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AbstrAct:
Photoreceptor cell death is the terminal event in a variety of retinal disorders including 
age-related macular degeneration, retinitis pigmentosa, and retinal detachment. 
Apoptosis has been thought to be the major form of cell death in these diseases, however 
accumulating evidence suggests that another pathway, programmed necrosis is also 
important. Recent studies have shown that, when caspase pathways are blocked, 
receptor interacting protein (RIP) kinases promote necrosis and overcome apoptosis 
inhibition. Therefore, targeting of both caspase and RIP kinase pathways are required 
for effective photoreceptor protection. Here, we summarize the current knowledge of 
RIP kinase-mediated necrotic signaling and its contribution to photoreceptor death. 

IntroductIon

Photoreceptor death is the ultimate cause of vision 
loss in many retinal disorders. Photoreceptors die when 
they are physically separated from the underlying retinal 
pigment epithelium (RPE) and choroidal vessels, which 
provide metabolic support to the outer layers of the retina. 
Retinal detachment occurs in various retinal disorders, 
including age-related macular degeneration (AMD) [1], 
diabetic retinopathy [2], as well as rhegmatogenous 
retinal detachment. Although surgery is carried out 
to reattach the retina, only two-fifths of patients with 
rhegmatogenous retinal detachment involving the macula 
recover 20/40 or better vision. Histological examination 
of the retina in experimental retinal detachment, which 
is created by subretinal injection of sodium hyaluronate 
in animal eyes, showed that photoreceptor death is first 
identified at 12 hours, peaked by around 3 days, and 
dropped to a low level by 7 days after retinal detachment 
(Fig. 1A and B) [3,4,5]. Interestingly, the retina in patients 
with rhegmatogenous retinal detachment exhibits a 
similar pattern and time course of photoreceptor death 
observed in experimental retinal detachment [6]. These 
studies suggest that photoreceptor death may be one of 
the causes of vision loss after retinal detachment. 

AMD is the most common cause of adult blindness 
in the western world [7]. Severe vision loss in late stage 
AMD results from choroidal neovascularization (called 

wet or neovascular AMD) or geographic atrophy (called 
dry AMD) [8]. In wet AMD, choroidal neovascular 
vessels leak serous or hemorrhagic fluid, causing 
detachment of RPE or photoreceptors, subretinal or 
intraretinal hemorrhage, and consequent fibrovascular 
scarring. Although anti-vascular endothelial growth 
factor (VEGF) therapies have shown visual improvement 
in many patients with neovascular AMD [9,10,11], some 
patients still do not respond to these therapies and 2/3 
of patients do not have visual improvement. Because 
photoreceptor loss underlies the pathology of AMD [12], 
neuroprotective agents targeting photoreceptor death 
may be used in combination with anti-VEGF therapies 
to improve visual outcomes. In dry AMD, geographic 
atrophy is a serious cause of vision loss. It results from 
a slowly progressive atrophy of RPE and photoreceptors. 
Histological studies of geographic atrophy have suggested 
that RPE cells die first, followed by degeneration of 
photoreceptors [1,13]. On the other hand, macular 
translocation studies have shown that RPE atrophy recurs 
under the translocated macula after surgery, suggesting 
the possibility that photoreceptors may cause RPE 
degeneration in geographic atrophy or that RPE cells are 
impaired in handling the metabolic/trophic demands of 
the macular photoreceptors. [14,15,16]. 

