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Natural products: a hope for glioblastoma patients
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ABSTRACT

Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall 
dismal survival averaging one year despite multimodality therapeutic interventions 
including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few 
drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard 
therapy increases the median survival by only 2.5 months. Targeted therapy appeared 
promising in in vitro monolayer cultures, but disappointed in preclinical and clinical 
trials, partly due to the poor penetration of drugs through the blood brain barrier 
(BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation 
therapy (CRT) and acquire further resistance via deregulation of many signaling 
pathways. Due to the failure of classical chemotherapies and targeted drugs, research 
efforts focusing on the use of less toxic agents have increased. Interestingly, multiple 
natural compounds have shown antitumor and apoptotic effects in TMZ resistant and 
p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this 
review, we have summarized the current literature on natural products or product 
analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs 
and sensitize GBM to CRT.
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INTRODUCTION

Tumors of the central nervous system (CNS) 
represent 1.4% of all newly diagnosed cancers and 2.6% 
of cancer deaths in 2015 [1]. Although rare, they are a 
significant cause of cancer morbidity and mortality and 
account for 30% and 20% of cancer related deaths in 
children and young adults respectively [1]. Brain tumors 
account for 85% - 90% of all primary CNS tumors. 
Glioblastoma (GBM) accounts for approximately half 
of all malignant adult brain tumors and is associated 
with the shortest survival [2]. Multimodality therapeutic 
intervention including surgery followed by adjuvant 
chemoradiation therapy (CRT) with temozolomide 

(TMZ), a DNA alkylating agent, is the standard of care 
for GBM. The addition of TMZ increased the overall 
survival (OS) from 7.7 to 13.5 months and from 7.9 
to 10.0 months in the GBM patients with methylated 
and non-methylated O6-methylguanine-DNA methyl 
transferase (MGMT) respectively [3, 4]; however 
survival remains very poor. This poor survival is likely 
a product of many factors, including systemic toxicity 
of higher TMZ doses, BBB impermeability, resistance 
to CRT and development of refractory tumors [5]. 
Therefore, there is a crucial need for identifying novel 
compounds that are able to modulate the BBB, inhibit 
tumor growth and prevent development of recurrent 
tumors for improved overall patient prognosis.

                             Review
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In the last two decades, natural product based therapy 
has gained popularity as effective and potentially less toxic 
treatment. Roots of Podophyllum peltatum (mayapple) 
were used by the American Indians long ago to treat many 
skin cancers [6]. The principal anticancer constituent 
podophyllotoxin and its semisynthetic derivatives, namely 
Teniposide, Etoposide and Etopophos are extensively used 
to treat several cancers [7]. The National Cancer Institute 
(NCI) initiated two mega- scale anti-cancer drug-screening 
programs during 1960 and 1985. From that screening, 
they identified an important compound Taxol (paclitaxel), 
isolated from the bark of Taxus brevifolia that has since 
been used to treat many solid tumors. Moreover, nearly one-
third of the drugs approved by the United States Food and 
Drug Administration (USFDA) for cancer are from natural 
products or their analogs [6, 8]. We have summarized the 
published literature on natural products and their analogs 
that have been used to treat GBM using in vitro and in vivo 
models. In addition, we also discuss the utility of many 
natural compounds including procyanidine and scillarenin in 
modulating the BBB to improve drug delivery and enhance 
therapeutic efficacy.

NATURAL PRODUCTS AND GBM

GBM represents a highly invasive and highly 
heterogeneous type of malignant brain tumor [9]. Detailed 
molecular analysis of GBM reveals dysregulation of 
core signaling pathways including those that regulate 
cell growth, DNA repair and apoptosis like receptor 
tyrosine kinase (RTK), phosphoinositide 3-kinase (PI3K) 
signaling, mitogen activated protein kinase (MAPK) 
signaling, retinoblastoma and p53 signaling [9]. In addition,  
30–40% of GBM patients have mutations in the tumor 
suppressor gene TP53 [10] resulting in chemo- and radio- 
resistance. TP53 encodes for p53, a transcription factor 
known to regulate multiple functions such as DNA repair, 
cell cycle arrest, senescence, apoptosis and metabolism. 
Haas-Kogan et al., observed increased radio-resistance to 
fractionated radiation therapy (RT) in GBM cells expressing 
mutated p53 [11], while transduction of wild type p53 in 
the 9L GBM cell line increased sensitivity to cisplatin [12]. 
Although TMZ is BBB permeable and is less myelotoxic than 
other drugs available for GBM [13], unfortunately, mutant 
TP53 confers TMZ resistance by up-regulating MGMT 
expression in T98G and U138 GBM cell lines [14]. While 
TMZ induces DNA damage by methylating the O6 position 
of the guanine base in DNA, active MGMT (22 kDa protein) 
rapidly removes methyl groups than other alkyl groups linked 
to the O6 position of guanine [15] and directly repairs the 
TMZ-damaged DNA [16]. Although the current TMZ based 
CRT has marginally improved survival in MGMT methylated 
(ie MGMT inactivated) GBM patients, its cytotoxicity is 
relatively nullified in unmethylated GBM patients [17]. 
Recent, recent analysis of quantitative methylation using 
pyrosequencing on 108 GBM patients revealed that degree 

of MGMT promoter methylation is directly associated 
with median progression free survival [18]. Currently, 
small molecule inhibitors targeting MGMT are being 
utilized prior to TMZ based therapy in many clinical trials 
[19]. In addition, research is focused to identify minimally 
toxic compounds that are able to target novel deregulated 
signaling pathways, evade the BBB, and enhance therapeutic 
efficacy. Plant based products have long been used to 
influence cancer development, progression, and metastasis. 
A number of studies have revealed the antitumor potential of 
natural compounds used either alone or in combination with 
chemotherapy (CT) and RT in GBM and are summarized 
below.

Natural products as chemosensitizers in GBM

The efficacy of CRT for GBM is limited by poor 
drug availability, treatment toxicity, and chemoradiation 
resistance. Natural products and product analogs 
with potential as chemo/radio sensitizers in GBM are 
summarized in Table 1. 

