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ABSTRACT

Blockade of programmed cell death protein 1 (PD-1) immune checkpoint 
receptor signaling is an established standard treatment for many types of cancer 
and indications are expanding. Successful clinical trials using monoclonal antibodies 
targeting PD-1 signaling have boosted preclinical research, encouraging development 
of novel therapeutics. Standardized assays to evaluate their bioactivity, however, 
remain restricted. The robust bioassays available all lack antigen-specificity. Here, 
we developed an antigen-specific, short-term and high-throughput T cell assay with 
versatile readout possibilities. A genetically modified T cell receptor (TCR)-deficient T 
cell line was stably transduced with PD-1. Transfection with messenger RNA encoding 
a TCR of interest and subsequent overnight stimulation with antigen-presenting 
cells, results in eGFP-positive and granzyme B-producing T cells for single cell or 
bulk analysis. Control antigen-presenting cells induced reproducible high antigen-
specific eGFP and granzyme B expression. Upon PD-1 interaction, ligand-positive 
antigen-presenting immune or tumor cells elicited significantly lower eGFP and 
granzyme B expression, which could be restored by anti-PD-(L)1 blocking antibodies. 
This convenient cell-based assay shows a valuable tool for translational and clinical 
research on antigen-specific checkpoint-targeted therapy approaches.
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INTRODUCTION

The importance of the immune checkpoint 
receptor programmed cell death protein 1 (PD-1) and 
its ligands programmed cell death ligand 1 (PD-L1) and 

programmed cell death ligand 2 (PD-L2) in the regulation 
of immune responses has gained vast scientific interest 
in the past decade. While this pathway is physiologically 
indispensable in controlling auto-reactive T cells, it has 
been demonstrated that tumors and infectious diseases 
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can exploit this pathway to suppress the immune system 
and promote immune escape in favor of their persistence 
[1, 2]. Interaction of PD-1 expressed on T cells with 
its ligands results in immune suppression through 
interference with the physiological T-cell receptor (TCR) 
signaling pathway [3]. From meta-analyses, we now 
know that overexpression of surface or soluble PD-
L1 in multiple tumor types is mostly associated with a 
poor prognosis [4–6]. Providentially, tumor cell PD-L1 
expression has been put forward in different malignancies 
as a predictive biomarker for higher responsiveness to 
anti-PD-(L)1 therapy [7–9]. Recent clinical trials, for 
example in melanoma, have demonstrated a favorable 
clinical outcome after anti-PD-1 treatment in patients 
with high PD-L1 expression [10]. These findings have led 
to large pharmaceutical investments in the investigation 
and development of antibodies blocking this pathway, 
directed to either the receptor or its ligands [11–13]. 
Success of this approach is illustrated by the growing list 
of clinical trials implementing anti-PD-(L)1 antibodies 
(over 500 registered clinical trials) in more than 200 
different malignancies on clinicaltrials.gov (April 26th, 
2018) and has recently resulted in US FDA and EMA 
approvals of the anti-PD-1 antibodies nivolumab (Bristol-
Myers Squibb, US) and pembrolizumab (Merck, US) 
and the anti-PD-L1 antibodies atezolizumab (Genentech, 
US), avelumab (Merck & Pfizer, US) and durvalumab 
(Medimmune/AstraZeneca, US).

Evaluation of the bioactivity of PD-1 or PD-L1 
blocking antibodies, was performed by a number of 
research groups [14–17]. Although their research offers 
reliable characterization of such antibodies, long-term 
and laborious experimental protocols and the need for 
primary cells makes its usage complicated to standardize. 
The growing need of bioassays to test anti-PD-1/PD-L 
biologicals like antibodies or other targeted moieties [18], 
led to the development and marketing of PD-1/PD-L1 
blockade bioassays by a selected number of companies. 
All current commercially available assays (Amsbio, UK; 
BPS Bioscience, USA; DiscoverX, USA; Explicyte, 
France; GenScript, China; Promega, USA) employ 
bioluminescent luciferase as a nuclear factor of activated 
T cells (NFAT)-driven reporter gene in the commonly 
used genetically modified Jurkat T cell line to measure 
polyclonal TCR-mediated effector T-cell activation. Under 
normal circumstances, TCR triggering leads to activation 
of NFAT-proteins and subsequent transcriptional regulation 
of downstream genes which bear an NFAT-response 
element (NFAT-RE) in their promoter region [19]. Binding 
of PD-1 with its ligands disturbs the TCR signaling, 
resulting in debilitated NFAT activation and downstream 
NFAT-regulated gene expression [3, 20, 21]. As stimulator, 
these assays optionally provide stably engineered PD-L1-
expressing artificial antigen-presenting cells (aAPCs) to 
activate the Jurkat cells in an antigen-independent manner. 
Quantification of TCR activation in the absence versus 

presence of a PD-1/PD-L-targeted molecule is assessed 
based on luciferase activity. The high-throughput potential 
(mostly 96-well plate automated readout) and short-term 
assay duration (1-day) makes these off-the-shelf bioassays 
highly valuable in compound screening.

