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ABSTRACT
The interconnected network of pathways downstream of the TGFβ, WNT and EGF-

families of receptor ligands play an important role in colorectal cancer pathogenesis.
We studied and implemented dynamic simulations of multiple downstream 

pathways and described the section of the signaling network considered as a Molecular 
Interaction Map (MIM). Our simulations used Ordinary Differential Equations (ODEs), 
which involved 447 reactants and their interactions.

Starting from an initial “physiologic condition”, the model can be adapted to 
simulate individual pathologic cancer conditions implementing alterations/mutations 
in relevant onco-proteins. We verified some salient model predictions using the 
mutated colorectal cancer lines HCT116 and HT29. We measured the amount of 
MYC and CCND1 mRNAs and AKT and ERK phosphorylated proteins, in response 
to individual or combination onco-protein inhibitor treatments. Experimental and 
simulation results were well correlated. Recent independently published results were 
also predicted by our model.

Even in the presence of an approximate and incomplete signaling network 
information, a predictive dynamic modeling seems already possible. An important long 
term road seems to be open and can be pursued further, by incremental steps, toward 
even larger and better parameterized MIMs. Personalized treatment strategies with 
rational associations of signaling-proteins inhibitors, could become a realistic goal.

INTRODUCTION 

Colorectal cancer (CRC) can be characterized 
according to the genomic landscapes of individual CRC 
patients [1]. Driver mutations can vary to some extent in 
different CRCs. B. Vogelstein et al. have recently reported 
[1] a model featuring around 2-5 major driver mutations 

per individual CRC tumor. Additional somatically 
inheritable driver alterations were not included. In the 
COSMIC release of June 2nd 2014 [2], the curators have 
estimated that an individual cancer can be caused by 5 
-10 driver mutations (not identical in different tumors), 
against a background of more than 10,000 passenger 
mutations per tumor. Notice that in the cancer lines used 



Oncotarget5042www.impactjournals.com/oncotarget

for our experimental verifications the most frequent driver 
and gate-keeper mutations / alterations are indeed present 
(in an order of a decreasing frequency of occurrence in 
CRC: TP53; APC; KRAS; PTEN; SMAD4; PIK3CA; 
BRAF; CDH1). From a general perspective, we will 
encounter most often the most frequent driver mutations/
alterations, however from the perspective of the individual 
tumor of a specific patient, we could have had a Darwinian 
evolution to cancer, through a constellation of (at least in 
part) much less frequent driver mutations/alterations. In a 
modern framework of personalized Systems Oncology, to 
know more about these individual oncogene constellations 
is becoming of increasing relevance. An uncommon 
mutation / somatically inheritable alteration could make 
a specific patient differently sensitive or resistant to a 
specific inhibitor. 

A more complete analysis requires the assessment 
not only of DNA-mutations but also alterations in gene 
copy number, expression of fusion genes, direct or indirect 
silencing of repressor genes, epigenetic modifications 
and over-expression of dominant onco-genes [3-5]. At 
a clinical level, the sub-clonal heterogeneity present 
in a given tumor [6] as well as in its metastases is also 
important, according to the principle of Darwinian 
evolution of an individual tumor over time.

We are convinced that the role of normal and altered 
signaling-proteins cannot be understood in isolation, as a 
simple summation of multiple mutations/alterations. These 
signaling-proteins have to be integrated within pathways 
and network-regions [7, 8], along which biochemical 
signals are propagated. To reconstruct our network sub-
region we implemented a MIM diagram and MIM notation 
rules. “A MIM is a diagram convention that is capable of 
unambiguous representation of networks containing multi-
protein complexes, protein modifications, and enzymes 
that are substrates of other enzymes. This graphical 
representation makes it possible to view all of the many 
interactions in which a given molecule may be involved, 
and it can portray competing interactions, which are 
common in bio-regulatory networks” [9-12].

Integration of such large and disparate data into 
functional dynamic networks, capable of suggesting 
personalized treatment strategies, is best achieved by 
computational mathematical modeling.

In our work of MIM reconstruction and dynamic 
mathematic modeling at the biochemical interactions 
level, we did not consider a different scale of modeling, 
involving the dynamics of cell differentiation and upward 
movement in a colon crypt [13]. Notice however that 
some of the onco-proteins altered/mutated in the pathways 
covered by the MIM are already altered/mutated in Colon 
Cancer Stem Cells (CCSC) at the crypt bottom [14, 15], 
where molecular initial preneoplastic lesions can be passed 
on to daughter cells as CCSC for long times. 

Similar networks are also operative in breast cancer 
[16], in NSCLC [17] and in many other tumors. Driver-

mutations frequencies, and probably some signaling-
protein concentrations, can differ significantly in 
different cancer types. Although these differences must 
be accounted for, they are not an absolute impediment to 
adapting the model to other cancer types.

Within current knowledge and technology limits, 
it is still impossible to reconstruct all pathways involved 
in the malignant transformation of a given cancer cell. 
However, some sub-regions of the signaling-network are 
known to be more frequently mutated/altered in specific 
cancers. As such, the signaling-proteins of these sub-
regions have been intensively investigated and several 
signaling-protein inhibitors have been developed (initially 
for preclinical studies, but also directed toward present 
and future clinical studies). 

To generate a model of signaling mechanisms, 
we focused on a functionally relevant sub-region of the 
cell’s signaling network (G0-G1 cell cycle transition). We 
modeled a network sub-region, downstream of the TGFβ, 
WNT and EGF pathways (Fig. 1). Driver-gatekeeper-
mutations affecting the pathways reconstructed in our 
MIM are quite frequent in CRC (but not exclusively in 
CRC). They are included in the Cancer Gene Census [2, 
18]. 

Our simulations used Ordinary Differential 
Equations (ODEs) involving 447 reactants (basic 
species, modified species, complexes and inhibitors), 
348 reversible reactions and 174 catalytic reactions (for 
a total of 348•2 + 174 = 870 reactions). For dynamic 
mathematical simulations, efficient software are available 
[19-21] for achieving numerical solutions via ODEs of 
the temporal evolution of large networks of biochemical 
interactions, a phenomenon which conceptually is at 
the basis of cell life itself. A version of our Molecular 
Interaction Map (MIM) and associated modeling was 
generated in accordance with the mutational background 
of two CRC lines (HCT116 and HT29) and thus could 
predict the specific response of each line to inhibitor 
perturbations. 