In other retinal degenerative disorders such as 
retinitis pigmentosa, photoreceptor death is the basis 
for visual decline [17]. Retinitis pigmentosa is a group 
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of inherited retinal disorders, affecting over 1 million 
individuals worldwide. Although genetic analyses have 
identified over 40 different genetic mutations [Retinal 
Information Network (RetNet) at http://www.sph.uth.tmc.
edu/Retnet/], the mechanisms by which these mutations 
cause photoreceptor death are unclear and these diseases 
remain intractable [18,19]. Therefore, identification of the 
mechanisms involved in photoreceptor death is critical 
to developing new treatment strategies for these retinal 
disorders associated with photoreceptor loss.

two dIstInct Forms oF cell 
deAth: ApoptosIs And necrosIs 

Apoptosis and necrosis are two distinct modes of cell 
death defined by morphological appearance [20]. In 1972, 
Kerr, Wyllie and Currie used the Greek term ‘apoptosis’ 
(dropping off of petals from plants) to describe a specific 
morphological aspect of cell death [21]. Apoptosis is 
accompanied by rounding-up of the cell, reduction of 
cellular volume, chromatin condensation, and engulfment 
by resident phagocyte. Apoptosis is the best-characterized 
type of programmed cell death, and these morphological 
changes are largely mediated by the activation of caspase 
family of cysteine proteases [22]. In contrast, ‘necrosis’ 
(from the Greek, dead) is associated with a gain in cell 
volume, swelling of organelles, plasma membrane rupture 
and subsequent release of intracellular contents with 
ensuing inflammation. Previously, necrosis has been 
considered a passive, unregulated form of cell death, 
but recent evidence indicates that some necrosis can be 
induced by regulated signal transduction pathways such 
as those mediated by RIP kinases [23]. This programmed 
form of necrosis is termed programmed necrosis or 
necroptosis [24,25]. 

methods to detect ApoptosIs And 
necrosIs 

Although several biochemical methods to detect 
cell death have been developed, there is no perfect 
method that can specifically discriminate between 
apoptosis and necrosis. For example, whereas detection 
of phosphatidylserine exposure is known as a marker 
of early apoptosis, necrotic cells also externalize 
phosphatidylserine before membrane permeabilization 
in some cells [26]. TUNEL staining, which was initially 
thought to detect specifically apoptotic cells, also labels 
DNA breaks in necrotic cells [27,28]. Conversely, cell 
impermeable dye such as propidium iodide, which is used 
to label necrotic cells, also detects late-stage apoptosis. 
Biochemical detection of key molecular events in 
apoptosis (e.g. caspase cleavage) and necrosis (e.g. RIP 
kinase phosphorylation) or inhibition of these molecules 
by pharmacological or genetic approaches may provide 
significant information for the specific roles of each 
cell death mode. However, it should be noted that these 
molecular pathways are not completely independent and 
may cross-talk with each other especially in the late phase 
of cell death. Although transmission electron microscopy 
has been used less frequently over the past decade, it is 
still one of the most sensitive and direct methods to detect 
morphological changes in cell death [29,30]. Given all of 
these findings, it is apparent that a combination of several 
distinct techniques is needed for the proper classification 
of cell death modalities.

cAspAse sIgnAlIng

Cystein aspartate-specific proteases or caspases are 
the central molecules involved in initiation and execution 
of apoptosis [22]. There are at least 7 mammalian caspases 
that have an important role in apoptosis, and they are 
divided into two major classes: the initiator caspases, 
caspase-2, -8, -9 and -10; and the effector caspases, 
caspase-3, -6, and -7. The initiator caspases cleave inactive 
forms of effector caspases, thereby activating them. Once 
activated, the effector caspases cleave a broad spectrum 
of protein substrates, which in turn lead to induction of 
apoptosis.

Caspase activation occurs mainly through the 
extrinsic and intrinsic pathways [31] (Fig. 2). The 
extrinsic pathway is initiated by binding of extracellular 
death ligands such as TNF-α and Fas ligand to their 
cell-surface death receptors like TNFR and Fas [32]. 
The death domains of these receptors recruit adaptor 
molecules like Fas-associated death domain (FADD) and 
caspase-8, forming the death inducing signaling complex 
(DISC) [33]. The formation of DISC leads to activation 
of caspase-8, which in turn mediates cleavage of effector 
caspases. The extrinsic pathway can cross-talk with the 
intrinsic pathway through caspase-8-mediated cleavage 

Figure 1: experimental retinal detachment.
A. Scheme of experimental retinal detachment. Subretinal 
injection of sodium hyaluronate causes physical separation of 
photoreceptors from the underlying RPE.
b. TUNEL staining 3 days after experimental retinal detachment. 
TUNEL positive cells are detected in the outer nuclear layer 
(ONL). INL: inner nuclear layer; GCL: ganglion cell layer; scale, 
50 µm. 
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of Bid, a BH3-only member of the Bcl-2 family proteins 
[34,35]. Bid cleavage releases a truncated fragment that 
triggers the release of mitochondrial proteins, thereby 
initiating intrinsic caspase cascade as described below. 