With the rise of cellular immunotherapy approaches, 
PD-1-targeted (combination) therapies have gained 
particular interest [22]. These approaches aim at promoting 
antigen-specific tumor targeting by the immune system 
while overcoming immune evasion and suppression by the 
tumor micro-environment [23]. Preclinical data provide 
evidence of increased T cell activation after combined 
cellular therapy with PD-1 pathway blockade [24–26] and 
a number of clinical trials evaluating the synergistic effect 
of anti-PD-(L)1 and cellular therapy like dendritic cell 
(DC) therapy (e.g. NCT01067287, www.clinicaltrials.gov) 
or adoptive T-cell transfer (NCT02621021), are ongoing. 
Since none of the currently available PD-1-targeted 
bioassays provide antigen-specific or multiparametric 
information, we further expanded the possibilities of these 
assays by developing a new cellular antigen-specific PD-
1-sensitive bioassay with varied readout possibilities. By 
engineering a genetically modified TCR-deficient Jurkat 
T cell line, we developed a versatile PD-1-sensitive, 
multiparametric T cell assay with antigen-specific 
properties combined with short-term assay duration and 
high-throughput potential comparable with the already 
available bioassays. Customizable antigen-specificity 
through transfection of messenger RNA (mRNA) encoding 
for the TCR of interest, enables this assay to be employed 
in various fields of research. This assay not only allows 
screening of PD-1/PD-L-targeted compounds, but as well 
allows evaluation of antigen-specific immunogenicity of 
therapeutics that indirectly target the PD-1 pathway like 
some cellular therapies (e.g. dendritic cell vaccines [12]. In 
this context, our assay could accelerate studies on antigen-
specific checkpoint-targeted cell interactions and therapies, 
providing a valuable tool for both translational and clinical 
research on PD-1-targeted cellular immunotherapy 
strategies.

RESULTS AND DISCUSSION

Generating off-the-shelf PD-1+ antigen-specific T 
cell lines

To obtain a readily available PD-1-positive (PD-1+)  
T cell model for assessment of PD-1/PD-L axis 
involvement in T-cell signaling, the PD-1-negative 2D3 
(PD-1− 2D3) cell line – a derivative of the established 
Jurkat T cell line characterized by CD8 expression, 
lack of endogenous TCR and expression of enhanced 
Green Fluorescent Protein (eGFP) under the control 
of NFAT promoter – was stably transduced to express 
surface PD-1 (PD-1+ 2D3; Figure 1). The absence of an 
endogenous TCR allows for reliable introduction of a 
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TCR of interest. Both 2D3 non-transduced and PD-1-
transduced 2D3 cells could reproducibly and efficiently be 
transfected with Wilms’ Tumor-1 (WT1) or glycoprotein 
100 (gp100) epitope-specific TCR mRNA, using our in-
house developed mRNA electroporation method [27–29], 
resulting in high levels of transgene TCRαβ surface 
expression 24 hours after transfection of PD-1− 2D3 (89.3 
± 2.1%) as well as of PD-1+ 2D3 (89.3 ± 1.5%) cells 
(Figure 1A, Fresh). Control mock-electroporated PD-
1− and PD-1+ 2D3 cells remained completely negative 

for TCRαβ. Viability of both PD-1− (94.8 ± 0.8%) and 
PD-1+ 2D3 cells (91.9 ± 1.2%) remained high 24 hours 
after transfection and respectively 83.3 ± 2.8% and 77.3 
± 1.8% cells could be consistently recovered (Figure 1B). 
Evaluating its off-the-shelf use, TCR-positive 2D3 cells 
were aliquoted for cryopreservation and were assessed 
for viability and stability of PD-1 and TCRαβ surface 
expression after thawing. As illustrated in the quadrant 
plots both PD-1 and TCRαβ (87.0 ± 4.3% for PD-1− 2D3, 
88.3 ± 1.4% for PD-1+ 2D3 cells) expression remained 