These cell lines provide a good representation of 
two major complementary types of CRC, in terms of 
accuracy of DNA replication. A strong association with 
Chromosomal Instability (CIN) was described for sporadic 
cancers, giving rise to aneuploidy. In terms of base level 
fidelity of DNA replication, heritable cancers were often 
characterized by the presence of the Microsatellites 
Instability (MIN) [22]. The two cancer cell lines used in 
our study represent distinct categories: HT29 represents 
the sporadic cancers group, being derived from a colon 
carcinoma without microsatellite instability, but featuring 
aneuploidy with a DI (DNA Index) ≈ 1.5 (CIN+, MIN−), 
while HCT116 is derived from a colon carcinoma with a 
high microsatellites instability level, which did not present 
aneuploidy using FCM-DNA ploidy analysis (CIN−, 
MIN+) [23].

Pathways and network sub-regions were delimited 
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on an empirical fuzzy logic basis. They are incomplete 
reconstructions along an ongoing incremental process of 
network growth and improved refinement. 

Moreover, pathways are not discrete linear modules, 
but intertwined parts of larger robust networks, with 
built-in functional feedbacks. Even if incomplete, our 
reconstructed and modeled network sub-region seemed 
sufficiently coherent in regulating (at least in part) the 
transcription of two key oncogenes, considered extremely 
relevant in the G0 – G1 cell cycle transition and S phase 
entry, MYC (c-myc) and CCND1 (cyclin D1). 

In addition to MYC and CCND1 mRNAs, we 
experimentally validated the behavior of ppERK (Thr202/
Tyr204)/total ERK ratio and pAKT (Ser473)/total AKT 
ratio proteins, which lay upstream of the mRNA response. 
We submitted our extensively pre-trained model to a 
posteriori experimental verifications, a strategy already 
used in modeling smaller signaling-network regions. 
In previous studies, ODEs models of the EGFR/ErbB 
signaling cascade were developed [24-28]. Dynamic 
models of signaling pathways such as TGF-β [29-31], 
IGFR [26, 32], Wnt [33, 34], were also developed. 
Repository of computational models of biological 
processes such as Biomodels and Java Web Simulations 
(JWS) [35, 36] are available on line. Statistical analyses of 
the degree of correlation and predictivity of these models 
were not reported. 

We developed a MIM / dynamic model which is 
probably the largest ever reconstructed and modeled. 
We intertwined the cross-talks of three relevant cancer 
pathways in CRC (TGFβ, WNT and EGF pathways), 
instead of reconstructing them separately. Our model 
can be tailored to the individual mutational background 
of an individual tumor or cancer cell line, and is already 
sufficiently capable of predicting the response of CRC 
cells to different inhibitor treatments. 

We are well aware that in order to increase 
predictive capabilities we have to move in the direction 
of even larger MIMs + dynamic models of biochemical 
interactions / catalytic reactions, improving and extending 
the parameterization of the model, plus looking at larger 
numbers of molecular and phenotypic outputs. 

Our present work suggests that advancement in this 
direction is technically feasible.

Which “selective” inhibitor drugs have been 
already tried at a clinical level in CRC? Cetuximab and 
Panitumumab (anti-EGFR monoclonal antibodies) are 
currently used in clinical practice for the treatment of 
metastatic forms of colorectal cancer, in the absence of 
a downstream KRAS mutation conferring resistance 
[37-39], either as single agents or in combination with 
traditional cytotoxic anticancer agents. Bevacizumab, 
a monoclonal antibody directed against the Vascular 
Endothelial Growth Factor (VEGF), which promotes 
neo-angiogenesis, was also clinically employed [40, 41]. 
Regorafenib, an inhibitor of several kinases (uncertain 

specificity) has already been studied in a phase III trial 
[42], where it demonstrated some activity. The survival 
gains (PFS, OS) reported in these studies [40-42] on 
metastatic CRC and referred to patients genetically/
epigenetically not deeply characterized, were in general 
less than four months, in comparison with other types 
of previous chemotherapic treatments or a placebo. 
Sometimes statistically significant results can depend from 
the size of the study. They cannot be considered by default 
clinically relevant. 

MEK inhibitors probably more potent than CI1040 
(for instance Selumetinib - AZD6244), in association with 
Afatinib (BIBW2992 - an ERBB2 irreversible inhibitor), 
can synergize in KRAS-mutant lung and colon cancers 
[43]. In this last case, clinical studies have just started.

In a phase II study, Everolimus (an mTOR inhibitor) 
was well tolerated but did not confer meaningful 
efficacy in heavily pretreated patients with metastatic 
colorectal cancer [44]. Targeted sequencing in bladder 
cancers, revealed that TSC1 mutations are correlated 
with Everolimus sensitivity [45]. A mutated TSC1 
acts as an inactive GTPase toward Rheb, which in turn 
phosphorylates / activates mTORC1. Perhaps, a factor 
of caution in the usage of Everolimus, is its potent 
immunosuppressant activity.

The range of new-generation agents directed 
against specific signaling-proteins, currently evaluated 
in preclinical studies, is much wider than the number of 
drugs already approved for clinical use. At the preclinical 
level, several agents are being investigated whose targets 
are aberrantly activated in CRC, including PI3K or 
AKT inhibitors (along the PI3K pathway) and MDM2 
inhibitors (in the TP53 pathway). In addition, new agents 
are emerging, such as Tankyrase inhibitors [46], which, 
by inhibiting Axin degradation, increase its intracellular 
concentration, ultimately promoting β-Catenin degradation 
and Wnt signaling inhibition.

RESULTS

Construction of a CRC Molecular Interaction 
Map (MIM) focused on the G0 - G1 transition 

The MIMs reconstructed and used in our simulations 
are shown in Fig. 1 and Supplementary Fig. 1.3, for 
HCT116 and HT29 cancer lines, respectively. To our 
knowledge this network of CRC signaling (at the scale 
level of biochemical interactions) is probably the largest 
ever reconstructed and modeled. 

The detailed syntactic rules for drawing our 
MIM are described in [9-12], and briefly summarized 
in panel B of Fig. 1. Our MIMs are accompanied by an 
Annotation List (Supplementary Table 1.1) and a Glossary 
(Supplementary Table 1.2). The 10 pathways involved 
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are reported in a simplified description (Supplementary 
Table 1.4) indicating the signaling-proteins present in a 
given pathway, but without the influences or interactions 
(depicted instead in the MIMs of Fig. 1 and Supplementary 
Fig. 1.3 + Supplementary Table 2.1), and modeled in our 
mathematical dynamic modeling.