Quercetin

Cancer induced inflammation can accelerate tumor 
cell proliferation, survival and migration. Interleukin-6 (IL-
6) is the primary cytokine which creates the inflammatory 
peri-tumoral environment. Its increased expression 
in GBM [20] is directly associated with poor patient 
survival [21]. In addition, persistent activation of Signal 
Transducer and Activator of Transcription - 3 (STAT3) by 
autocrine expression of IL-6 is observed in GBM cell lines.  
Scavenging of IL-6 using specific antibodies repressed 
cell proliferation and stimulated apoptosis [22]. Quercetin, 
a natural flavonoid ubiquitously present in various 
vegetables and fruits including broccoli, red onions, apples, 
red grapes, cherries and berries [23] has been identified 
as an antioxidant and anticancer agent [24–26]. Specific 
to GBM, Jonathan et al., showed that quercetin treatment 
significantly decreased the IL-6 mediated STAT3 activation 
in U87 and T98G cell lines in a concentration dependent 
manner [27]. This flavonoid also increased the sensitivity 
of GBM lines U87 and U251 to TMZ by suppressing heat 
shock protein 27 (Hsp27) expression, that is known to 
confer drug resistance [28]. Additionally, quercetin has also 
been shown to induce mitochondria mediated apoptosis in 
the resistant p53 mutant GBM cell line U373MG [29]. In 
contrast to these anti-tumorigenic properties of Quercetin, 
pro-tumorigenic effects of Quercetin were also reported in 
a rat glioma model [30].

Resveratrol

Resveratrol is a potent anti-oxidant found in grapes, 
peanuts and mulberries [31] with known anti-tumor activity 
[31]. Huang et al., demonstrated that resveratrol treatment 
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significantly decreased TMZ resistance by downregulating 
the expression of MGMT, at least in part through NF-ƘB 
dependent signaling in T98G GBM cells [32] (Figure 1). It 
also significantly decreased the expression of the anti-apoptotic 
proteins, X-linked inhibitor of apoptosis protein (XIAP) and 
survivin [32]. Another study showed that resveratrol increased 
TMZ toxicity by increasing reactive oxygen species (ROS) 
generation, AMPK pathway activation, mTOR signaling 
inhibition and decreased antiapoptic protein Bcl-2 expression 
in SHG44 GBM cells [33]. Furthermore, combination 
treatment of resveratrol with TMZ also significantly reduced 
the orthotopic xenograft growth of GBM cells [33].

Icariin

Icariin is a flavonoid extracted from the Chinese 
medical herb Herba Epimedi. Icariin is known to have 
cardio-protective, anti-inflammatory, bone-healing, anti-

depressant, neuro-protective and anti-cancer properties 
with low toxicity [34, 35]. It is believed to cross the BBB 
[36] and therefore can be more available to the tumor cells. 
Lijuan et al., identified that icariin treatment significantly 
decreased the growth of U87 GBM cells in a concentration 
dependent manner [37]. He further showed that Icariin 
augments the cytotoxicity of TMZ and decreased the 
migration and invasion of U87 GBM cells probably by 
attenuating NF-ƘB activity [37].

Latex and resins

MicroRNAs (miRNAs) are small non-coding RNA 
molecules that regulate gene function during transcription 
and translation and play both pro- and anti-tumorigenic 
roles. Let-7 miRNA is one of the important miRNAs that 
suppress tumor growth and is downregulated in many 
cancers [38–40]. Overexpression of Let-7 sensitized 

Table 1: Natural products and product analogs with potential as chemo/radio sensitizers in GBM
S. No Scientific Name Component Function Refs
 1 Allium cepa Quercetin ↓ Hsp27 and ↑ TMZ sensitivity in U87 and 

U251 GBM cell lines
[28]

 2 Vitis vinifera Resveratrol ↓MGMT expression, ↓Nf-ƘB signaling and ↓ 
antiapoptotic proteins XIAP and survivin and 
↑TMZ sensitivity in T98G GBM cells

[32]

 3 Vitis vinifera Resveratrol ↑ROS generation, ↑AMPK activation , ↓ 
mTOR signaling , ↓ antiapoptotic protein Bcl-2 
and ↑TMZ sensitivity in SHG44 GBM cells; 
↓orthotopic GBM xenograft with TMZ

[33]

 4 Herba Epimedi Icariin ↓ proliferation of U87 GBM cells; ↓ Nf-ƘB 
signaling , ↓migration, ↓invasion and ↑TMZ 
sensitivity in U87 GBM cells

[37]

 5 Ficus carica Latex ↓ proliferation of U87, U138MG and T98G 
GBM cell lines; ↑ tumor suppressor let-
7miRNA, ↓invasion and ↑TMZ sensitivity

[42]

 6 Apis mellifera Ethanolic extract of 
Propolisis

↓Nf-ƘB signaling and ↑ TMZ sensitivity in U87 
GBM cells

[43]

 7 Apis mellifera Propolisis ↓ cell proliferation in U343 and U251 GBM cell 
lines, ↑ chemosensitivity to TMZ

[49]

 8 Zataria multiflora Hydroalcoholic 
extract

↑ radiosensitivity of A172 GBM cells [86]

 9 Stephania
tetrandra S. Moore

Tetrandrine ↑G0/G1 cell cycle arrest; ↓ radiation induced 
ERK signaling and proliferation associated 
genes PCNA and CCND1; ↑ radiosensitivity of 
U87 and U251 cell lines

[88]

10 Withania somnifera Withaferin A ↓ cell proliferation of U87, U251 and TMZ 
resistant GBM cell lines U87 TMZ, U251 TMZ, 
T98G and U138 in a concentration dependent 
manner, ↑ TMZ sensitivity by ↓ MGMT 
expression.