The intrinsic pathway is mediated by mitochondria 
[36]. In response to intracellular and environmental stress, 
mitochondria release intermembrane proteins such as 
cytochrome c and second mitochondria-derived activator 
of caspases (Smac)/direct inhibitor of apoptosis-binding 
protein with low pI (Diablo) into the cytosol. Released 
cytochrome c triggers the formation of an apoptosome 
along with apoptotic protease activating factor-1 (Apaf-
1) and caspase-9 in the presence of ATP, which leads to 
caspase-9 activation [37]. Smac/Diablo enhances caspase 
activation through the neutralization of inhibitor of 
apoptosis (IAP) proteins [38,39]. 

the role oF cAspAses In 
photoreceptor deAth

There is no doubt that caspases play a central role in 
the induction of apoptosis especially in the early stages; 
however, accumulating evidence suggests that the caspase 
pathway may not be the sole mediator of neuronal cell 
death in pathological conditions. In experimental models 
of retinal detachment, although enzymatic activities of 
caspase-8, -9, -3, and -7 increase in the retina after retinal 
detachment [5,40], caspase inhibition by a pan-caspase 
inhibitor fails to prevent photoreceptor loss [4]. Reduced 
expression of Apaf-1 in forebrain overgrowth mutant 
mice exhibits partial, but not complete, protection against 
photoreceptor death after retinal detachment [41]. There is 
conflicting evidence regarding caspase activation during 
photoreceptor death in inherited retinal degeneration. Figure 2
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Figure 2: schematic of caspase signaling pathway. The extrinsic pathway is initiated by biding of death ligands such as TNF-α 
and Fas ligand to their cell-surface death receptors such as TNFR and Fas. The death domains of these receptors recruit adaptor molecules 
like FADD and caspase-8, which leads to the activation of caspase-8. Activated caspase-8 cleaves the effector caspases such as caspase-3, 
thereby activating them and inducing apoptosis. The extrinsic pathway interacts with the intrinsic pathway via caspse-8-mediated cleavage 
of Bid. The intrinsic pathway is initiated by release of mitochondrial intermembrane proteins such as cytochrome c and Smac/Diablo into 
the cytosol. Released cytochrome c forms an apoptosome with Apaf-1 and caspase-9, which leads to caspase-9 activation. Smac/Diablo 
enhances caspase activation through the neutralization of IAP proteins. 
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Whereas several studies reported an increased activity 
of caspase-3 and -8 in a model of inherited retinal 
degeneration (rd1 mice), others showed that activation 
of caspase-9, -8, -7, -3, and -2 is not observed in rd1 
mice [42] and that caspase inhibition by the pan-caspase 
inhibitor Z-VAD or testing in mice deficient in caspase-3 
is not sufficient to prevent photoreceptor loss [43,44]. 
Intraperitoneal injection of a caspase-3 inhibitor provides 
mild and transient protection with no effect after 13 days 
of age in rd1 mice [45]. 