Model construction

The model combines the network MIM (Fig. 
1 and Supplementary Fig. 1.3) with a mathematical 
model of the MIM’s underlying molecular interactions 
(Supplementary 2.1 Reactions List) and a reconstruction 
of the transcription region controlling the expression of 
c-MYC and CCND1 mRNAs (Fig. 2 and Derivation of 
a Transcription Rate Function for MYC and CCND1 in 
Methods section). 

Our model can be easily modified to incorporate 

different molecular alterations present in different CRC 
lines or tumors. 

It is a work in progress, but our model could already 
reasonably predict, substantially all the biochemical 
responses to inhibitor treatments that we have tested. 

Supplementary Material 5.1 and 5.2 shows 
examples of the model complexity, including positive 
and negative feedbacks, going from a physiologic model 
to the introduction of different mutations/alterations and 
inhibitors. 

Experimental verification of the model 

Modeling this network sub-region required a series 
of approximations, especially in the reconstruction of a 
MIM, and in parameterization of concentrations and 
reaction rates. It would have been difficult to determine a 
priori if a model, no matter how carefully trained to fit the 

Figure 1: Molecular Interaction Map (MIM) referring to the pathways downstream of the TGFβ-family, WNT-
family and EGF-family receptors (Panel A). The cartouches of mutated / altered signaling-proteins in the HCT116 line have been 
surrounded by an oval in light yellow. A parallel Figure concerning the HT29 line is reported in Supplementary Fig. 1.3. Panel B: Syntactic 
rules adopted for the MIM construction.
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current literature, was overwhelmed by the accumulated 
noise of all the inevitable approximations, or whether it 
already possessed predictive capabilities, which can be 
further improved in a stepwise fashion. In fact this was a 
crucial question our work was trying to answer. 

At the core of our work, training consisted in a more 
than three-year long patient continuous patchwork effort, 
a work of continuous parameter readjustments, aimed at 
an integrated fitting of our model with the results of about 
one hundred strictly pertinent molecular reductionist-type 
experimental papers, published in reputable (high impact) 
journals. 

We feel that our very long and patient empirical 
“sewing together patchwork”, finalized to a proper tuning 
of the model during the training phase, was a process 
somehow describable as a parallel “in silico evolution”, 
where deficiencies at the level of network components 
and parameters inputs have been somehow balanced. Let 
just say here that this intriguing issue could also stimulate 
more basic “logic” analyses about network properties. 

After the training phase of our model, we submitted 
the model to a posteriori experimental verifications, to 

answer the basic question whether the presently available 
incomplete information was adequate or inadequate to 
build a predictive model. 

If the level of information was sufficiently 
adequate, then we are already on a correct road, requiring 
only possible and achievable gradual incremental 
improvements, to produce models with increasing clinical 
utility. 

We verified model predictions at both (network-
pertinent) oncogene mRNA levels and protein 
phosphorylation levels, in response to inhibitor treatments, 
in HCT116 and HT29 cell lines, respectively. 

Accounting for mRNA stability in the model

We investigated directly c-myc and CCND1 
mRNAs stability. Complex findings had been reported 
in the literature, concerning effects of MEK inhibition 
on CCND1 regulation, for instance as reviewed by Alao 
[47]. At a protein level, MEK inhibition in HCT116 cells 
extended the half-life of CCND1 protein by abolishing 

Figure 2: Simplified scheme of a model promoter regulating MYC and CCND1 transcription. The model promoter consists 
of a number of important TFBSs, depicted in arbitrary order. Each TF considered to bind to the promoter is a component of the MIM: 
TFBSTCF7L2, TCF7L2 binding site; TFBSSMAD4, SMAD4 binding site; TFBSAP1, AP1 binding site; TFBSTP53, TP53 binding site; TFBSE2F-

DP1, E2F-DP1 binding site. A. Schematic representation of the promoter with activators (above) and repressors (below) that are assumed 
to bind to each TFBS in the model. Arrows indicate the potential for binding at the TFBS. The DNA binding regions of the activators 
(white) and repressors (black) are also shown. B. Equivalent to A, where names of the activator (white) and repressor (grey) TF forms 
have been replaced by corresponding model variables. x1, β-Catenin-TCF7L2; x1p, pβ-Catenin(Y654)-TCF7L2; x2, SMAD4-TCF7L2; 
y1, GROUCHO-TCF7L2; y2, pSMAD2(S467)-SMAD4; y3, pSMAD3(S425)-SMAD4; x3, AP1; x3p, pAP1; y4, TP53; x4, E2F-DP1; y5, 
E2F-DP1-RB.
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T286 phosphorylation [48], while in MCF7 cells a longer 
inhibition of MEK decreased CCND1 protein levels [49]. 
Our experiments, performed at a mRNA level, illuminated 

a different dimension. MEK inhibition destabilizes 
CCND1 mRNA, resulting in reduced protein levels 
in the longer term. Indeed, we also treated MCF7 cells 
with CI1040 and found a similar reduction in CCND1 
mRNA levels (data not shown), as observed in our CRC 
cell lines. A CCND1 mRNA inhibition and an extended 
CCND1 protein half-life, could be part of dual converse-
regulatory buffering mechanisms in signaling pathways, 
as we recently identified a similar regulation of MYCN 
by GSK3 [49]. 

In this work we were however primarily interested 
in c-myc and CCND1 mRNAs levels. 

During MIM experimental validation we observed 
a substantial difference in the response time between 
MYC and CCND1 mRNA to MEK inhibition (CI1040), 
particularly for early time points (4h and earlier). We 
examined the stability of each genes’ mRNA using also the 
pan-transcriptional inhibitor Act D (Fig. 3). We determined 
the degradation rate of pre-existing mRNAs after blocking 
de novo transcription. While HCT116 cells have higher 
levels of both MYC and CCND1 mRNAs than HT29 cells 
(Fig. 3A), mRNAs stability is similar across both cell lines 
(Fig. 3B). However, MYC and CCND1 mRNAs have a 
different stability. MYC is highly unstable, with a half-
life shorter than 2h, while CCND1 mRNA is substantially 
stable, being unaffected even after 6h (Fig. 3B). We 
incorporated into the mathematical model the differing 
stabilities of the two mRNA species.

Global MYC mRNA is expected to change quickly 
in response to an upstream inhibitor, due to rapid turnover. 
Conversely, as an a priori expectation, even after a 
6h-treatment with an upstream inhibitor, we would expect 
to see all of the pre-existing CCND1 mRNA still present, 
obscuring any inhibitor-induced changes to transcription. 
It is however possible for an upstream inhibitor to 
modulate an indirect pathway capable of affecting the 
baseline CCND1 mRNA stability. 