[53]

11 Curcuma longa Turmeric Force™ ↑ sensitivity to TMZ in U87 GBM cells [204, 205]
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cancers to the chemotherapeutic agent cisplatin [41]. 
Recent studies have shown that latex from the Ficus 
carica, a member of the mulberry family significantly 
inhibited the proliferation of U87, U138MG and T98G 
cells by upregulating let-7 expression [42]. Furthermore, 
it attenuated cell invasion and induced TMZ sensitivity by 
upregulating let-7 expression [42]. Propolis resin from the 
honeybee is comprised of flavonoids, steroids, terpenes, 
vitamins (B1, B2, C and E), esters and sugars [43]. 
While propolis is well documented to have antibacterial, 
antiviral, antifungal, and immunomodulatory functions 
[44–47], a recent study showed anti-cancer activities from 
its flavonoid components [48]. Kleiton et al., showed that 
propolis decreased the proliferation of U343 and U251 
GBM cells and human lung fibroblast cell line MRC-
5 [49]. More interestingly, they showed a synergistic 
antiproliferative effect of propolis in combination with 
TMZ in GBM cells [49]. Renata et al. also demonstrated 
that an ethanolic extract of propolis in combination with 
TMZ inhibited the growth of U87 cells [43]. Finally , they 
showed that the antiproliferative effect of propolis was due 

to NF-ƘB [43] inhibition, which is known to play a vital 
role in GBM [50]. 

NF-ƘB signaling may alter TMZ sensitivity [32, 
37, 43], at least in part by downregulating MGMT 
expression [32]. The regulation of NF-ƘB and its activity 
is mainly controlled by PI3K/AKT signaling [51, 52]. 
Interestingly, the natural compound Withaferin A 
mediated MGMT downregulation and the resultant TMZ 
sensitivity was associated with inhibition of the EGFR/
AKT/mTOR signaling pathway [53]. Surprisingly, PI3K/
AKT signaling has also been shown to play a vital role 
in GBM radioresistance [54, 55]. Plant derived products 
known to inhibit PI3K/AKT signaling pathways may be 
used as a chemo- and radio- sensitizers are summarized 
below.

Bittersweet

Celastrus orbiculatus, commonly known as 
bittersweet belongs to the Celastraceae family and is used 
as a folk medicine to treat numerous diseases including 

Figure 1: Mechanism of natural product based sensitization of GBM. RTKs activate Ras/Raf/MAPK signaling cascade to increase 
GBM cell proliferation. The RTK/PI3K/AKT signaling pathway inhibits apoptosis by phosphorylating the pro-apoptotic protein BAD resulting 
in its cytoplasmic sequestration to inhibit cytochrome-C release from mitochondria. It also inactivates the transcription factor FOXO1 by 
phosphorylation, resulting in inactivation of pro-apoptotic proteins and cell survival. Natural products resveratrol and eckol attenuate both 
the Ras/Raf and PI3K/AKT signaling pathways, inhibit cell proliferation, induce apoptosis and also eradicate GBM CSCs; Korean natural 
medicine recipe, MSC500 decreases CSCs population by decreasing the aldehyde dehydrogenase (ALDH) activity and downregulated the 
expression of ABC transporters (ABCG2 and ABCB5). Moreover, natural products especially resveratrol and Withaferin A increased the 
TMZ sensitivity by downregulating MGMT expression. Zataria multiflora hydroalcoholic extract and tetrandrine significantly increased the 
radiosensitivity of the GBM cell lines. RTK, receptor tyrosine kinase; MAP, mitogen- activated protein kinase; CSCs, cancer stem cells; PTEN, 
phosphatase and tensin homolog; MGMT, O6-methylguanine-DNA methyl transferase; PI (4,5)P2, phosphatidylinositol-4,5-bisphosphate; 
PI(1,4,5) P3 - phosphatidylinositol-3,4,5-trisphosphate. Dotted arrow indicates expected effects.
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rheumatoid arthritis. Celastrus and its several constituents 
have shown to possess anti-oxidant, anti-inflammatory 
and anti-cancer properties [56]. Recently, Celastrus 
orbiculatus extract (COE) was shown to inhibit cell 
proliferation, adhesion and migration of human gastric 
cancer [57, 58], and induced apoptosis and autophagy in 
colorectal cancer cells by modulating the PI3K/Akt/mTOR 
signaling pathway [56]. Hao et al. also demonstrated 
decreased cell viability, adhesion, migration and invasion 
of U87 and U251 GBM cells by COE [59]. While this 
study didn’t directly analyze the effect of COE on the 
PI3K/Akt/mTOR signaling pathway, the involvement of 
this pathway in regulating invasion and motility in both 
GBM cell models suggest that COE may be inhibiting the 
PI3K pathway. Further mechanistic studies are needed.

Andrographolide

Andrographis paniculata (AP) is a medicinal 
herb generally known as Kalamegha or Kalmega and 
widely distributed in India. Andrographolide, a bicyclic 
diterpenoid lactone isolated from the leaves of AP has 
been shown to possess anti-cancer activity against many 
tumors and was also shown to cross the BBB [60, 61]. Li 
et al., demonstrated that andrographolide inhibits U87 and 
U251 GBM cell proliferation by inducing G2/M cell cycle 
arrest, accompanied by decreased expression of proteins 
Cdk1 and Cdc25C [61]. They also showed inhibition of 
the PI3K/AKT/mTOR signaling pathway in U87 and 
U251 cells by andrographolide [61].

Plumbagin

Plumbagin is a bicyclic naphthoquinone that is 
present in the roots of Droseraceae, Plumbaginaceae 
and Ebenceae family members. It belongs to one of the 
widespread and diverse groups of plant metabolites. 
This natural pigment has antidiabetic, antioxidant, 
antimutagenic, anti-inflammatory and anti-proliferative 
properties against leukemia, melanoma, lung, breast, 
and prostate cancer [62–67]. The inhibitory effect of 
plumbagin was shown by modulating several signaling 
pathways including Akt/mTOR, NF-kB, and JNK. 
Recently, its effect was investigated on GBM cells and 
it was observed that plumbagin induced cell cycle arrest 
and DNA damage followed by apoptosis [68]. The 
mechanistic studies revealed upregulation of TNFRSF1A, 
PTEN and downregulation of E2F1 genes, MDM2, cyclin 
B1, survivin and Bcl2 protein expression along with 
increased caspase-3/7 activity. Strikingly, they observed 
that plumbagin inhibits telomerase activity and shortening 
of telomeres upon chronic plumbagin exposure [68]. 
Furthermore, they observed enhanced cytotoxicity of 
plumbagin to KNS60 GBM cells with higher telomerase 
activity than in U251 and A172 GBM cells with less 
activity [68].