In the mature brain and retina, it has been 
demonstrated that caspase-dependent apoptosis is down-
regulated because of a differentiation-associated reduction 
in Apaf-1 and caspase-3 expression and increased efficacy 
of IAPs [46,47,48]. Segura and others reported that the 
long form of the Fas apoptotic inhibitory molecule 
is predominantly expressed in neurons and prevents 
the activation of caspase-8 induced by Fas [49]. Gene 

expression profiling of the retina after retinal detachment 
and in inherited retinal degeneration revealed changes in 
multiple cell death pathways as well as caspase signaling 
[50,51]. Recent studies have shown that several caspase-
independent inducers of cell death such as apoptosis-
inducing factor (AIF), calpains, and poly(ADP-ribose) 
polymerases 1 (PARP-1) are activated during retinal 
degeneration [44,52,53]. These findings indicate the 
involvement of multiple death signaling mechanisms in 
photoreceptor death, and suggest that inhibition of the 
caspase pathway alone may not be sufficient to prevent 
photoreceptor loss in retinal degenerative disorders. 

clInIcAl studIes usIng cAspAse 
InhIbItors

There are only a few clinical trials employing Figure 3
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Figure 3: schematic of rIp signaling pathway.
A. In response to TNF-α stimulation, RIP1 is recruited to TNFR and forms a membrane associated complex I with TRADD, TRAF2/5 and 
cIAP1/2, which in turn leads to polyubiquitination of RIP1 and pro-survival NF-κB activation. 
b. RIP1 switches function to a regulator of cell death when RIP1 is unubiquitinated by A20 or CYLD. Deubiquitination of RIP1 leads to 
the formation of cytosolic DISC with FADD and caspase-8, the so-called complex II. In contrast to TNF signaling, Fas stimulation directly 
forms DISC. Activation of caspase-8 in DISC leads to apoptosis induction. During apoptosis, RIP1 is cleaved and inactivated by caspase-8. 
c. In conditions where caspases are blocked or cannot be activated efficiently, RIP1 binds to RIP3, and both RIP1 and RIP3 kinases are 
phosphorylated at RIP1-RIP3 complex. RIP1 kinase phosphorylation is critical for necrosis induction. In response to TNF-α, RIP1 binds 
to NADPH oxidase 1 and produces superoxide. Activated RIP3 binds to PYGL, GLUL and GLUD1 and increases the production of 
mitochondrial ROS. ROS overproduction leads to mitochondrial dysfunction, resulting in the release of mitochondrial pro-death proteins. 
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caspase inhibitors in human diseases (http://clinicaltrials.
gov/). PF-03491390 (formally called IDN-6556) is an 
anti-apoptotic caspase inhibitor that has advanced into 
phase 2 clinical trials [54]. PF-03491390 is an irreversible 
and broad-spectrum caspase inhibitor, and blocks the 
activities of caspase-1, -2, -3, -6, -7, -8, and -9 [55]. In 
phase 1 and 2 studies, intravenous or oral administration 
of PF-03491390 was generally well tolerated [56,57,58]. 
Oral administration of PF-03491390 significantly reduced 
serum AST and ALT in a phase 2 study for patients with 
chronic hepatitis C virus [57]. Larger clinical studies are 
needed to establish the safety and efficacy of caspase 
inhibitors. There has been no caspase inhibitor-based 
clinical study for retinal and neurodegenerative disorders 
[59].

evIdence oF necrosIs In 

photoreceptor loss

Although most of studies have focused on apoptosis 
as a mechanism of photoreceptor death, previous 
morphological analyses demonstrated the presence of 
photoreceptor necrosis as well as apoptosis after retinal 
detachment and retinal photic injury [60,61]. Interestingly, 
Arimura and others showed that the vitreous level of high-
mobility group box 1 (HMGB1) is increased in human 
eyes with retinal detachment [62]. HMGB1 is a nuclear 
DNA-binding protein, which is mainly present in the 
nucleus and is passively released into the extracellular 
space from necrotic cells [63]. These findings suggest that 
necrosis and subsequent release of intracellular content 
may occur in human retinal degeneration. Furthermore, 
using experimental models of retinal detachment, we 
recently demonstrated via electron microscopy and 
molecular biology analysis that programmed necrosis is 
a significant mode of photoreceptor cell death after RD 
and that the RIP kinase pathway plays an important role in 
the induction of photoreceptor necrosis, especially when 
caspase pathways are inhibited [64]. Rosenbaum and 
others also reported that RIP kinase inhibition by RIP1 
kinase inhibitor protects retinal neuronal cells against 
retinal ischemic-reperfusion injury [65]. Thus, these 
results suggest that not only apoptosis but also necrosis 
are important for cell death during retinal degeneration, 
and that targeting necrosis signaling may be a novel 
therapeutic strategy for treatment of retinal disorders.