Figure 1: Efficiency of PD-1 transduction, TCR mRNA electroporation and cryopreservation of 2D3 cells. (A) 
Representative flow cytometry T-cell receptor (TCRαβ) and programmed death-1 (PD-1) protein surface expression profiles and 
corresponding isotype controls of non-transduced PD-1− 2D3 and PD-1-transduced (PD-1+) 2D3 cells 24 hours after TCR mRNA 
electroporation (fresh; 10-14 replicates) and after thawing of TCR mRNA-electroporated cells (cryo; 6 replicates). (B) Percentage viability 
and recovery upon TCR mRNA electroporation of PD-1− and PD-1+ 2D3 cells. Data information: in (B), means are depicted. *P ≤ 0.05 
(Student’s t-test). Abbreviations: cryo, transfected effector cells were cryopreserved prior to co-culture; fresh, stimulator cells were co-
cultured immediately following transfection; ns, not significant; PD-1, programmed death-1 protein; TCR, T-cell receptor.
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stable (Figure 1A, Cryo). Thawed PD-1− and PD-1+ 2D3 
cells were viably recovered (97.7 ± 0.6% and 97.0 ± 
0.7%, respectively). Furthermore, these amenable PD-1− 
or PD-1+ 2D3 cell lines are easy to maintain in regular 
culture medium and are not subjected to any enrichment 
and cytokine-supplemented expansion protocols unlike 
primary or transduced antigen-specific T cell clones 
which are laborious and often difficult to maintain in 
culture [30]. With mRNA electroporation, highly pure 
TCR-positive T cells can be readily generated, swiftly 
adaptable to the antigen under investigation, facilitating 
the development of a variety of PD-1-sensitive antigen-
specific T cell models. Our optimized electroporation 
procedure results in stable expression up to at least  
72 hours after electroporation [29]. However, when 
preferred, stable transduction with a TCR of interest could 
further simplify the assay protocol to better mimic primary 
antigen-specific T cell clones, while precluding repetitive 
mRNA transfections.

Introduced TCR triggers robust antigen-specific 
T-cell activation

To validate that high TCR surface expression 
corresponds with antigen-specific functionality, TCR 
mRNA-electroporated PD-1− or PD-1+ 2D3 cells were 
stimulated with the prototypic antigen-presenting T2 
cell line, which is negative for PD-L expression and thus 
serves as a PD-1-independent assay control (Figure 2).  
With the eGFP gene under control of a promoter 
containing an NFAT-RE, TCR-signaling can be measured 
without the need for substrate addition and enzymatic 
conversion. Direct expression of green fluorescence 
enables a variety of live-cell assaying; from highly 
sensitive single-cell multiparametric flow cytometry and 
sorting of activated T cells for downstream analyses up to 
real-time in vitro (e.g. IncuCyte®) and in vivo [31, 32] live-
cell imaging. Applying conventional multiparametric flow 
cytometry, co-cultures of 2D3 cells with T2 cells were 
stained for CD8 surface expression to discriminate effector 
cells from stimulator cells. After selection of viable 
CD8+ T-cells, percentage of eGFP positivity distinctly 
reflected the magnitude of activation (Figure 2A).  
In the two different TCRαβ models (WT1 and gp100) 
tested, stimulation with relevant peptide-loaded T2 cells 
(T2pept+) proved reproducibly equal antigen-specificity and 
response magnitude of PD-1− 2D3 and PD-1+ 2D3 cells 
with mean ranges of eGFP positivity of [64.4–76.6%] and 
[74.5–88.2%] for the WT1 and gp100 models, respectively  
(P < 0.001 for all T2pept+ versus T2pept- conditions). T2 cells 
on their own (T2pept-) elicited low non-specific levels of 
eGFP (<11.2% for WT1, <14.2% for gp100) comparable to 
previously described T2-mediated background responses 
[33, 34], not significantly different from unstimulated (-) 
effector cells with a background of < 5% eGFP expression 
(Figure 2B, left graph). Comparable data were generated 

by two independent laboratories for both model antigens, 
showing low inter- and intra-assay variability, emphasizing 
assay reproducibility and translatability.