This behavior is probably linked to the regulation 
of a specific miRNA, which is capable to influence the 
stability of CCND1 degradation. In the literature there 
are references describing as miRNA-34a transcription is 
repressed by c-Myc protein [50]. In turn miRNA-34a is 
capable of targeting CCND1 mRNA for degradation [51], 
via an Ago complex formation [52].

When CI1040 represses c-myc mRNA transcription 
by the inhibition of the KRAS pathway, c-myc mRNA and 
protein levels rapidly decrease, due to the high degradation 
rates of both molecules (our Fig. 3B and [53, 54] for c-myc 
mRNA, and [55] for c-Myc protein). A rapidly reduced 
c-Myc protein level leads to a decreased repression of 
miRNA-34a expression. As a consequence, more CCND1 
mRNA will be degraded. After incubation with CI1040 for 
4 h (Fig. 3) and 4-8 h (Fig. 6 and 7), we indeed observed 
progressively decreasing levels of CCND1 mRNA. 

Figure 3: mRNA stability in HCT116 and HT29 cells. 
Panel A: Relative expression levels of MYC and CCND1 mRNA 
between the cell lines. Panel B: The differing stability of MYC 
and CCND1 mRNAs after global inhibition of transcription 
with Act D; mRNA relative expression levels measured after 
2h, 4h and 6h of Act D inhibition. We independently compared 
expression levels in HCT116 and HT29 cells relative to the 
DMSO control (0h) for that cell line. Notice in Panel B that graphs 
of MYC HCT116 and MYC HT29 are very similar and overlap. 
Panel C: Relative expression of CCND1 mRNA in response to 
the MEK inhibitor CI1040 and the pan-transcriptional inhibitor 
Act D, in HT29 cells. All treatments performed for 4h. Results 
in all panels generated by qPCR and expression normalized to 
endogenous control genes β-actin and PO.
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MEK inhibition changes CCND1 mRNA stability 

MEK inhibition altered the stability of pre-existing 
(pre-CI1040 incubation) CCND1 mRNAs through the 
transcriptional regulation of an intermediary gene. We 
revealed this by a combination treatment in HT29 cells 
(Fig. 3C). Consistent with the earlier experiments, Act D 
did not alter CCND1 mRNA levels while CI1040 reduced 
them. However, dual treatment with CI1040 and Act D 
did not alter CCND1 levels. Act D rescued the CI1040 
induced CCND1 degradation. Therefore, the CCND1 
mRNA destabilization induced by MEK inhibition must 
be achieved through the transcriptional regulation of an 
intermediary gene (miRNA or RNA binding protein). 

We implemented in our model this novel 
modification of CCND1 mRNA stability in the presence 
of the CI1040 MEK inhibitor (Supplementary Table 2.1, 
reaction # 868).  

Experimental verification of the model; results 
related to phospho-proteins experiments 

To compare simulated and experimental data, 
we performed inhibitor treatments using five different 
inhibitors and some of their combinations, both in silico 
and in vitro, measuring the levels of pp-ERK (Thr202/
Tyr204) and pAKT (Ser473) (Fig. 4 and Fig. 5). Inhibitors 
were chosen to produce perturbations in each of the 
main model pathways. Only inhibitors which acted at or 
downstream of mutated genes were considered. Model 
predictions and experimental results were statistically 
correlated for both lines, perhaps slightly more closely for 
HCT116 cells (see section “Statistical Analyses”). 

In both Fig. 5 (ERKPP and AKTP proteins 
phosphorylation) and Fig. 7 (c-MYC and CCND1 mRNAs 
levels) we drew a 45° diagonal line between the X axis 
(simulated data) and the Y axis (experimental data), 
reflecting a theoretic 1:1 match. Both in the case of strong 
inhibitions and weak or absent inhibitions, simulated and 
experimental data tended to go together well. 

ERKPP shows only two levels because we tested 
only one concentration of CI1040 MEK inhibitor (80% 
of inhibition), AKTP shows different levels because we 
tested two different concentrations of Perifosine AKT 
inhibitor (40% and 70% of inhibition) (Fig. 4).

Experimental verification of the model; mRNA 
regulation experiments

To test the predictive power of our model we 
performed inhibitor treatments (single and combination 
treatments), both in silico and in vitro, measuring MYC 
and CCND1 mRNA levels and comparing simulated and 
experimental results (Figs. 6, 7). We selected MYC and 

CCND1 mRNA levels as these two genes are considered 
extremely relevant in the G0 – G1 cell cycle transition and 
S phase entry, being key factors for tumor development, 
growth and progression. The mRNA level of these 
oncogenes provides a proxy for the cellular response. 
The model was able to predict the changes to MYC and 
CCND1 mRNAs levels. For all inhibitory treatments, the 
trends toward strong or weak inhibitions were correctly 
predicted. 

Figure 4: Protein levels. Panels A – D histograms, referred 
to HCT116 and HT29 cancer lines, (30 min treatments). Panel A 
and C: ratio ppERK (Thr202/Tyr204) /ERK; not treated samples 
normalized to 1. Panel B and D: ratio pAKT (Ser473) /AKT; 
not treated samples normalized to 1. Untreated cells are shown 
in column 1 and vehicle control cells treated with only the 
inhibitor-solvents (Ethanol 1μl + DMSO 3μl)/(ml of medium) in 
column 2. The shaded columns represent experimental values, 
while the adjacent white columns represent simulation values. 3: 
XAV939; 4: PI103; 5: CI1040; 6: Perifosine 20nM; 7: 
Perifosine 40nM; 8: XAV939 +PI103; 9: XAV939 + CI1040; 10: 
PI103 + CI1040; 11: Perifosine 20nM + CI1040; 12: Perifosine 
40nM + CI1040; 13: XAV939 + PI103 + CI1040; 14:XAV939 
+ PI103 + CI1040 + Perifosine 20nM; 15:XAV939 + PI103 + 
CI1040 + Perifosine 40nM 
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With reference to Fig.7, the only concentration of 
MEK inhibitor tested (80% of inhibition), seems to have 
had a more relevant effect on mRNAs transcription than 
any other inhibitor treatment.

Our model captures only major and explicitly 
described variations induced by treatments, rather 
than smaller variations, probably related to additional 
complexities of the network not represented in our MIM. 
Considering the usual bench experimental variability, 
typical of individual data seen in biological replicates of 
wet experiments, we should expect much more variability 
in wet experiments (results parallel to the Y axis), than in 
the virtual predictions of the model (parallel to the X axis), 
where we make only one prediction for each experimental 
condition. This is precisely what we observed in Fig. 5 
and in Fig. 7. 