rIp KInAse sIgnAlIng 

rIp1 polyubiquitination mediates pro-survival 
NF-κB activation

RIP1 is an adaptor protein that acts downstream 
of death domain receptors and is essential for both cell 
survival and death [66]. RIP1 consists of an N-terminal 
serine/threonine kinase domain, an intermediate domain, 
a RIP homotypic interaction motif (RHIM), and a 
C-terminal death domain. After TNF-α stimulation, 
RIP1 is recruited to TNFR and forms a membrane 
associated complex I with TNF receptor-associate death 
domain (TRADD), TNF receptor-associated factor 2 or 
5 (TRAF2/5) and cellular IAP1 or 2 (cIAP1/2), which 
in turn leads to polyubiquitination of RIP1 [67,68]. 
This polyubiquitin chain serves as an assembly site for 
transforming growth factor-β-activated kinase-1 (TAK1), 
TAK1 binding protein 2 or 3 (TAB2/3) and inhibitor κB 
kinase (IKK) complex, and mediates pro-survival NF-κB 
activation (Fig. 3A)[69]. Cells deficient for both cIAP1 
and cIAP2, in which RIP1 polyubiquitination and NF-κB 
activation are blunted, are sensitized to TNF-mediated 
cell death [68,70]. Consistent with these results, RIP1 
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Figure 4: caspase inhibition exacerbates necrosis after 
retinal detachment. 
A-c. TEM photomicrographs of photoreceptors 3 days after 
retinal detachment in the retina treated with vehicle (A), pan-
capase inhibitor Z-VAD (B), or Nec-1+Z-VAD (C). A: apoptotic 
cell. N: Necrotic cell. Scale bar, 5 µm. Photoreceptors showing 
cellular shrinkage and nuclear condensation were defined as 
apoptotic cells, while photoreceptors associated with cellular 
and organelle swelling and discontinuities in plasma and nuclear 
membrane were defined as necrotic cells. Electron-dense 
granular materials were labeled simply as end-stage cell death/
unclassified.
d. Quantification of apoptotic and necrotic photoreceptor 
death after retinal detachment. Z-VAD treatment decreased 
apoptosis but exacerbates necrosis. Nec-1+Z-VAD significantly 
suppressed necrotic photoreceptor death. 
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knockout mice die soon after birth with reduced NF-
κB activation and extensive apoptosis in lymphoid and 
adipose tissues [71]. 

rIp1 kinase phosphorylation at the crossroad of 
apoptosis and necrosis

RIP1 switches its function to a regulator of cell death 
when it is deubiquitinated by A20 or cylindromatosis 
(CYLD) [72,73]. Deubiquitination of RIP1 abolishes its 
ability to activate NF-κB after TNF-α stimulation, and 
leads to the formation of cytosolic DISC with FADD and 
caspase-8, the so-called complex II [67]. As described 
above in caspase signaling, DISC formation leads to 
caspase-8 activation and subsequent apoptosis. In contrast 
to TNF signaling, Fas directly recruits RIP1, FADD and 
caspase-8 to the plasma membrane and forms DISC (Fig. 
3B) [74,75,76]. During apoptosis, RIP1 is cleaved and 
inactivated by caspases [77]. 