Complementary to single-cell analysis, cell-free 
supernatant of 24-hour co-cultures was collected. As 
an alternative accessible low-cost readout, analysis of 
granzyme B secretion of T2 co-cultures with replicate TCR 
mRNA electroporations of PD-1− or PD-1+ 2D3 cells was 
performed at the same time with ELISA (Figure 2B, right 
graph). Background granzyme B levels of TCR-positive 
PD-1− 2D3 and PD-1+ 2D3 cell monocultures (-) reached 
92.9 ± 21.2 pg/105 cells and 97.9 ± 20.7 pg/105 WT1 TCR+ 
T cells (Figure 2B, right graph) and 62.6 ± 2.5 pg/105 
and 61.1 ± 1.2 pg/105 gp100 TCR+ T cells, respectively. 
Non-specific granzyme B secretion (T2pept-), like non-
specific eGFP expression, remained at background levels 
for all TCR-positive T cells (not significant for all T2pept- 
versus unstimulated (-) conditions). In line with the flow 
cytometry data, antigen-specific (T2pept+) TCR-mediated 
activation of PD-1− 2D3 and PD-1+ 2D3 cells was reflected 
by significantly higher granzyme B levels, comparable 
for both WT1 and gp100 T cell models, reaching mean 
concentrations of 6155.8 ± 376.1 pg/105 for PD-1− and 
4063.6 ± 320.7 pg/105 for PD-1+ WT1 TCR+ 2D3 cells 
(Figure 2B, right graph; P < 0.001) and 5187.6 ± 740.6 
pg/105 for PD-1− and 3856.6 ± 703.2 pg/105 for PD-1+ 

gp100 TCR+ 2D3 cells. Not affecting eGFP signaling, a 
significantly positive but lower granzyme B secretion by 
the PD-1-transduced 2D3 cells is observed of which the 
exact mechanism remains to be elucidated. Elaborating on 
flow cytometric analysis, granzyme B production could 
also be detected following intracellular staining, enabling 
simultaneous analysis of TCR activation and cytotoxicity-
related granzyme B production at the single-cell level. 
This opens the way to expand the combination of surface 
and intracellular activation markers of interest. Valuing 
the effect of cryopreservation on the functionality of TCR 
mRNA-electroporated T cells, functional experiments 
were repeated pairwise with thawed transfected T cells 
(cryo) and compared with T cells immediately after 
transfection (fresh) (Figure 2B). Both multiparametric 
single-cell (eGFP) and bulk surrogate cytotoxicity 
(granzyme B) readouts showed equivalent antigen-
specific T-cell activation by fresh and cryopreserved TCR+ 
2D3 cells without significant loss of functionality. The 
immediate use of thawed TCR-specific effector T cells for 
downstream analyses, without the need to expand, culture 
or further engineer the effector cells endorses the potential 
of this versatile T cell model assay for off-the-shelf use.

TCR+ PD-1+ 2D3 cells as a tool to assess 
involvement of PD-1-signaling in antigen-specific 
immunotherapy approaches

The currently available bioluminescent cell-based 
PD-1/PD-L1 blockade bioassays provide a good option 
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for rapid screening of therapeutic antibodies or other 
compounds developed to interfere with PD-1-signaling 
interaction. Artificial PD-L1+ stimulator cells and a T 
cell activator are mostly provided, sufficient to measure 
potency and stability of antibodies. Given the generic TCR 
activation, these assays lack the opportunity to evaluate 
defined antigen-targeted cellular immunotherapies. We 

aimed to fill this gap with the TCR+ PD-1+ 2D3 bioassay, 
to evaluate tumor antigen-targeted monocyte-derived DC 
vaccines, known to express significant levels of PD-L1 
and PD-L2 [35, 36]. In the absence of PD-1, specific 
stimulation of TCR+ 2D3 cells with peptide-pulsed DCs 
resulted in significant WT1-specific (35.3 ± 3.0%) and 
gp100-specific (47.2 ± 6.5%) eGFP expression (mean 