NATURAL PRODUCTS AS GBM 
RADIOSENSITIZERS

RT alone or in combination with TMZ is the 
standard of care for most GBM patients. However, 
toxicity to normal tissues and development of resistance 
limits the efficacy of RT [69]. Therefore, agents that 
can radiosensitize tumor cells would not only prevent 
the development of resistant tumors, but may also 
help to reduce RT associated toxicity. Many synthetic 
and naturally derived compounds have been used as 
radiosensitizers for GBM. However due to the intrinsic 
immune enhancing properties of many natural products, 
they enhance RT effects with less toxicity to normal 
tissues. Natural compounds used or potentially to be used 
as radiosensitizers in GBM are discussed below.

Guduchi 

Tinospora cordifolia, commonly called Guduchi, 
belongs to the family Menispermaceae. It has been used 
in ayurvedic treatment for centuries to treat jaundice and 
to protect liver function [70–72]. Its anti-angiogenic, 
anticancer, anti-inflammatory and radiosensitizing 
properties are also well documented [73–78]. Rao et al., 
demonstrated Guduchi’s radiosensitizing activity in 
ehrlich ascites carcinoma (EAC) mice [79]. Interestingly, 
animals pre-treated with 30 mg/kg guduchi extract 1 
hour before 6 Gy of γ-radiation and subsequent guduchi 
treatment for 6 days reduced the tumor growth and 
increased the overall survival of EAC mice compared to 
animals without pre-treatment [79]. Ethanolic extract of 
Guduchi EEG also inhibited the growth of C6 rat glioma 
cells and U87 GBM cells in a concentration dependent 
manner and also induced differentiation of C6 cells to an 
astrocyte-like phenotype [80]. In addition, EEG inhibited 
the migration and invasion of C6 cells associated with 
decreased matrix metalloproteinases -2 and -9 (MMP-
2 and MMP-9), NCAM and PSA-NCAM expression 
[80]. Furthermore, EEG-induced cell cycle arrest and 
senescence was accompanied by decreased expression of 
cyclin D1, Bcl-xL and increased expression of mortalin, a 
marker for senescence [80].

Zataria multiflora

Zataria multiflora is known as Avishan-e-Shirazi in Iran 
and belongs to the Lamiaceae family. In addition to containing 
a small percentage of saponins, caffeic acid, resin, tannin, and 
resonates, zataria extract (ZE) contains 69% phenols-primarily 
carvacrol' P-cymene and thymol [81]. Many recent studies 
showed that ZE possesses anti-bacterial, anti-oxidative and 
anti-inflammatory activity and most importantly protected 
lymphocytes from radiotherapy [82–85]. More specifically, 
hydroalcoholic extract (200 ug/ml) of this plant significantly 
increased the radiosensitivity of A172 GBM cells in a 
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concentration dependent manner and induced apoptosis 
[86]. Interestingly, ZE showed no antiproliferative or 
radiosensitizing effects in nonmalignant HFFF2 cells [86] 
suggesting its nontoxicity to the normal cells.

Tetrandrine

Tetrandrine (Tet) is a bisbenzylisoquinoline alkaloid 
that is isolated from the roots of Stephania tetrandra 
S. Moore, with known apoptotic, anti-angiogenic and 
radiosensitizing properties in many cancers [87, 88]. 
Recently, Tet was also shown to radiosensitize GBM 
cells U87 and U251 by significantly inhibiting their 
proliferation via inducing G0/G1 cell cycle arrest, 
attenuating the radiation induced ERK signaling pathway 
and decreased expression of proliferation associated genes 
PCNA and cyclin D1 [88].

NATURAL PRODUCTS EFFECTING 
GBM CELL PROLIFERATION AND 
APOPTOSIS

GBM is characterized by uncontrolled proliferation, 
local necrosis, diffuse infiltration, and increased 
angiogenesis [89]. In addition, like many other cancers, 
GBM cells are relatively resistant to apoptosis due to 
deregulation of pro- and anti-apoptotic proteins [90, 91]. 
Natural products that inhibit proliferation and induce 
apoptosis in GBM cells are summarized below.

Alkaloids and flavonoids

Zingiber officinale and Rhazya stricta belong to the 
Apocynaceae and Zingiberaceae families respectively. 
Alkaloids extracted from Rhazya stricta have antimicrobial 
and anticancer properties and chemosensitize many tumors 
[92–94]. While the flavonoids are known to exhibit anti-
angiogenic, pro-apoptotic and anti-cancer activities in in 
vitro and in vivo models [95, 96], effects of flavonoids of 
Zingiber officinale on GBM cells have not been explored 
extensively. Recently, Ayman et al., studied the effect of 
crude flavonoid and alkaloid extract of Zingiber officinale 
and Rhazya stricta, respectively, on a U251 GBM cell line. 
They observed that this combination resulted in synergistic 
growth inhibition, decreased clonogenic survival and 
induction of apoptosis [97]. They showed the induction 
of apoptosis was mediated by cytochrome c release from 
mitochondria, increased Bax/Bcl-2 ratio, caspase 3/9 
activation and cleavage of poly (ADP-ribose) polymerase 
(PARP). Additionally, the crude extract induced apoptosis 
and was associated with decreased nuclear NF-κB, 
expression of survivin, XIAP, cyclin D1 and increased 
p53, p21, and Noxa expression [97]. 

Oridonin

Oridonin is diterpenoid compound extracted from 
the Chinese herbal medicinal plant Rabdosia rubescens. 
Oridonin was found to have anti-cancer activities against 
multiple cancers including breast, lung, leukemia and 
osteosarcoma [98, 99]. Recently, oridonin mediated 
inhibition of RanGTPase activating protein 1 (RanGAP1) 
was shown to induce apoptosis in U87 GBM cells by 
effecting nuclear cytoplasmic export of noncoding RNA 
(ncRNA) [100]. It is important to mention that tumor cells 
synthesize relatively very high ncRNAs and RanGAP1 is 
believed to be an important protein involved in nucleo-
cytoplasmic export of ncRNA via the nuclear pore 
complex (NPC).