Interpretation of our Results as suggested by a 
Statistical Analysis

Statistical analysis was implemented by means 
of the R statistical programming framework and the 
gdata, pspearman and RVAideMemoire libraries [56]. 
Associations were assessed through non parametric 
analysis with the Spearman’s correlation coefficient.

Supplementary Material 6 provides raw data in 
four different Tables (two for each cell line): one Table 
for ERK and AKT proteins, one Table for c-MYC and 
CCND1 mRNA expression. 

The data were then log-transformed to be analyzed 
with linear regression and the explained variation measure 
R^2 was provided to assess the extent of experimental 
variability accounted by the simulation modeling approach 
(see Table 1 and Table 2).

Table 1 reports a non parametric statistical analysis 

Figure 5: Scatter plots of experimental (Y axis) versus simulated (X axis) values, for phospho-protein levels, in response 
to different inhibitor treatments. Panel A: HCT116 - ERKPP. Panel C: HT29 - ERKPP. Panel B: HCT116 - AKTP. Panel D: HT29 
- AKTP. The (0;0) origin of the two axes makes reference to a complete inhibition of phosphorylation, both experimental and simulated.
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of eight correlations (with 95% confidence intervals) 
between our predictions through our model simulations 
and the corresponding experimental results. The 
Spearman’s rho coefficient was computed for the HTC116 
and HT29 cell lines for two protein endpoints and two 
mRNAs.

With reference to Table 2, there is no evidence of 
non normality in y values (Fig. 4, 5, 6 and 7), and we are 
not actually performing statistical inference linked to the 
normality assumption. Therefore, R^2 seems a suitable 
measure of explained variation in the present context.

R^2 represents the fraction of the Y variable that the 
X variable is capable to predict [57]. It can also provide a 
complementary indication of goodness of fit. 

The two cancer lines HCT116 and HT29 carry rather 
distinct mutations and alterations (Section Methods). If 
we look at Fig. 1 and Supplementary Fig. 1.3, the two 
endpoints ERKPP and AKTP look as two rather distinct 
pathways, with an altered behavior dependent from distinct 
mutations. If we look at Fig. 2 and Fig. 3, it seems evident 
that the two mRNAs add an additional layer of complex 
regulation, downstream of activators or repressors bound 
to the transcription factor binding sites (TFBS). 

As a consequence, the different parameters 
measured can be considered at least partially independent, 
even if “physically” not completely independent [58]. 

We found a significant statistical correlation in all cases 
examined. If we have a partial independence for each case 
examined, an “always positive outcome” will tend to be 
much more significant than each individual correlation. 

Our statistical analysis has tried not to convey a 
misleading message of our stage of MIM reconstruction, 
parameterization, and mathematical modeling, as if it was 
already close to a practically working instrument.

What we have shown instead, is that the multiple 
(and inevitable at this stage) deficiencies in input, are 
definitely not generating a noise obscuring a clear 
connection between model and experiments. 

The very important message (reinforced by 
statistical analysis) is that an incremental path is now open, 
justifying more long term future cooperative efforts in the 
directions of building larger MIMs, supported by more 
input parameters at the level of molecular concentrations 
and reaction rates. 

In our opinion, our present model is already 
intriguingly quite suggestive and encouraging, but we 
work toward future more advanced models, as operative 
instruments for a rationalization of the treatment of 
individual cancer patients, using associations of inhibitors 
of specifically altered pathways in a given specific cancer 
of a specific patient. 

Table 1: Spearman's rho computed for the HTC116 and HT29 cell lines in all experimental conditions 
(two proteins and two mRNAs end points for each cancer line).

HTC 116 Spearman’s rho   95% Confidence Interval p-val    [two tailed]

ERKPP 0.56 (0.28,0.73) 0.0002
AKT 0.55 (0.23,0.77) 0.0004
MYC 0.59 (0.34,0.68) 0.0002

CCND1 0.76 (0.58,0.86) 6E-07
HT29

ERKPP 0.66 (0.39,0.80) 9E-06
AKT 0.61 (0.30,0.80) 5E-05
MYC 0.54 (0.03,0.84) 0.007

CCND1 0.53 (0.05,0.82) 0.009

Table 2: R^2 coefficient for linear regression. R^2 was computed for two proteins and two 
mRNAs end points for each cancer line.

    R^2
(all individual experimental results were considered)

HTC 116
ERKPP 0.77

AKT 0.35
MYC 0.81

CCND1 0.82
HT29

ERKPP 0.75
AKT 0.49
MYC 0.96

CCND1 0.91
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Our model applied to independently published 
results 

The predictions of our model were tested against 
preclinical results obtained by independent investigators, 
in DiFi, LIM1215, HCA-46 and OXCO-2 CRC lines, 
before and after induction of panErb resistance through 
a subsequent KRAS mutation. Well after our model 
finalization (training, + mRNA stability adjustments), 
and our own experimental verifications, in a very recent 
paper by Misale et al. [59], these authors demonstrated 
that, in CRC lines that had become resistant to panErb 
inhibitors (because of the late appearance of a mutated 
KRAS), the addition of MEK inhibitors could partially 
overcome resistance. This re-sensitization was more 
complete when a MEK inhibitor was given together with a 
panErb inhibitor. These lines were initially sensitive to the 
panErb inhibitors cetuximab or panitumab, but resistance 
emerged through subsequent new KRAS mutations. We 
examined in our model the simulated behavior before and 
after the emergence of a resistance to panErb inhibitors. 
To do so we generated personalized MIM modeling, in the 
absence or presence of KRAS alterations. We simulated 
the presence of a panErb inhibitor, a MEK inhibitor, or 
both. The behavior of P-protein/total protein for EGFR, 
ERK, AKT (at 30 min - 1 hour) was well compatible 
with the authors’ observations (Supplementary Material 
5.2). Moreover, both c-MYC and CCND1 mRNAs (both 
playing a crucial role for cell replication), were completely 
normalized (at 4 - 8h), only by the combination of panErb 
and MEK inhibitors in the presence of a mutated KRAS 
(Supplementary Material 5.2). Our simulations suggest 
that this behavior is due to a synergic effect of the two 
inhibitors, which target two different pathways: MEK 
inhibitor downstream of the KRAS mutated pathway, and 
PanErb inhibitor on the PI3K-AKT pathway.

This synergism seems in line with that observed by 
the authors at a cellular level. The behavior of our model 
in this new context, being able to satisfactorily reflect 
these independent and subsequent experimental findings, 
was quite encouraging. 