Figure 2: Validation of antigen-specific TCR function of transfected 2D3 and PD-1+ 2D3 cells. (A–B) Activation profiles 
of freshly used or thawed WT1-specific TCR mRNA-electroporated PD-1− and PD-1+ 2D3 cells left unstimulated (-) versus 24 hours co-
culture with unloaded (T2-pept) and WT1 peptide-pulsed (T2+pept) stimulator cells at a ratio of 2:1. Comparable results were obtained with 
gp100 TCR-positive PD-1− and PD-1+ 2D3 cells. (A) Representative example of TCR activation-mediated eGFP expression within the 
viable CD8+ cell population as assessed with flow cytometry (freshly used WT1 TCR mRNA-electroporated PD-1+ 2D3 cells). (B) The left 
graph shows the mean percentage (± SEM) WT1-specific TCR activation-mediated eGFP expression from 2–8 replicate experiments. The 
right panel depicts the mean amount (± SEM) of secreted granzyme B determined with ELISA in cell-free 24-hour culture supernatant of 
105 effector cells for 2–4 replicate experiments. Data information: *P ≤ 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA). Abbreviations: 
cryo, transfected effector cells were cryopreserved prior to co-culture; eGFP, enhanced green fluorescent protein; fresh, stimulator cells 
were co-cultured immediately following transfection; PD-1, programmed death-1 protein; SEM, standard error of mean; TCR, T-cell 
receptor; WT1, Wilms’ tumor 1.
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± SEM, n = 4; Figure 3A). Activation of PD-1+ 2D3 
cells with antigen-targeted DCs resulted in significantly 
lower eGFP expression for both WT1 (12.7 ± 0.5%) and 
gp100 (12.8 ± 2.8%) T cell models, corresponding with 
a 64% and 73% lower signal as compared to the PD-1− 
2D3 cells. Validating the mechanism of action, blocking 
PD-1-transduced 2D3 cells with anti-PD-1 antibody 
(pembrolizumab) could fully rescue T cell activation to 
the levels of PD-1− 2D3 cells (eGFP expression of 36.0 
± 4.0% for WT1 and 40.7 ± 3.6% for gp100), while there 
was no effect of the antibody on non-transduced 2D3 cells. 
PD-L surface expression on DCs has been demonstrated 
to suppress T cell activity in various malignancies [37, 38] 
and blockade was shown to enhance T cell functions [39]. 
In the context of DC-based immunotherapy, it has been 
suggested that in addition to providing immunostimulatory 
signals [40–42] the immunopotency of DC vaccination 
could be improved by suppressing inhibitory checkpoint 
pathways [12, 35, 43, 44]. With this versatile bioassay, 
reproduced in two prototypic tumor antigen models, 
antigen-specific T cell activating capacity of PD-1-targeted 
approaches in combination with DC-based therapy can be 
robustly assessed.

In the search for valuable prognostic and predictive 
biomarkers, PD-L1 tumor expression has drawn the 
attention [5, 8]. Ambiguous when it comes to prognosis, 
its predictive value remains debatable [8]. In this 
context, the applicability of the immunologic PD-1+ 
2D3 assay for assessment of antigen-specific PD-L1+ 
tumor-mediated immune suppression and the effect 
of checkpoint blockade was evaluated. PD-L1+ THP-1 
leukemic stimulator cells, consistently generated upon 
24-hour recombinant human (rh) interferon-gamma 
(IFN-γ) stimulation (86.5 ± 6.7% PD-L1+ after 24-
hour IFN-γ stimulation, 6 replicates), served as WT1-
specific stimulator cells for co-culture with WT1 TCR-
positive PD-1− or PD-1+ 2D3 cells (Figure 3B). In the 
absence of PD-1, peptide-pulsed PD-L1+ tumor cells 
induced high levels of eGFP (57.4 ± 7.0%; mean ± 
SEM of 6 replicate experiments), while PD-1-triggering 
resulted in significantly lower eGFP expression (25.7 
± 5.3%). Confirming involvement of PD-1-signaling, 
the suppressed eGFP response could be significantly 
recovered by blocking PD-1 with antibody (45.0 ± 6.1%), 
but not to levels of PD1− 2D3 cells (53.8 ± 7.2%). Unlike 
the full recovery by the same anti-PD-1 antibody when 
PD-1+ 2D3 cells are stimulated with DCs (Figure 3A), 
even double antibody concentrations could not strengthen 
the PD-L1+ THP-1-induced response. At the level of the 
stimulator cells, PD-L1 expression is comparably high for 
IFN-γ-stimulated THP-1 cells (mean ± SEM; 86.5 ± 6.7% 
PD-L1+) and monocyte-derived dendritic cells (moDC) 
(94.5 ± 1.1% PD-L1+, n = 4), while its other ligand PD-
L2 is not on the surface of IFN-γ-stimulated THP-1 cells 
and significantly expressed by moDC (51.2 ± 8.9% PD-
L2+, n = 4). Suggesting that other signals could contribute 