Osthole

Osthole or osthol is a natural coumarian, extracted 
from ripe cnidium fruits and known to have anti-oxidant, anti-
inflammatory and anti-cancer properties [101–103]. Recently, 
Kai et al. have shown that osthole treatment significantly 
reduced growth, enhanced apoptosis and increased 
the expression of the tumor suppressor microRNA-16 
(miRNA-16) with decreased MMP-9 expression in U87 
GBM cells [104]. Of note, immunohistochemical analysis in 
GBM revealed that MMP-9 expression is increased in GBM 
when compared to normal brain [105]. siRNA mediated 
silencing of MMP-9 resulted in decreased GBM proliferation 
and increased apoptosis [106, 107]. These studies suggest that 
osthole induced apoptosis may be mediated through MMP 
downregulation, which further needs to be explored.

Cucurbitacin

Cucurbitacins are terpene sterols that are 
extracted from the Cucurbitaceae family of plants and 
structurally classified into 12 groups [108]. Among them, 
cucurbitacins I, E, B, D and Q are well accepted for their 
anti-neoplastic activity in several cell lines [109–112]. 
The anticancer effects of cucurbitacins involve induction 
of cell cycle arrest and apoptosis by inhibiting the Janus 
kinase/Signal Transducer Activator of Transcription 
3 (JAK/STAT3) signaling pathways. Dong et al. also 
reported that cucurbitacin B repressed proliferation and 
colony formation of U87 and T98G GBM cells. Further, 
cucurbitacin B disrupted actin and the microtubule 
network, resulting in loss of pseudopodia thereby 
inhibiting cell migration/invasion [113].

Chokeberry extract and curcumin

Chokeberry (Aronia melanocarpa) belongs to 
the Rosaceae family and is distributed in eastern North 
America. Polyphenolic extract of chokeberry (CPE) 
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contains several flavonoids and anthrocyanins thought 
to penetrate the BBB [114]. Azela et al. reported recently 
that both CPE and curcumin decrease the viability of 
U373 GBM cells [115]. While CPE decreased viability by 
inducing necrosis, curcumin directly induced apoptosis 
in U373 GBM cells [115]. Furthermore, both of these 
compounds downregulated MMP-2, MMP-14, MMP-
16 and MMP-17 mRNA levels [115]. Since MMPs are 
an integral part of the BBB and maintain its integrity, 
curcumin and CPE mediated decrease of MMP’s may 
modulate BBB permeability and may enhance drug 
diffusion.

Jaceosidin

Artemisia argyi (AA), generally known as 
silvery wormwood, belongs to the Compositae family 
and is distributed throughout the world. Muhammad 
et al. isolated Jaceosidin from the leaves of AA and 
analyzed its anti-cancer activity on U87 GBM cells 
[116]. He observed that Jaceosidin treatment inhibited 
proliferation, induced cell cycle arrest in the G2/M phase 
and promoted apoptosis. This increased apoptosis was 
accompanied by an increase in the proapoptotic protein 
Bax and p53 expression, and abolished the mitochondrial 
membrane potential (MMP), cytochrome C release to 
cytoplasm and activation of caspase-3 [116].

Trichosanthin

Trichosanthin (TCS) belongs to the family of plant 
proteins known as ribosome-inactivating proteins (RIPs) 
and is isolated from the roots of the herb Trichosanthes 
kirilowii, generally known as Chinese snake gourd and 
Chinese cucumber. TCS is traditionally used in Chinese 
medicine for inducing midterm abortion [117]. By 
virtue of its rRNA N-glycosidase activity, it attacks the 
eukaryotic cell ribosomes and inhibits protein translation 
[117]. TCS exhibits antitumor effects against cervical 
cancer, choriocarcinoma, leukemia and lymphoma. In 
addition, TCS has also been shown to significantly inhibit 
proliferation of U87 and U251 cells [118] and increase 
apoptosis in U87 cells by decreasing the leucine-rich 
repeat containing G-protein coupled receptor 5 (LGR5) 
and Wnt/β-catenin expression [118]. Importantly, LGR5 
expression positively correlates with increasing histologic 
grade of astrocytoma – from grade II to GBM (grade 
IV) – and is associated with poor survival [119]. LGR5 
mRNA levels are also higher (10 fold) in the GBM CSCs 
than healthy brain astrocytes.  Predictably, adenovirus 
mediated silencing of LGR5 induced cell death in GBM 
CSCs [119].

γ-Mangostin

γ-Mangostin is a xanthone derived from Garcinia 
mangostana, commonly known as mangosteen “the queen 
of fruit”. Hui-Fang et al. reported significant inhibition 
of growth and apoptosis of U87 and 8401 GBM cells 
in a concentration dependent manner by γ-Mangostin 
[120]. Further, the biochemical investigation revealed 
that γ-Mangostin induced apoptosis was associated with 
increased hypodiploid cells, mitochondrial dysfunction 
and increased ROS production [120]. In addition to GBM, 
γ-Mangostin also showed anti-proliferative effects on 
human colon cancer DLD-1 cells [121].

Thymoquinone

Thymoquinone (TQ), is the major bioactive 
compound extracted from Nigella sativa seed, commonly 
known as black seed and is vastly distributed in India, 
Eastern and European countries. TQ is known for its anti-
cancer activities against several cancer cell lines with 
low toxicity to normal cells [122–124]. Recent study has 
shown inhibition of proliferation of Gli36EGFRvIII, T98G 
and U87 GBM cells by TQ [125]. They also observed that 
this decrease in cell proliferation was independent of p53 
status and may occur through inhibition of autophagic flux 
[125]. In addition to GBM, our lab has also shown strong 
antitumor effects of thymoquinone against pancreatic 
cancer [126]. 

Brazilin

Brazilin is a red pigment extracted from the central 
wood of the Caesalpinia sappan with known anti-oxidant, 
anti-inflammatory and anti-proliferative properties [127]. 
In addition, Dae-Young also demonstrated that brazilin 
also decreased proliferation and induced apoptosis in U87 
GBM cells as shown by the cell cycle arrest at sub-G1 
phase, while decreasing the expression of caspase -3 and 
caspase-7, and increasing the expression of PARP [127]. 