DISCUSSION 

We started from a signaling-network model without 
cancer mutations (a “physiologic model”) and generated 
models including specific mutations/alterations (in 
our MIM region), concordant with those present in the 
HCT116 and HT29 colon cancer lines. We demonstrated 
that this model can be tuned with the individual genetic 
background of a tumor (using cell lines as a proxy), to 
predict individual responses to inhibitor treatments. 
This is an encouraging finding, suggesting that larger 
similar models using a similar conceptual framework, 
generated by larger cooperative groups (perhaps consortia-

like), could achieve important incremental advances, 
culminating in a potentially useful new tool for clinical 
oncology, tailored toward predicting in individual patients 
the effectiveness of associations-combinations of selective 
inhibitors of distinctly altered pathways. Tentatively, we 
would expect that this goal could be achieved in three - 
five years.

When a signaling-protein is mutated/altered in an 
appropriate way, it can confer auto-activation, switching 
on the downstream part of a given pathway independently 
of the upstream condition. This potential for an irreversible 
pathway activation, likely drives the selection of an 
oncogenic mutation during the evolutionary carcinogenetic 
process (including the mutations/alterations incorporated 
into our model). A good therapeutic strategy could be to 
inhibit two or three different pathways simultaneously, 
but only those pathways altered by driver mutations and 
implying potential forms of addiction to the mutations/
alterations considered [60]. 

As a first approximation, we should inhibit each 
altered pathway with drugs acting at or below the 
pathway-mutation/alteration.

Complementary to the strategy we propose will 
have to be a more widespread generation of pertinent 
personalized patient data, for instance through new 
generation sequencing approaches applied to a routine 
investigation of the most frequent driver mutations and 
somatically inheritable alterations, reported for a given 
tumor type [2].

We have moved in the direction of an important 
enlargement and progressive improvement of previous 
modelings of biochemical interactions [24-27, 61-63]. 
In perspective, for the specific cancer of a given patient, 
our MIM and its linked mathematical model, aims at a 
translation of a restricted number of relevant mutation/
alteration patient data + selected inhibitor combinations, 
to clinically actionable information.

In our opinion, the results reported here prove the 
concept of using mathematical models to better understand 
the intricacies of biological signaling-networks and 
treatment responses. Most importantly, our work suggests 
the feasibility of this approach and the great opportunities 
offered by continued future incremental advances. 
Progressively/incrementally amending a model with novel 
information, should be a working and winning strategy 
for improving the predictive power of models of this 
kind. We have in mind not only new externally published 
information: a strong consortium-like cooperation could 
become capable of acquiring directly a much larger set 
of required experimental parameters (both in terms of 
molecular concentrations and reaction rates).

It was impossible to assess a priori the predictive 
value of our model. More than obviously it could not be 
a definitive and complete reconstruction of a network 
region, despite being based on a rather large number of 
directly pertinent publications (about one hundred). The 
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Figure 7: Scatter plots of experimental (Y axis) versus simulated (X axis) values, for mRNA levels, in response to 
different inhibitor treatments. Panel A and B: Scatter plots for MYC mRNAs in HCT116 and HT29 cancer lines, respectively. Panel C 
and D: Scatter plots for CCND1 mRNAs in HCT116 and HT29 cancer lines, respectively. The (0;0) origin of the two axes makes reference 
to a complete inhibition of phosphorylation, both experimental and simulated.  

Figure 6: mRNA levels. Panel A and B: Histograms of comparison between experimental and simulated MYC mRNA levels in HCT116 
and HT29 cells respectively, in response to different inhibitor treatments. Panel C and D: Histograms of comparison between experimental 
and simulated CCND1 mRNA levels in HCT116 and HT29 cells respectively, in response to different inhibitor treatments. Notice that 
CCND1 mRNA inhibition is stronger after 8 h incubation with CI1040, than after 4 h incubation. Panel A and C: 1: 4h DMSO control; 2: 
8h DMSO control; 3: 4h CI1040; 4: 8h CI1040; 5: 4h PI103; 6: 8h PI103; 7: 4h XAV939; 8: 4h PI103 + CI1040; 9: 4h XAV939 + CI1040; 
10: 4h: XAV939 +PI103; 11: 4h PI103 + CI1040 + XAV939  Panel B and D: 1: 4h DMSO control; 2: 8h DMSO control; 3: 4h CI1040; 4: 
8h CI1040; 5: 4h PI103; 6: 8h PI103; 7: 4h Azakenpaullone; 8: 8h Azakenpaullone.
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framework and details of our simulation-engine, and 
its specific parameters, were all established during the 
training phase. Only after completion of the training phase 
and its satisfactory behavior in dealing with the input data, 
we moved to the verification phase, where we compared 
the predictions of our simulation-engine with our ex 
novo experimental results. Using a different phrasing, 
retrofitting procedures were continuous and systematic 
during the training phase, but strictly confined only to that 
phase. 

As described in the statistical section, both 
correlation and goodness of fit between simulations and 
ex novo experiments, have been quite encouraging. It 
seems therefore really worthwhile to move ahead and 
to build larger improved models. Computer power is 
continuously increasing and should not be a problem for 
the implementation of larger models.

Our model was also successfully tested against 
the results of a novel publication [59], available several 
months after the conclusion of our model training phase, 
and also after the conclusion of our wet experiments. 
By constructing personalized MIMs adapted to panErb 
sensitive or resistant four CRC lines, once again our model 
proved to be predictive of the experimental response (last 
paragraph of Results section and Supplementary Material 
5.2). Supplementary Material 5.2 refers specifically to the 
work of Misale et al [59].  

Our MIMs have specific properties in terms of a 
Graph Theory perspective [64, 65]. We have preliminary 
evidence that these MIMs, and their dynamic modeling, 
at this stage of development, can withstand a significant 
degree of parameter approximation. They can provide 
an important tool to collating the increasingly complex 
data on oncogenic signaling and translating it into a 
program that can be easily interrogated, enhancing human 
understanding of highly non-linear biological signaling 
networks. These biochemical-interactions networks, over a 
given size, are clearly beyond unaided human capabilities 
of comprehension of what is going on [66].

At the same time this is not an all or nothing 
process, as we do not have to know every detail to reach 
a more advanced understanding. It seems therefore worth 
moving forward in this direction, as it may have important 
effects on a more rational cancer therapy when treating 
patients with signaling-protein inhibitors. This not only in 
terms of one-drug therapies, but, in terms of appropriately 
tailoring drug combinations to individual patient needs: 
an important step in a progress towards a really innovative 
type of personalized cancer therapy. 