to the inhibitory PD-1-signaling pathway, the exact 
mechanism remains to be elucidated. The gp100 TCR+ 
PD-1+ 2D3 model assay was tested with MCF-7 breast 
carcinoma cells that were stably transduced with PD-L1 
(> 75% PD-L1+). In analogy with the PD-L1+ leukemic 
cells, stimulation with PD-L1+ peptide-loaded MCF-
7 cells resulted in significantly lower eGFP expression  
(11.9 ± 1.2%) as compared to their non-transduced MCF-
7 counterparts (17.8 ± 2.8%; mean ± SEM of 4 replicate 
experiments, Figure 3C). Abrogating PD-1 signaling with 
PD-L1 blocking antibody could completely overcome 
this tumor-mediated T cell suppression (19.4 ± 2.2%) to 
the levels of eGFP expression in the absence of PD-L1 
(19.0 ± 2.6%), highlighting the relevance of PD-1/PD-L1 
checkpoint blockade as an immunotherapeutic modality.

Conclusion and future perspectives

In the development process of antigen-specific 
immune therapy approaches targeting the inhibitory PD-1/
PD-L pathway, we encountered a lack of availability of 
robust and user-friendly T-cell bioassays. Therefore, we 
sought to develop a versatile cellular antigen-specific 
PD-1-sensitive T-cell assay with comprehensive readout 
possibilities. The here presented assay is unique because 
of (i) its straightforward customizable antigen-specificity, 
(ii) its short-term assaying, (iii) its high-throughput 
potential and (iv) its readily accessible nature. It enables 
robust research on combinatorial antigen-specific PD-
1-targeted immune therapies. Beyond the PD-1/PD-L1 
pathway, a collection of additional immune checkpoints 
are being assessed, including T cell immunoglobulin- 
and mucin-containing molecule 3 (TIM-3), lymphocyte 
activation gene 3 protein (LAG-3) and T cell 
immunoglobulin and ITIM domain (TIGIT) [45]. 
Looking ahead, the concept of this versatile 2D3 cellular 
assay could be applied for any immune checkpoint or 
other targeted molecules of interest, paving the way 
for swift screening of pathway involvement and of new 
antigen-specific targeted therapeutics. In this context, 
a comparable jurkat-based reporter system designed to 
evaluate activating co-signals rather than checkpoint 
inhibitors was recently published [46], confirming 
the need for robust bioassays for evaluation of TCR-
targeted therapy approaches. With the advance feature 
of stimulating with primary antigen-presenting cells, 
rather than merely artificial antigen-presenting moieties 
decorated with a known ligand of the immune checkpoint 
receptor under investigation, this cellular bioassay 
permits research on immune checkpoint receptors for 
which the binding partner(s) is unknown. Hence, antigen-
specific TCR immune checkpoint receptor-engineered 
2D3 cells could provide a valuable tool to accelerate 
emerging translational and clinical research on antigen-
specific checkpoint-targeted cell interactions and therapy 
approaches.
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MATERIALS AND METHODS

Ethics statement and primary cell material

This study was approved by the Ethics Committees 
of the University Hospital Antwerp/ University of Antwerp 

(Antwerp, Belgium) and of the Brussels University 
Hospital/Free University of Brussels (Brussels, Belgium) 
under the reference numbers 16/35/357 and 2013/198, 
respectively. Experiments were performed using blood 
samples from anonymous human leukocyte antigen 
(HLA)-A*0201-positive donors provided by the Blood 