Betulinic acid

Betulinic acid (BetA), is a pentacyclic triterpenoid 
extracted from birch trees (Betula pubescens) and selfheal 
(Prunella vulgaris). Besides anti-retroviral, anti-malarial, 
and anti-inflammatory properties, recent studies have 
shown it to exhibit potent anti-cancer activity against 
several human cancers with no significant effect on normal 
cells [128–130]. Interestingly, it was shown to induce 
apoptosis in human neuroblastoma cells in vitro and in 
vivo [131]. In addition, by activating a p53 independent 
caspase - PARP cascade, BetA induced apoptosis in 
five glioma cell lines [132]. BetA induced cell death 
was associated with increased levels of the proapoptotic 
protein BAX, formation of ROS, and DNA fragmentation 
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[132]. Similarl observation of BetA induced cell death 
was also reported by Simone. et al using a large panel of 
malignant brain tumor cells [133].

Deoxypodophyllotoxin 

Deoxypodophyllotoxin (DPT) is a semi-synthetic 
compound isolated from Dysosma versipellis extract. 
Mounia et al. identified that DPT treatment significantly 
inhibited the proliferation coupled with G2/M cell cycle 
arrest in U87 and SF126 GBM cells at nanomolar 
concentrations [134]. It decreased the expression of cell 
cycle regulatory proteins including cyclin B1, Cdc2 
and Cdc25C in U87 GBM cells [134]. In addition, DPT 
treatment also induced apoptosis in both U87 and SF126 
cells by abolishing the MMP, while decreasing the 
expression of Bcl-xL and Bcl-2 [134].

Nardostachys jatamansi

Nardostachys jatamansi (NJ) commonly known 
as spikenard, nardin, nard or muskroot belongs to the 
Caprifoliaceae family and is found at high altitudes in India. 
Crude extracts from the NJ are effective against parkinsonism 
and epilepsy in experimental brain models [135, 136]. A 
methanol extract (ME) of NJ rhizome significantly inhibited 
the proliferation of U87 GBM cells with less cytotoxicity to 
human embryonic kidney (HEK) cells, suggesting its relative 
safety to normal cells. ME also induced DNA fragmentation 
coupled with apoptosis in U87 cells [137].

Variolin B and Meridianins

Uncontrolled proliferation due to sustained 
activation of cyclin-dependent kinases (CDKs) is the 
hallmark of most cancers, leading to the widespread 
investigation of inhibitors specific to CDKs. The cyclin 
D-CDK4/CDK6 signaling pathway is deregulated in 
GBM and results in uncontrolled cell cycle progression 
[138, 139] making it a viable targeted therapeutic option. 
Natural compounds like Variolin B and Meridianins 
isolated from the marine Ascidian Aplidium meridianum 
inhibit CDK activity [140]. Recently, synthetic hybrid 
molecules called meriolins were derived from meridianins, 
and shown to induce apoptosis in neuroblatoma SH-
SY5Y cells [141]. Comparative analysis of a panel of 
meriolins showed that meriolin-15 significantly inhibited 
proliferation and induced apoptosis in GBM cells [142].

Xanthones and Lactones

Xanthones belong to class of tricyclic compound 
with known anti-cancer, anti-microbial and anti-
inflammatory activities [143–145]. The Cudraxanthone-I 
xanthone extracted from Milicia excelsa significantly 
inhibited the proliferation of the U87 and resistant U87 
EGFRvIII GBM cell lines [146]. Lactones derived from 

the Vernonia cinerea (little ironweed or ash fleabane) 
of the Asteraceae family have antimalarial, anti-
inflammatory and anti-metastatic properties [147–149]. 
Sesquiterpene lactones isolated from Vernonia cinerea 
significantly inhibited STAT3 activity in U251 GBM cells 
and decreased their viability [150].

Salidroside

Salidroside or rhodioloside, a glucoside of tyrosol, 
is obtained from root extracts of Rhodiola crenulata. 
Salidroside exhibits anti-cancer activities against gliomas, 
gastric, breast and lung cancers [151]. Similarly, purified 
salidroside also inhibited proliferation and induced G0/G1 
cell cycle arrest of glioma U251 cells [152]. Crude extract 
from the root (CER) also decreased proliferation and 
clonogenic survival of U87 GBM cells [153]. Of note, CER 
mediated decrease in cell proliferation was associated with 
inhibition of Wnt/β-catenin signaling and enhanced glial 
fibrillary acidic protein (GFAP) expression [153].

Rutin

Vascular endothelial growth factor (VEGF) and 
transforming growth factor-β1 (TGF-β1) are the two major 
cytokines recognized to influence GBM cell migration, 
invasion and angiogenesis [154, 155]. Rutin, a flavonoid 
isolated from seeds of Dimorphandra mollis , is commonly 
known as faveira. Interestingly, rutin was shown to inhibit 
the production of both VEGF and TGF-β1 in GBM GL-15 
cells and therefore, inhibit angiogenesis and CRT resistance 
[155]. It is interesting to note that the anti-VEGF antibody 
bevacizumab suppresses VEGF production but doesn’t 
affect TGF-β1 expression or activation [155]. Rutin is 
known to inhibit skin cancers as well [156].

Lichen derivative

Lichens are complex organisms, made of fungal 
filaments and one or more cyanobacteria or photosynthetic 
algae. Protolichesterinic acid, lobaric acid, usnic acid 
and vulpinic acid isolated from lichens were found 
to have anti-proliferative, anti-oxidant, and antibiotic 
activities [157, 158]. The methanolic extracts (ME) of 
lichens Cladonia rangiformis and Cladonia convolute 
significantly inhibited proliferation of the GBM cell line 
U251 [159]. Recently, it was also reported that olivetoric 
and psoromic acid from lichens significantly reduce the 
viability of U87 GBM cells possibly by inducing oxidative 
DNA damage [160].