In the near future, more advanced patient specific 
tumor data, for instance, from deep sequencing of 
tumor biopsies or liquid biopsies (focused on major 
driver mutations in a given tumor + some most relevant 
additional somatically inheritable driver alterations), 
could be routinely incorporated into a model like ours, 
to create patient personalized tumor models, capable of 

supporting clinical treatment decisions. Such models 
could also potentially inform about the likelihood of some 
types of acquired drug resistance evolving after an initial 
sensitivity to a given inhibitor. Simulating different types 
of perturbation, we could investigate which mutated nodes 
could circumvent a drug’s downstream inhibitory effect. 

Our dynamic models could represent an approach 
complementary to an interesting approach proposed in a 
recent paper by Crystal and colleagues [67]. They have 
combined a genetic analysis of acquired-resistance tumors 
with a pharmacologic screening with targeted agents, to 
predict the behavior of an association of inhibitors. They 
used a set of 76 antineoplastic drugs, mostly inhibitors 
of signaling-proteins (cancer-genes). Their approach 
was successful, but required an important amount of 
experimental work to find a working association, in terms 
of cell growth inhibition. A modeling approach could help 
to detect priorities and restrict the number of proposed 
associations, to be finally tested / validated at a cellular 
level.

Such modeling approaches, which collate the 
continuously accumulating disparate data from basic 
biological research into integrated predictive user-
friendly models with clinical utility, should fulfill in the 
cancer field the broad promise of Systems Medicine: the 
translation of Systems research into Clinical tools [68]. 
Progress in this direction will be gradually accompanied 
by a better understanding and acceptance by clinicians.

Extended MIM dynamic models could also be 
utilized to inform new clinical trials (of both novel 
compounds and combination therapies) potentially 
improving the failure rate observed in such trials. 

In a recent example Erlotinib (an EGFR inhibitor) 
and anti-MET onartuzumab would not synergize 
effectively in the majority of NSCLC patients in a phase 
III study [69]. This lack of synergism could have been the 
consequence of multiple mutations/alterations commonly 
found in the network downstream of EGFR and MET. 
Perhaps their role could have been understood in advance 
in the framework of a dynamic modeling. It could be 
possible to consider the administration of some additional 
downstream inhibitor. A complementary deeper molecular 
characterization of each individual cancer could focus 
combination treatments towards subsets of patients more 
homogeneous, characterized at a network-pathology level.

In conclusion, we feel that this is a road to a 
novel and important approach with utility to oncology 
and medicine more generally. We foresee that second 
generation descendents of this modeling approach will 
be progressively chosen more frequently to interpret 
preclinical and clinical research into onco-protein 
mutations and to suggest rational combinations of 
inhibitors. We consider this perspective a better alternative 
to the more reductionist current approach, of considering 
substantially a summation of biomarkers, to be matched 
with a given therapeutic hypothesis. 
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Signaling-network dynamic simulations are 
probably an essential tool on the road of a more adequate 
dealing with the high degree of molecular complexity of 
cancer and cancer therapy. 

METHODS 

Simulations using ODEs

For dynamic simulations we formulated the 
reactions scheme as Ordinary Differential Equations 
(ODEs) according to Supplementary Table 2.1, in terms 
of the reactions’ kinetic laws [70]. The ODE models were 
developed and simulated with the SimBiology toolbox of 
the Matlab software (Mathworks)[20]. 

We performed our simulations for mRNA levels 
at 4 – 8 h. As changes in protein phosphorylation above 
transcription (Fig. 1 and Supplementary Fig. 1.3) take 
place much more rapidly, they were experimentally 
assessed at 30 min (and 60 min with substantially similar 
results). 

We assigned initially a total concentration (relative 
to a given basic-protein plus all its complexes and post-
translational modifications) entirely to the unbound basic 
protein (Supplementary Table 2.2). The presence of 
mutations/alterations and/or inhibitors, according to the 
cell line and experimental conditions being simulated, 
were introduced to the model at this early stage. Reactions 
were then brought to a quasi-stationary equilibrium, which 
causes redistribution of each basic protein among all its 
forms and complexes with binding partners (SimBiology 
numerical approximate solution as a function of time).

Thermo-statistical derivation of a transcription 
rate function for MYC and CCND1 

This is a quick guide to main equations and 
assumptions, for more details see also the pertinent Ss. 

The first step in building the thermo-statistical model 
involved identifying key transcription factor binding sites 
(TFBSs) responsible for MYC and CCND1 activation and 
repression, as well as the main TFs that bind to them. We 
have considered only some of the most important and best 
studied TFs (see reviews on MYC transcription (1, 2 in 
Supplementary Fig. 4.1), CCND1 transcription (3, 4 in 
Supplementary Fig. 4.1).  

The transcription rate function of a gene describes 
the relationship between the gene’s rate of transcription 
and the cellular concentrations of upstream transcriptional 
activator and repressor complexes. A single (as a first-
approximation) transcription rate function for the MYC 
and CCND1 genes was mathematically derived using a 
statistical thermodynamic framework [71-73]. First, the 
key transcription factor binding sites (TFBSs) responsible 

for activation or repression of MYC and CCND1 were 
identified, as well as the main transcription factors (TFs) 
that bind to them (Fig. 2 and Supplementary Material 
4.2). Each TF identified was included in the MIM. As the 
two genes were found to have similar key transcriptional 
regulators, it was assumed that they have equivalent 
promoter regions and the same transcription rates. We 
observed however important experimental differences in 
the degradation rates of the two mRNAs. In our model we 
accounted also for these differences.

The entire collection of all five TFBSs, all activators 
and repressors considered in the MIM, RNA Polymerase 
II (RNAP) and the RNAP binding site was denoted in 
the model by Promoter/TF/RNAP (Supplementary Fig. 
4.1). Similarly, each individual TFBS and its associated 
TFs, when paired with RNAP and the RNAP binding 
site, formed a theoretical reduced promoter region termed 
TFBS/TF/RNAP. Standard statistical thermodynamic 
assumptions and procedures were applied in deriving 
the transcription rate function, with some extensions to 
the original method to encompass the complexity of the 
promoter under consideration (Supplementary Material 
4.3). 

The probability of RNAP binding to the promoter 
can be written in terms of the regulation factor 

 associated with the promoter, a function of TF 
concentrations parameterized by TF-DNA dissociation 
constants (Supplementary Material 4.3):

 (a) It was 
shown that under certain conditions (i.e. independence of 
TFBSs) the regulation factor of Promoter/TF/RNAP can 
be written as the product of the regulation factors over 
all its constituent TFBS/TF/RNAP parts (Supplementary 
Material 4.4), i.e.