Although many cell lines are protected against death 
receptor-induced apoptosis by a pan-caspase inhibitor, 
Vercammen and others found that, in mouse L929 
fibrosarcoma cells, caspase inhibition does not prevent 
TNF- or Fas-induced cell death and the cells acquire a 
necrotic morphology [78,79]. In 2000, Holler and others 
discovered that RIP1 kinase is a key molecule that induces 
necrotic cell death mediated by death receptors [80]. 
Recently, three independent studies have identified that the 
interaction of RIP1 and RIP3 through their RHIM domain 
is a critical step for the phosphorylation of their kinase 
domains and subsequent necrosis (Fig. 3C) [81,82,83]. 
The complex containing RIP1 and RIP3 is termed the 
necrosome. Although RIP1 is expressed ubiquitously in 
all cell types, RIP3 expression levels differ amongst cells 

and tissue [82,84]. Interestingly, He and others showed 
that death receptor-mediated necrosis correlates with RIP3 
expression levels [82]. Gene knockout or knockdown of 
RIP3 completely inhibits RIP1 kinase phosphorylation 
and subsequent necrosis after death receptor stimulation 
[81]. These findings indicate that RIP3 is a key regulator 
of RIP1 kinase phosphorylation and necrotic signaling.

In 2005, Degterev, Yuan, and others using chemical 
library screening, identified small compounds named 
necrostatins that specifically inhibit death receptor-
mediated necrosis [25]. Necrostatins have been shown to 
specifically inhibit RIP1 kinase phosphorylation during 
necrosis without affecting death receptor-induced NF-
κB activation [85]. RIP1 kinase activity appears to be 
important for necrosome formation, as necrostatin-1 
abolishes the formation of the RIP1-RIP3 complex and 
RIP3 kinase phosphorylation during necrosis [81,82]. 
Cho and others propose that another unknown kinase 
activated by RIP1 may mediate RIP3 phosphorylation, 
based on the findings that ectopically expressed RIP1 does 
not phosphorylate RIP3 [81]. The activities of RIP1 and 
RIP3 may be mutually regulated in a necrosome signaling 
complex. 

the role oF rIp KInAse In 
photoreceptor deAth

During retinal degeneration, death ligands such 
as TNF-α and Fas-L are shown to be up-regulated and 
contribute to photoreceptor death [40,86]. As described 
above, death ligands can induce not only apoptosis but 
also necrosis. In addition, previous morphological analysis 
of photoreceptor death demonstrated the presence of 
both apoptosis and necrosis in retinal degeneration [60]. 

Figure 5: rIp kinase-mediated necrosis as a redundant mechanism of photoreceptor death. Photoreceptor death is caused 
mainly by apoptosis after retinal detachment (left bar). Caspase inhibition by Z-VAD decreases apoptosis but promotes RIP kinase-mediated 
necrosis (middle bar). Blockade of both caspases and RIP kinases is required for effective prevention of photoreceptor loss (right bar).

P
ho

to
re

ce
pt

or
 D

ea
th

A
po

pt
os

is
N

ec
ro

si
s

N
ec

ro
si

s
A

po
pt

os
is

Retinal Detachment 
Caspase Inhibition

Retinal Detachment 

Retinal Detachment 
Caspase and RIP Inhibition

N
ec

ro
si

s
A

po
pt

os
is

Figure 5

2011年6月2日木曜日



Oncotarget 2011; 2:  497 - 509503www.impactjournals.com/oncotarget

However, most of studies have not focused on necrosis 
since it was believed that necrosis is an unregulated 
form of cell death. In our recent work, we investigated 
the role of RIP kinase-mediated necrosis in experimental 
models of retinal detachment, and observed that RIP3 
expression increases over 10-fold in the detached retina, 
especially in the outer nuclear layer. Morphological 
assessment revealed that necrotic photoreceptor death 
occurs after retinal detachment, although its frequency 
is approximately half that of apoptosis (Fig. 4A and D). 
Interestingly, treatment with the pan-caspase inhibitor 
Z-VAD decreases apoptosis but exacerbates necrosis after 
retinal detachment (Fig. 4B and D). The necrotic changes 
after caspase inhibition are reversed by co-treatment 
with Nec-1 or by genetic knockout of RIP3 (Fig. 4C and 
D)[64]. These data indicate that RIP kinase-mediated 
necrosis is an alternative pathway of photoreceptor 
death, which is utilized particularly when caspases are 
inhibited, and suggest that simultaneous inhibition of 
both RIP kinase and caspase pathways are necessary 
for effective prevention of photoreceptor death (Fig. 5). 
Since several death ligands are up-regulated during retinal 
degeneration [40,86], targeting the common downstream, 
i.e. RIP kinases and caspases, may be a useful strategy for 
preventing photoreceptor death mediated by various death 
signals. 