Cactus

Opuntia humifusa, generally known as the devil’s 
tongue, belongs to the Cactaceae family [161, 162] and 
its extracts display antibacterial and anti-oxidant effects 
[163]. While the ethyl acetate extract (EAE) of cactus 
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show cytotoxicity against colon, cervical and breast cancer 
cells, hexane extract (HE) and water partitioned fraction 
(WPF) decreased proliferation of U87 GBM cells [163]. 
This WPF induced decrease in cell proliferation was 
associated with G1 phase cell cycle arrest, enhanced ROS 
generation and non-apoptotic cell death [163].

Diosquinone

Diosquinone, a napthoquinone epoxide, is extracted 
from the root bark of Diospyros mespiliformis (Hostch) 
and Ebenaceae Diospyros tricolor. Recent study has 
shown that Diosquinone inhibited cell proliferation of 
many cancer cells including GBM [164]. They further 
reported greater cytotoxicity of Diosquinone against p53 
mutant GBM cell line U373 than lung, colon, prostate and 
neuroblastoma cancer cell lines [164].

Tithonia diversifolia

Survivin is a member of anti-apoptotic gene 
family whose expression is elevated in most solid tumors 
with undetectable to minimal expression in normal and 
differentiated cells [165]. Overexpression of survivin is 
associated with tumor recurrence and drug resistance [166–
168]. The medicinal herb Tithonia diversifolia, generally 
known as Mexican sunflower or Japanese sunflower, has 
known anticancer activities against human colon cancer 
Col2 cells and human promyeleocytic leukemia HL-60 cells 
[169]. In addition, crude Tithonia diversifolia extract and 
its principal compound tagitinin C also inhibited growth of 
U373 GBM cells by downregulating survivin expression in 
a dose dependent manner [170].

Zeng sheng ping

Zeng Sheng Ping (ZSP) is a Chinese herbal mixture 
containing Polygonum bistorta, Sonchus brachyotus, 
Dioscorea bulbifera, Sophora tonkinensis, Prunella vulgaris 
and Dictamnus dasycarpus. Kah et al., reported that ZSP 
inhibited proliferation and survival of U87 cells possibly 
by downregulating Notch2 and its signaling component 
Hes1 [171]. ZSP also decreased expression of the stem 
cell markers CD133 and nestin in U87 cells [171]. Notch 
signaling is highly activated in GBM and targeting this 
pathway prevented tumor growth and improved survival 
[172–175]. In addition, many pre-clinical studies showed 
antitumor effects of ZSP against colon and esophageal 
cancers [176–178]. More importantly, many clinical 
studies also showed that ZSP significantly prevented the 
progression (48–52 %) of esophageal cancers [179–181]. 

Tanacin

Tanacetum huronense is commonly known as 
Lake Huron tansy. Ethyl acetate extract of this plant 
and its bioactivity based purification have yielded 

six sequiterpenoid lactone compounds. Among them, 
compound 4 (tanacin) displayed highest inhibitory effect 
against the U87 GBM cell line [182].

Procyanidins

Procyanidins, a class of flavonoids, are oligomeric 
compounds formed from catechin and epicatechin molecules. 
They are mostly present in grape seeds, grape skin, apples, 
cinnamon, cocoa beans etc. These procyanidins can be 
grouped into 7 fractions (F1 to F7) depending upon their 
degree of polymerization. Recent studies have shown that 
F2, after crossing the BBB, protected mouse brains from 
ethanol induced oxidative damage [183, 184]. Zhang et al., 
showed that F2 treatment inhibited proliferation of U87 
cells by inducing G2/M cell cycle arrest and reducing MMP 
expression while causing little toxicity to normal cells [185]. 
More recently, Hong et al. also showed that F2 inhibits U251 
GBM cell invasion and angiogenesis by downregulating 
hypoxia inducible factor 1 alpha (HIF-1α) mediated MMP-2 
and VEGF expression [184]. In addition, F2 also inhibited 
formyl peptide receptor, a type of G-protein coupled receptor 
that is known to be intricate in GBM tumor invasion and 
angiogenesis [185].

Quercus petraea

Quercus petraea, commonly known as the sessile 
oak, is predominantly found at Walloon forest region in 
Belgium. Michel et al., discovered that ME of Quercus 
petraea stem bark efficiently inhibit the growth of GBM 
cell line U373 [186].

Ochnaflavone

Ochna kibbiensis and Ochna schweinfurthiana 
belong to the Ochnaceae family and is distributed in 
Northern Nigeria. The ethyl acetate extract (EAE) and ME 
from the leaves of this plant showed cytotoxicity to human 
GBM cells U-1242, though EAE was more potent than 
ME [187]. While these results implicate the presence of 
anti-GBM molecules in Ochna kibbiensis [187], its anti-
proliferative effects still needs to be investigated.

Salvia menthaefolia and Ficus bubu

Salvia menthaefolia is a Chinese herbal medicinal 
plant from the Lamiaceae family. Giovina et al., found that 
ME of Salvia menthaefolia roots significantly inhibited the 
viability of the U87, T98G and DBTRG-05MG human 
GBM cell lines [188]. Similarly, the ME from leaves of 
another plant Ficus bubu (Moraceae family) also inhibited 
the proliferation of U373 GBM cells [189]. 

Auron-misheil-therapy

Auron-Misheil-Therapy (AMT) is a complex 
mixture comprising of camolile extract (isolated from 
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chamomile blossom) and additives including human 
insulin, vitamins, calcium and the antihistamine 
chlorpheniramine. AMT promotes body weight gain 
and has been used as palliative for pain in the patients 
with end stage cancers for decades. In addition, recently 
AMT was shown to inhibit proliferation of U87, LN-229, 
CNXF 498NL, SF-268 and SF-295 GBM cells along with 
decreased anchorage independent growth of CNXF 498 
and SF-268 GBM cells [190].

EFFECTS OF NATURAL PRODUCTS ON 
GBM PRE-CLINICAL MODELS

The anatomical, physiological and genetic make-
up of mice relatively recapitulates that of humans [191] 
and hence they are powerful models to test therapeutic 
efficacy, investigate pharmacokinetics and characterize 
acute and chronic toxicities of newly discovered drugs. 
Here we have summarized all the natural products with 
anti-tumorigenic effects on GBM mouse xenograft 
models Table 2.

