two malignant samples but not in any other 
tumour type. Hypoxanthine is a purine derivative whose 

nucleoside form is inosine. It has already been proposed 
as a urine biomarker for non-Hodgkin’s lymphoma, [22] 
while it has also been reported to exist in higher levels 
in plasma and to have reduced excretion in gastric and 
colorectal tumours. [23]

Our results show the presence of lysine was at 
higher levels in the malignant tumours when compared 
to the non-malignant tumours, while citrate was 
depleted in the malignant tumours when compared to 
benign tumours. Higher levels of lysine in malignant 
ovarian tumours have been previously reported by Boss 
et al. but the biochemical mechanism leading to this 
increase is not known. [10] Citrate is formed in the 
mitochondria and is involved in the Krebs cycle, which 
is an integral part of aerobic respiration. Cytosolic 
citrate is also used to form acetyl-CoA by the enzyme 
ATP-citrate lyase which is subsequently used in fatty 
acid synthesis. Fatty acid synthesis is an essential 
process in many tumour cells to permit rapid growth 

Figure 1: Example of metabolite assignments of a serous carcinoma 1H-NMR CPMG metabolic profile: The metabolite 
assignments in the aromatic and aliphatic regions of a representative spectrum are shown above. Peak multiplicity is not indicated.
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Table 2: List of assigned metabolites and their respective resonances

Molecule 1H-shift (ppm) Multiplicity Functional group

acetate 1.92 s CH3

alanine
1.48 d CH3

3.78 q CH2

choline 3.20 s N(CH3)3

citrate
2.56 d CH2

2.67 d CH2

lysine

1.70 m CH2

1.88 m CH2

3.01 t CH2

dimethylamine* 2.72 s CH3

formate 8.46 s CH

glutamate 2.36 m γ-CH2

α-glucose

3.42 t H4†

3.54 dd H2†

5.24 d H1†

glycine 3.56 s CH2

3-hydroxybutyrate

1.20 d γ-CH3

2.30 m α-CH2

2.40 m α-CH2

4.15 m β-CH

hypoxanthine
8.19 s H2†

8.20 s H7‡

isoleucine
0.93 t δ-CH3

1.02 d β-CH3

lactate
1.33 d CH3

4.11 q CH2

leucine

0.95 d δ-CH3

0.97 d δ-CH3

1.72 m CH2

1.73 m CH2

phenylalanine

7.33 m H2†, H6†

7.38 m H4†

7.43 m H3†, H5†

pyruvate 2.41 s CH3

phosphocholine* 3.21 s N(CH3)3

tyrosine
6.91 d H3†, H5†

7.19 d H2†, H6†

(Continued)
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and its inhibition has been shown to delay tumour 
progression in a xenograft model of ovarian cancer, 
amongst others. [24] Furthermore, the inhibition of 
ATP-citrate lyase, an important enzyme in fatty acid 
biosynthesis, has also been previously reported to 
suppress tumour growth. [25] Therefore, the importance 
of citrate in fatty acid synthesis might be linked to its 
observed depletion in the malignant tumours.

While no statistically significant difference was 
observed between the levels of acetate, alanine, valine, 
phenylalanine, leucine, glucose, choline, lactate and 
3-hydroxybutyrate between tumour groups, the integral 
clustering and medians of valine, leucine, alanine, glucose, 
choline and lactate were generally higher in the malignant 
samples and could be potentially distinguishing. The 

absence of statistical significant difference in the levels 
of these metabolites could be due to the significant 
heterogeneity in the tumour types and FIGO stages, 
coupled to the small sample numbers per tumour group. 
The observed intragroup heterogeneity for citrate, lysine, 
glucose, lactate and valine is in agreement with what was 
previously reported. [10]

Lactate was one of the metabolites that were 
initially expected to exist at higher levels in malignant 
samples due to the Warburg effect. [17] Higher levels of 
lactate dehydrogenase in the peritoneal fluid have been 
suggested to be a prognostic biomarker for epithelial 
ovarian cancer. [26] An increase in the levels of glucose 
could also be explained since a rise in the expression of 
glucose transporter 1 (GLUT1), a transporter responsible 

Figure 2: PCA scores plot of all ovarian cyst fluid 1H-NMR spectra: The first two principal components of the scores plot 
of all 23 samples are depicted above. The benign samples are shown in blue, borderline are green and malignant are red. R2X1 = 0.904 
R2X2 = 0.0314. Bo – borderline; M – Malignant; Be – Benign; PC1 – first principal component; PC2 – second principal component scores.