Figure 3: TCR+PD-1+ 2D3 cells as a model assay for evaluation of involvement of PD-1 signaling in cell-mediated 
antigen-specific T-cell activation. (A–C) WT1 (A, B) and gp100 (A, C) specific T-cell activation expressed as percentage viable 
CD8+ eGFP+ PD-1− and PD-1+ 2D3 cells (± SEM) after 24 hours co-culture with different PD-L1+ stimulator cells. Neutralizing antibody 
against PD-1 (αPD-1; A, B; 15 µg/mL in WT1 model (A, B), 5 µg/mL in gp100 model (A)) or PD-L1 (αPD-L1; C) was added to cells 1 
hour prior to co-culture to verify PD-1-mediated signaling, where indicated. (A) PD-1-dependent stimulating capacity of two differently 
generated peptide-pulsed mature monocyte-derived dendritic cells (WT1 (4 DC donors tested in two independent experiments); gp100 (4 
DC donors in four independent experiments)). (B)Impact of induced PD-L1 expression on peptide-pulsed THP-1 leukemic cells on WT1-
specific T-cell activation (6 replicate experiments). (C) gp100-specific PD-1+ T cell-activating capacity of peptide-pulsed wild-type or 
stably transduced PD-L1+ MCF-7 breast carcinoma cells (4 replicate experiments). Data information: in A, the horizontal line represents 
the median percentage eGFP expression (n = 4). *P ≤ 0.05, **P < 0.01, ***P < 0.001 (repeated measures one-way ANOVA with Bonferroni 
post-hoc test). Abbreviations: eGFP, enhanced green fluorescent protein; gp100, glycoprotein 100; PD-1, programmed death 1 protein; 
PD-L1, programmed death-ligand 1; TCR, T-cell receptor; WT1, Wilms’ tumor 1.
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Service of the Flemish Red Cross (Mechelen, Belgium) 
and Blood Transfusion Center of the University Hospital 
Brussel (Brussels, Belgium).

Effector cells

2D3 cells were generated from TCR-deficient Jurkat 
76 cells (human acute T cell leukemia) by transduction 
with a CD8 alpha-E2A-CD8 beta construct (both Jurkat 76 
cells and CD8-encoding plasmid were kind gifts of Prof. 
Hans Stauss, Institute of Immunity and Transplantation, 
University College London, London, UK) and with a 
plasmid vector containing the enhanced green fluorescein 
protein (eGFP) gene under the control of a nuclear 
factor of activated T-cell (NFAT)-dependent promoter 
(NFAT-eGFP plasmid [47] was kindly provided by Prof. 
Takashi Saito, Riken Research Center for Allergy and 
Immunology, Yokohama, Japan). PD-1+ 2D3 cells were 
generated by transduction of the 2D3 cell line with a 
human PD-1 plasmid [48], at a multiplicity of infection 
(MOI) of 5, using the protocol described previously to 
transduce human dendritic cells [49]. The production 
of lentiviral vectors and their characterization by flow 
cytometry was performed as previously described in 
Goyvaerts et al. [50]. Both PD-1− and PD1+ 2D3 cells 
were maintained in Roswell Park Memorial Institute 1640 
(RPMI) culture medium (Gibco Invitrogen) supplemented 
with 10% fetal bovine serum (FBS; Gibco Invitrogen).

Stimulator cells

The human lymphoblastic HLA-A*0201+-restricted 
TAP-deficient T2 cell line (kindly provided by Dr 
Pierre Van der Bruggen; Ludwig Institute for Cancer 
Research, Brussels, Belgium), routinely used to study 
T-cell activation, was maintained in Iscove’s Modified 
Dulbecco’s Medium (IMDM; Gibco Invitrogen) 
supplemented with 10% FBS. The human leukemic 
HLA-A*0201+ THP-1 cell line (ATCC) was stimulated for 
24 hours with 40 ng/mL rhIFN-γ) to induce PD-L1 protein 
expression and maintained in RPMI culture medium 
(Gibco Invitrogen) with 10% FBS (Gibco Invitrogen). 
The HLA-A*0201+ MCF-7 breast carcinoma cell line 
(ATCC) was stably transduced with a plasmid encoding 
human PD-L1 [48] at a MOI of 10 according to the 
previously described protocol (vide supra) and maintained 
in RPMI medium supplemented with 10% FBS, 2 mmol/L 
L-glutamine (Sigma-Aldrich), 100 U/mL penicillin,  
100 µg/mL streptomycin (Sigma-Aldrich), 1 mmol/L 
sodium pyruvate and non-essential amino acids (Sigma-
Aldrich). All cell lines were maintained in logarithmic 
growth phase at 37° C in a humidified atmosphere 
supplemented with 5% CO2. Peripheral blood mononuclear 
cell (PBMC) isolation and subsequent monocyte isolation 
for moDC generation was performed as previously 
described in Van den Bergh et al. [35] or Tuyaerts et al. 
[51], where indicated.