 (b) The 
mRNA production rate was assumed to be proportional 
to the probability of RNAP binding to the promoter for 
transcription initiation [72,73]. Therefore, for each TFBS/
TF/RNAP a regulation factor was derived (Supplementary 
Tables 4.7 - 4.12) and a final expression for the 
transcription rates of MYC and CCND1 was obtained 
(Supplementary Material 4.6), 

   (c) 

 was obtained by Eqn. (a) and thermo-
statistical methods (Supplementary Materials 4). 

The parameter ksynth was assigned the value of 
5•10-5/sec both for the synthesis of MYC and CCND1. 
The parameter kdeg was assigned values of 2.7•10-4/
sec or 5.7•10-6/sec, for degradation of MYC or CCND1 
respectively, in the absence of any inhibitor (Fig. 3B and 
Supplementary Table 2.1, where we report Eqns 863, 864, 
867, 868). 

The degradation rate kdeg for CCND1 mRNA was 
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modified according to our experimental observation 
of decreased mRNA stability in the presence of 
MEK inhibitor CI1040 (Results section: Fig. 3C and 
Supplementary Table 2.1). 

In our model, the velocity of degradation of a 
reactant was described as the product of the reactant 
concentration with its degradation rate (Eqs. 747, 748, 
770, 775, 782, 864).

Considering the effect of MEK inhibitor on the 
stability of CCND1 mRNA, observed experimentally in 
Fig. 3C, CCND1 mRNA degradation rate (kdegCCND1) was 
empirically adjusted, in the presence of MEK inhibitor, as: 

kdegCCND1+MEKinhib = kdegCCND1contr•[ERKPPcontrol/
ERKPPMEK inhib] (d)

(related to Eqn 868 reported in Supplementary Table 
2.1). 

MEK inhibitor CI1040 decreases [ERKPP] levels, 
therefore, in the presence of the inhibitor, [ERKPPcontrol/
ERKPPMEK inhib] > 1. The empirical formula implemented in 
Eqn 868 increases kdegCCND1 with an inverse proportionality 
in respect to the degree of ERK phosphorylation. 

Experimental derivation of MYC and CCND1 
mRNA degradation rates

To evaluate MYC and CCND1 mRNA (qPCR) 
stability in HCT116 and HT29 cell lines, we performed 
RT-qPCR (see below) after treatment with the pan-
transcriptional inhibitor Actinomycin D (Act D) (Sigma-
Aldrich) at 5 µg/ml. Our results (see Results section) 
demonstrate the very different mRNA stability of MYC 
and CCND1 and highlight the importance of including 
stability/degradation rates in any MIM/mathematical 
modeling.

Mutations/Alterations in our CRC lines: virtual 
implementation 

The mutations present in our ATCC CRC lines 
are described in CCLE database [74]. Four dominant 
mutations in terms of pathway activation (KRAS 
(HCT116), β-Catenin (HCT116), BRAF (HT29), 
PI3K (both lines) have been implemented according 
to the simplifying rule that the activated protein will 
remain in a phosphorylated or in an “active” form (de-
phosphorylation/“inactivation” was prevented in the 
biochemical dynamical implementation of the model). 
According to our experimental results reported in 
Supplementary Material 3, HT29 cells over-expressed 
ErbB2 ~ 2x, and this variation was also simulated in our 
modeling. To model the five alterations involving the loss 
of function, resulting in global pathway activation (PTEN 
(HCT116), E-Cadherin (HCT116), TGFβ receptor II 
(HCT116), APC (HT29), SMAD4 (HT29)), we put zero 
concentrations, as simulating the absence of a functional 

protein. In the case of PTEN, we input its concentration 
at 60% of its physiological value, according to our 
experimental results in HCT116 cells (Supplementary 
Material 3). We could also simulate the presence of 
a single functional allele (data not reported). In the 
case of hyper-expressed onco-proteins, e.g. ErbB2, its 
concentration was raised 2x in HT29 cells (Supplementary 
Material 3). 

Implementation of our virtual inhibitors

As reported in Table SM2.1, we applied the 
following inhibitors: MEKPP inhibitor CI1040, PI3K 
inhibitor PI103, AKTP inhibitor Perifosine, GSK3β 
inhibitor Azakenpaullone, Tankyrase inhibitor XAV939 
(XAV939 stimulates β-catenin degradation by stabilizing 
Axin, which is part of the [Axin:GSK3β:APC] degradation 
complex for β-catenin). 

According to the information given by the company 
selling the inhibitor (see below), and to the concentration 
of inhibitor used, we calculated different inhibition levels 
for each inhibitor (Supplementary Material 3.1) 

Cell culture and reagents 

The HCT116 and HT29 CRC cell lines were 
obtained from the American Type Culture Collection 
(ATCC). For details about cell culture conditions and 
reagents, Supplementary Material 3.1.

RT-qPCR experiments

We treated our CRC lines with an individual 
inhibitor, inhibitor combinations, vehicle only, or no 
treatment, for the durations indicated below. At the end 
of treatment, we extracted total RNA from the cells 
using an RNeasy Kit (Qiagen). Total RNA was used to 
synthesize cDNA using QuantiTect Reverse Transcription 
Kit (Qiagen), including a genomic DNA digestion step. 
We generated biological duplicates for all samples at 
all time-points, and performed technical replicates for 
every sample and time-point. We performed reverse 
transcription qPCR on an ABI 7900HT Real Time qPCR 
System (Applied Biosystems) with TaqMan reagents 
(Applied Biosystems) according to the manufacturer’s 
recommended protocol. Gene expression was normalized 
to the expression of β-actin (Assay I.D: 4326315E), 
with P0 ribosomal protein (Assay I.D: 4310879E) as a 
second control. MYC and CCND1 expression levels were 
detected with assays Hs00905030_m1* and Hs00765553_
m1* respectively. 
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Western blot experiments 

Supplementary Material 3.2 provides 
methodological details (antibodies used, protein 
which an antibody binds, supplier and catalog number, 
concentration they were used at, and incubation time) 
as well as information about preliminary experiments 
performed to determine optimal and standard experimental 
conditions. After these preliminary experiments, all the 
combinations of different inhibitors were examined at 30 
min incubation, after an initial change with complete fresh 
medium. These results are reported in the Results section 
and have been correlated with the modeling simulations 
(Supplementary Material 3.2).
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