Molecule 1H-shift (ppm) Multiplicity Functional group

valine
1.00 d CH3

1.04 d CH3

† and ‡ denote that the protons are part of a six or five membered ring respectively. s –singlet; d – doublet; dd – double 
doublet; t – triplet; q – quadruplet; m - multiplet. *tentative assignment.
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Figure 3: Integral values, medians and median range of key metabolites: The integral values from all 23 samples for each 
metabolite are shown above. The samples are separated by tumour type: benign (Be), borderline (Bo) and malignant (M). Each point on the 
graphs represents an integral value. The median range is indicated by the error bar, while the median value for each metabolite and group 
is indicated by the red horizontal line in the middle of the error bar.

Table 3: Median values and interquartile range of each metabolite integral in each cohort

Metabolites Benign Borderline Malignant

Acetate 8.53 (6.35) 5.35 (1.12) 9.56 (3.66)

Alanine 43.52 (49.93) 22.67 (24.70) 53.09 (31.33)

Choline 10.56 (1.99) 9.48 (7.13) 13.87 (31.33)

Citrate 21.08 (5.89) 9.27 (1.22) 10.15 (4.73)†

Lysine 12.34 (4.03) 8.80 (2.56) 13.72 (1.66)‡

3-Hydroxybutyrate 18.14 (7.39) 20.92 (7.02) 16.29 (5.83)

Glucose 2.98 (4.42) 2.086 (6.36) 6.02 (6.10)

Hypoxanthine n.d n.d 2.61 (0.85)

Lactate 471.81 (203.11) 538.05 (671.48) 663.67 (219.39)

Leucine 41.70 (39.55) 24.09 (10.46) 51.48 (25.80)

Phenylalanine 4.01 (5.72) 1.97 (1.85) 4.73 (5.70)

Valine 21.22 (24.81) 10.16 (11.96) 25.91 (10.61)

The median values and interquartile range (in parentheses) of the integrals of selected metabolites from each cohort are 
shown. † and ‡ indicate stat. significance between benign vs. malignant and benign/borderline vs. malignant respectively. 
Hypoxanthine was detected in only two malignant samples.
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for glucose uptake, has been reported in ovarian 
carcinomas. [27] Finally, an increased uptake of choline 
and synthesis of phosphocholine has also been observed 
and it was a distinguishing factor between epithelial 
ovarian cancer cells and immortalized epithelial ovarian 
cells. [28] This has recently been proved to be of utility 
in patient imaging using contrast-enhanced magnetic 
resonance imaging and 3D chemical shift imaging with 
strong potential for use in clinical practice for diagnosis 
of ovarian cancer. [29]

The observed higher levels of lysine, 
3-hydroxybutyrate, valine, lactate and choline in the 
malignant tumours are in agreement with previous 
metabolic profiling studies of ovarian cyst fluid 
samples. [10, 21] However, there are also differences 
reported in the literature that we did not observe, 
including higher levels of glutamine, methionine 
and threonine in the malignant tumour group. [10] 
Furthermore, a previous investigation also reported 
a depletion of glucose, which would be in line with 
the Warburg effect and is in contrast to what we have 
observed. [17] This difference between the two studies 
should be investigated further and could simply be 
due to the reported great variability in the metabolite 
concentration that exists in the cyst fluid samples, 
that was observed in our investigation as well. [10] 
A summary of the main metabolic perturbations is 
illustrated in Figure 4.

This is the first metabonomic study to include 
benign, malignant as well as borderline ovarian 
tumours in a high throughput broad 1H-NMR 
spectroscopic analysis of ovarian tumour cyst fluid. 

Our analysis supports the conclusion that ovarian 
cyst fluid is a rich source of information about the 
metabolic state and nature of the tumour, however, 
a direct comparison with the metabolic profiles of 
ovarian tumours would be required to confirm this. In 
future work it would be valuable to compare profiles 
from ovarian tumours, ovarian cyst fluid, serum and 
urine to establish the value of each sample matrix for 
prognostic and mechanistic information. Several past 
analyses on plasma/serum by 1H-NMR and LC-MS 
have already demonstrated that metabolic profiling can 
distinguish between early stage and late stage epithelial 
ovarian tumours [30], benign and malignant tumours 
[31], as well as patients with early stage tumours and 
healthy controls. [32] Furthermore, it has already 
been shown that the LC-MS metabolic profile of urine 
can also be used to distinguish between benign and 
malignant tumours. [33]

An array of metabolites in cyst fluid has been 
identified with potential to discriminate between 
benign, borderline and malignant tumours, which 
merit further investigation and validation with a larger 
sample cohort. For such a validation study, a targeted 
metabonomic approach by LC-MS or GC-MS could 
be employed to investigate the affected metabolic 
pathways in greater detail in order to obtain more 
robust mechanistic information. This study overall 
highlights the potential of the high throughput 1H-NMR 
spectroscopy metabonomic analysis of ovarian cyst fluid 
in identification of biomarkers that can contribute to 
the identification and clinical management of all three 
classes of ovarian tumours.