One unexpected finding of our study is that RIP3 
deficiency attenuates apoptotic photoreceptor death as 
well as necrosis after retinal detachment. In contrast, 
necrostatin-1 prevents only necrotic photoreceptor death 
without affecting apoptosis [64]. It remains unclear 
whether RIP3 signaling may affect not only RIP1 kinase-
mediated necrotic pathway but also unknown apoptotic 
pathways. Previous studies reported that over-expression 
of RIP3 in cells leads to apoptosis induction [84,87]. 
Moreover, Upton and others recently demonstrated 
that mouse cytomegalovirus infection induces RIP3-
dependent but RIP1-independent cell death in 3T3-Swiss 
albino fibroblasts [88]. These results suggest that RIP3 
kinase may have additional substrates in addition to 
RIP1. Further biochemical and morphological analyses 
of RIP kinase-mediated cell death and identification of 
the direct substrates of RIP1 and RIP3 will further the 
characterization of RIP signaling pathways.

downstreAm tArgets oF rIp 
KInAses

rIp and reactive oxygen species

Previous studies in the 1990s reported that 
overproduction of reactive oxygen species (ROS) occurs 
in death receptor-mediated necrosis [79,89]. Consistent 
with these findings, recent studies have revealed the 

molecular links between RIP kinases and ROS-regulating 
enzymes. First, activated RIP3 interacts with metabolic 
enzymes such as glycogen phosphorylase (PYGL), 
glutamate-ammonia ligase (GLUL) and glutamate 
dehydrogenase 1 (GLUD1) [83]. PYGL catalyzes the 
degradation of glycogen to glucose-1-phosphate. GLUL 
and GLUD1 mediate glutaminolysis. GLUL catalyzes the 
synthesis of glutamine from glutamate and ammonia, and 
GLUD1 is a mitochondria matrix enzyme that converts 
glutamine to α-ketoglutarate. Activation of these enzymes 
eventually stimulates the Krebs cycle and oxidative 
phosphorylation, thereby increasing mitochondrial ROS 
production. Secondly, after TNF-α stimulation, RIP1 
forms a complex with TNFR, Riboflavin kinase, and 
NADPH oxidase 1 [90,91]. NADPH oxidase is the best-
characterized non-mitochondrial source of ROS and 
forms a membrane bound enzyme complex with p22phox 
and Rac [92]. This complex generates superoxide by 
transferring an electron from NADPH in the cytsol to 
oxygen on the luminal side or in the extracellular space. 
Thirdly, RIP1 kinase activates autophagic degradation of 
catalase, which converts hydrogen peroxide to water and 
oxygen, thereby increasing ROS accumulation [93]. The 
requirement of ROS for RIP kinase-mediated necrosis 
has been demonstrated in several (albeit not all) types of 
cells [94]. In vivo, oxidative retinal damage after retinal 
detachment is suppressed by RIP kinase inhibition [64]. 
These findings suggest that ROS overproduction is an 
important downstream target of the RIP kinases during 
retinal detachment-induced photoreceptor necrosis. 
Oxidative stress has been implicated as a key mediator of 
photoreceptor death in various retinal diseases including 
age-related macular degeneration [95,96], retinitis 
pigmentosa [97] as well as retinal detachment [64,98]. 
Further studies will be required to address whether RIP 
kinases affect ROS production and photoreceptor death in 
a broad range of retinal disorders.