mRNA and transfection of PD-1− 2D3 and PD-1+ 
2D3 cells

The human WT137–45-specific TCR gene was 
generated as previously described [52]. The human 
gp100280–288 TCRα and TCRβ vectors were kindly provided 
by Prof. Niels Schaft (Research group leader of the RNA-
group, Department of Dermatology, Universitätsklinikum 
Erlangen, Erlangen, German) [53]. mRNA transcripts 
were generated using an mMessage mMachine T7 in 
vitro transcription kit (Life Technologies) according 
to the manufacturer’s protocol. WT1 TCR mRNA (1 
µg/106 cells) or gp100 TCRα and TCRβ mRNA (up to 
2,5 µg of each per 106 cells) was transfected in PD-1−  
2D3 or PD-1+ 2D3 cells in 200 µL Opti-MEM reduced 
serum medium without phenol red (Life Technologies) in 
a 4 mm electroporation cuvette (Cell Projects) using Square 
Wave settings (500 V, 5 ms, 0 gap, 1 pulse; WT1 TCR 
mRNA) or a time constant protocol (300 V, 7 ms; gp100 
TCR mRNA) of a Gene Pulser Xcell™ device (Bio-Rad 
Laboratories). TCR mRNA-electroporated cells were used 
for co-culture 2–4 hours after transfection or aliquoted in 
FBS + 10% dimethyl sulfoxide (DMSO) as cryopreservation 
medium for controlled freezing at −80° C. Viability (flow 
cytometry, vide infra) and cell count (automated ABX 
Micros 60 cell counter; Horiba) were measured after 
electroporation and after thawing in pre-warmed IMDM 
+ 10% FBS. The percentage recovery was calculated by 
dividing the cell count post electroporation with the cell 
count prior to electroporation, multiplied by 100.

Co-cultures

TCR mRNA-electroporated PD-1− 2D3 or PD-1+ 
2D3 cells were cultured in triplicate in a 96-well round-
bottom plate in IMDM + 10% FBS. Where indicated, 
cells were preincubated for 1 hour with 5–15 µg/mL 
anti-PD-1 antibody (Pembrolizumab, Keytruda; Merck 
Sharp & Dohme Limited) or 1 µg/200 µL neutralizing 
anti-PD-L1 antibody (clone MIH1; eBiosciences, cat. no. 
16-5983-82) prior to stimulation. Stimulator cells (vide 
supra), either unloaded or pulsed with 10 µg/mL WT137–45  
(VLDFAPPGA; JPT) or with 50 µg/mL gp100280–288 
(YLEPGPVTA; Eurogentec) peptide, were added to PD-1−  
2D3 or PD-1+ 2D3 effector cells at optimized effector-
stimulator ratios of 2:1 (WT1-specific experiments) or 
10:1 (gp100-specific experiments) and co-cultured for  
24 hours at 37° C, 5% CO2 (unless specified otherwise).

Flow cytometry analysis

Viability of TCR mRNA-transfected PD-1− 2D3 
and PD-1+ 2D3 cells was assessed by propidium iodide 
(PI) staining immediately after transfection and at 
least 1 hour after thawing of cryopreserved cells. TCR 
mRNA electroporation efficiency was evaluated 24 
hours after transfection (pre- and post- cryopreservation) 
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using a phycoerythrin (PE)-labeled anti-human TCRαβ 
monoclonal antibody (Miltenyi Biotec). Twenty-four 
hours after stimulation, PD-1− and PD-1+ 2D3 TCR 
activation-mediated eGFP expression was determined on 
cell pellets after surface staining with anti-human PE or 
allophycocyanin (APC)-H7-conjugated CD8 (BD), followed 
by 10-minute incubation with 7-aminoactinomycin D  
(7-AAD; BD) to distinguish between viable and dead 
cells. All flow cytometric acquisitions were performed 
on CytoFLEX (Beckman Coulter) or Fortessa (BD) 
instruments.

Granzyme B ELISA

Secretion of the cytotoxin granzyme B by PD-1− and 
PD-1+ 2D3 cells was determined in 24-hour co-culture 
supernatant with an enzyme-linked immunosorbent assay 
(ELISA; R&D) following the manufacturer’s instructions 
and acquired on a Victor 3 multilabel counter (Perkin 
Elmer). A sample dilution of 1:8 was optimal to fit the 
standard curve of the kit with a detection limit of 2.4 pg/mL  
and top standard of 833.3 pg/mL.

Statistical analysis

Flow cytometry data were analyzed using 
FlowJo software (v10.2, TreeStar Inc). Prism software 
(v5, GraphPad) was used for graphing and statistical 
calculations. Data were analyzed using (repeated measures) 
one-way analysis of variance (ANOVA) followed by 
Bonferroni’s post-hoc test. Results were considered 
statistically significant when P-value was less than 0.05.
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