Figure 4: Summary of interpreted metabolic perturbations: An overview of the metabolic perturbations identified in the ovarian 
cyst fluid, and how they are linked to ovarian tumours, is displayed above. Please note that red arrows indicate elevated levels for a specific 
metabolite and vice versa for blue metabolites.
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MATERIALS AND METHODS

Cyst fluid samples from 23 ovarian epithelial 
tumours were studied, including 8 benign (Be), 5 
borderline (Bo) and 10 malignant (M) tumours.

Sample procurement, processing and storage

Ethical approval was granted by the Hammersmith 
and Queen Charlotte’s & Chelsea Hospitals Research 
Ethics Committee. All ovarian cyst fluid samples were 
collected from resected ovarian tumours within 15 
minutes of surgical resection, where the intact cysts were 
immediately transferred from the operative theatre to the 
histopathology laboratory at the Hammersmith Hospital 
in London. Cyst fluid was drained from the cyst using 
a syringe or via a small puncture in the cyst wall and 
deposited into tubes. On average 100 ml of cyst fluid was 
drained from each patient. The collected fluid was then 
centrifuged at 4°C for 10 minutes and the supernatant 
aliquoted and stored at -80°C. Throughout the process 
from collection to storage the samples were consistently 
kept on ice in order to minimize any sample content 
degradation.

Metabolite extraction method

Methanol extraction

Cold methanol was mixed with the samples at 
1:1 ratio and the mixture was incubated at 4°C for 30 
minutes, after vortexing. The mixture was then centrifuged 
for 10 minutes at 12000 g (Pico microcentrifuge, 
Thermoscientific, Waltham, MA, USA). The resulting 
supernatant was dried overnight in a centrifugal 
concentrator (SpeedVac, Thermoscientific).

1H-NMR metabolic profiling of ovarian cyst fluid

The dried supernatants from all metabolite 
extraction method were then re-dissolved in 600 μl of 0.2 
M phosphate buffer solution. Following resuspension, 
the mixture was centrifuged for 5 minutes at 12000 
g and 550 μl was transferred to a 5 mm NMR tube for 
analysis (Norell NMR Precision tube 507-HP-7; Norell 
Inc, Marion, NC, USA). For the metabonomic analysis of 
single pulse 1H-NMR experiments were performed using 
a Bruker DRX600 spectrometer (Bruker) operating at 600 
MHz (14.1 T) at a temperature of 300 K, with a broadband 
inverse probe and an automated delivery system. The D2O 
present in the buffer provided the field frequency lock 
while the TSP was used as a chemical shift reference. 
64 and 256 scans were performed for the standard one 
dimensional water pre-saturation (NOESYpr1d) and Carr-
Purcell-Meiboom-Gill (CPMG; 2nτ of 64 ms (n = 160, τ = 
200 μs)) experiments, respectively, and 32697 data points 

were recorded for all experiments at a spectral width of 
12000 Hz. The Carr-Purcell-Meiboom-Gill (CMPG) pulse 
sequence [34] allows transverse (T2) relaxation of nuclear 
polarization to occur while refocusing the evolution 
of chemical shift and other sources of inhomogenous 
broadening of spins. Since larger molecules have shorter 
T2 times, allowing a degree of T2 relaxation before signal 
acquisition effectively reduces the contribution of high-
molecular weight species (such as protein) to the final 
NMR spectrum relative to that of small molecules (such 
as metabolites). [15]

For spectrum evaluation and Fourier transformation 
of the free induction decay (FID) the TopSpin software 
(Bruker) was used. The assignment of hypoxanthine 
was confirmed by spike-in experiments with the pure 
compound.

Data processing and statistical analysis

Assignment of metabolites from the 1H-NMR 
metabolic profiles was performed using Chenomx NMR 
suite (Chenomx, Edmonton, Canada) and the human 
metabolome database (www.hmdb.ca). For processing, 
the TopSpin software (Bruker) was used for initial 
spectral processing followed by the software package of 
MATLAB (Mathworks, Natick, MA, USA). Probabilistic 
quotient normalization was employed prior to statistical 
analysis and calculation of integrals. [35]

Principal component analysis (PCA) on 
SIMCA-P+ 12.01 (Umetrics, Umea, Sweeden) was 
used as a multivariate statistical approach to observe 
how the relationship of the samples in multivariate 
space. The 1H-NMR spectra were divided into three 
groups, depending on the tumour type of the sample. 
Mean centring with no scaling was chosen and PCA 
was performed on the first two principle components. 
Mann-Whitney tests were used to analyse the different 
levels of twelve metabolites between the three groups 
at a 5% significance level (Prism; GraphPad, La Jolla, 
CA, USA). The group comparisons on which the Mann-
Whitney tests were used were: benign versus malignant 
tumours and benign and borderline versus malignant 
tumours.
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