rIp-mediated necrosis and mitochondrial 
permeability transition

The release of mitochondiral proteins into the 
cytoplasm is a key event during cell death [99]. There 
are at least two distinct mechanisms for mitochondrial 
membrane permeabilization. First, mitochondrial outer 
membrane permeabilization (MOMP) is initiated by the 
formation of the Bax channel at the outer mitochondrial 
membrane, allowing for the release of cytochrom c 
and other intermembrane space proteins. Secondly, 
mitochondrial permeability transition (MPT) results from 
the opening of the permeability transition pore complex 
(PTPC), a polyprotein complex formed at the junction 
between the inner and outer mitochondrial membrane. 
The opening of PTPC leads to loss of the mitochondrial 
membrane potential, an influx of fluid into the matrix, 
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swelling and rupturing of the outer mitochondrial 
membrane, and non-selective release of pro-death 
proteins [100]. It is postulated that apoptosis and necrosis 
may preferentially involve MOMP and MPT, respectively 
[101]. 

PTPC is a polyprotein complex primarily composed 
of voltage-dependent anion chanel (VDAC) in the outer 
membrane, adenine nucleotide translocator (ANT) in 
the inner membrane, and cyclophilin D in the matrix. 
Cyclophilin D is a critical component of PTPC formation, 
as genetic knockout of cyclophilin D prevents MPT and 
subsequent necrosis following H2O2 exposure or Ca2+ 
overload [102]. He and others recently reported that 
cyclophilin D-deficient MEFs are partially resistant to 
death receptor-mediated necrosis [82], suggesting that 
RIP kinase mediates necrosis through PTPC opening, 
at least in part. It is likely that MPT is important for 
photoreceptor death, as HIV protease inhibitors, which 
prevent PTPC opening, prevent cell death after retinal 
detachment [41,103]. In another study, RIP1 kinase was 
shown to inhibit the ANT function of transporting ADP 
into the mitochondria, resulting in reduced ATP and 
necrotic cell death [104]. Further studies of the molecular 
links between RIP kinase and PTPC components are 
required to elucidate the molecular signaling of necrosis.

rIp and AIF

AIF is a flavoprotein, which, in the healthy state, is 
located in the mitochondrial intermembrane space and 
exerts a vital function in energy and redox metabolism 
[105]. However, under stress conditions, AIF is cleaved, 
translocates to the nucleus, and promotes chromatinolysis 
and cell death. AIF was first identified as a caspse-
independent inducer of apoptosis [106], and recent 
studies showed that it also mediates programmed necrosis 
[28,107]. The translocation of AIF into the nucleus 
has been observed during photoreceptor death after 
retinal detachment and in inherited retinal degeneration 
[4,44,108]. Reduced AIF expression in Harlequin mutant 
mice reduces photoreceptor loss after retinal detachment 
[41]. Furthermore, our recent study showed that RIP 
kinase inhibition prevents AIF nuclear translocation after 
retinal detachment [64], suggesting the link between 
RIP kinase and AIF signaling. However, the precise 
molecular mechanisms by which RIP kinase regulates AIF 
translocation remain to be elucidated, as there are several 
steps between AIF translocation to cell death induction: 
processing of AIF in the intermembrane space [109], 
mitochondrial membrane permeabilization [110], and 
interaction with cyclophilin A for nuclear transport and 
chromatinolysis [111,112]. 

conclusIons

Photoreceptor death in retinal degenerative disorders 
has been thought to be caused mainly by apoptosis. 
However, despite more than a decade of work on 
apoptosis, attempts to move drug-based neuroprotection 
for retinal degenerative diseases have failed [113]. Recent 
accumulating evidence identifies RIP kinase-mediated 
necrosis as an alternative pathway of cell death. In an 
experimental model of retinal detachment, we showed that, 
when caspase pathways are blocked, RIP kinase pathways 
promote photoreceptor necrosis and overcomes apoptosis 
inhibition. These findings suggest that photoreceptor 
death is redundantly regulated by apoptosis and necrosis, 
and that combined targeting of RIP kinases and caspases 
may provide effective neuroprotection in retinal disorders 
associated with photoreceptor loss. 
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