Withaferin

Withania somnifera, traditionally known as 
Ashwagandha, has been used in ayurvedic medicine 
for several thousand years [192]. It contains numerous 
compounds including 40 withanolides, 12 alkaloids, 
multiple flavonoids and sitoindosides extracted from 
different parts of the plant [193, 194]. Among them, 
Withaferin A appeared to be the most bioactive 
compound with anti-invasive, anti-angiogenic, anti-
inflammatory and pro-apoptotic effects [195]. Grace 
et al. studied the anti-oxidative and anti-inflammatory 
effects of two withanolide components, namely, 
Withanolide A and Withaferin A in microglial cells 
[196]. Surprisingly, withanolide components not only 
abolished lipopolysaccharide (LPS) stimulated nitric 
oxide production and ROS generation, they also induced 
nuclear factor (erythroid-derived 2) like 2 (Nrf2) 
signaling followed by upregulation of hemeoxygenase-1 
(HO-1) [196]. Though both withanolide components 
displayed anti-oxidative and anti-inflammatory effects, 
Withaferin A was found to be 10 fold more effective 
than Withanolide A [196]. In addition, EE of Withania 
somnifera leaves significantly inhibited the proliferation 
of C6 rat glioma and YKG1 human glioma cell lines in 
a dose dependent manner [197]. Recently, Patrick et al., 
demonstrated that Withaferin A treatment significantly 
decreased the proliferation of U87, U251 and TMZ 
resistant GBM cell lines U87 TMZ, U251 TMZ, 
T98G and U138 as well in a concentration dependent 
manner [53]. Moreover, it increased TMZ sensitivity 
by downregulating MGMT expression in U251 TMZ, 
T98G and U138 TMZ resistant GBM cell lines [53]. 
Interestingly, oral administration of Withania somnifera 

water extract (4 ml/kg/day) significantly reduced the 
tumor volume in a rat orthotopic glioma allograft model 
[198]. In addition, an intraperitoneal administration of 
Withaferin A (12 mg/kg) for 3 days in a week for three 
weeks also resulted in 40% improvement in median 
survival of orthotropic xenograft mouse model [199]. 

Curcumin 

Curcumin, a constituent in turmeric, is derived 
from the herb Curcuma longa that belongs to 
Zingiberaceae family and used as an ingredient in 
cooking in some part of India. Curcumin displays 
significant growth inhibition, prevents angiogenesis 
and induces apoptosis in in vitro and in vivo models 
of many cancers [200]. In GBM, curcumin has been 
shown to attenuate the intracranial tumor growth of U87 
xenografts and increased the overall survival of the mice 
[201]. Although it’s low bioavailability in humans owing 
to poor absorption and fast clearance from the body has 
limited its anti-cancer effects [202, 203], recent research 
has shown that turmeric rhizomes that are subjected to 
supercritical (CO2) and hydroethanolic isolation yields 
an extract known as Turmeric ForceTM (TF). The TF 
contains 11% curcuminoids, 45% turmerones and some 
other molecules that display more cytotoxicity against 
cancer cell lines than turmeric [204]. Cheppail et al., 
also showed that addition of TF to either etoposide or 
TMZ increased the cytotoxicity in U87 GBM cell line. 
They further showed that the triple drug combination of 
TF with etoposide plus TMZ was even more cytotoxic 
to the U87 cell line [205]. Compellingly, tumerones 
from TF were also shown to cross the BBB [206]. 
The extract from the other curcuma species, Curcuma 
amada (CA) also significantly reduced the viability 
of human embryonal (RD) and alveolar (SJRH30) 
rhabdomyosarcoma cells [207]. The underlying anti-
tumor mechanism showed that CA treatment attenuates 
AKT signaling, and downregulates anti-apoptotic genes 
in U87 cells [208]. It is important to mention that AKT is 
a serine/threonine protein kinase B involved in regulating 
several biological functions including cell proliferation 
and invasion, apoptosis inhibition, angiogenesis [209], 
and chemotherapeutic resistance [210–213]. Activated 
AKT is known to inhibit apoptosis by abolishing 
the cytochrome-c release from the mitochondria and 
inactivating pro-apoptotic proteins procaspase-9 and 
BAD by phosphorylation [214, 215]. Further, no 
significant effect on the control mouse hypothalamus cell 
line (mHypoE-N1) suggests that CA may be nontoxic to 
normal brain cells. 

Angelica sinensis

Angelica sinensis, commonly known as dong quai or 
“female ginseng”, is an herb from the family Apiaceae. It 
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is acknowledged for its efficacy in treating gastric mucosal 
damage, chronic glomerulonephritis and diminished 
myocardial blood flow [216–219]. Angelica sinensis 
root chloroform extract treated GBM cell lines undergo 
apoptosis in both p53 independent and p53 dependent 
pathways [220]. It curbed tumor growth in a rat GBM 
model, and in a GBM orthotopic model, suggesting that it 
might pass through the BBB [220].

Ardipusilloside 1

Ardipusilloside 1 (ADS-1) is a triterpenoid saponin, 
extracted from the medicinal herb Ardisia pusilla with 
well known anti-cancer activity on GBM cell lines [221, 
222]. Unfortunately, a short half-life in plasma (5.61 
h) of ADS-1 due to deglycosylation [223] limits its 
therapeutic efficacy in vivo. However, recently developed 
ADS-1 polymer microspheres packed into wafers [224] 
have increased its half- life to 36 days in in vitro and 
in vivo. In animal models, these polymers significantly 
reduced the C6 intracranial tumors and increased overall 
survival [224]. Mechanistically, the decrease in tumor 

growth was due to decreased tumor necrosis factor -α, 
interleukin-6, C-reactive protein, VEGF and upregulation 
of interleukin-2 expression [224].

Toosendanin

Toosendanin (TSN) is a triterpenoid saponin isolated 
from the Chinese herb Melia toosendan and is known 
to inhibit acetylcholine release at the nerve terminals. 
Though used as a pesticide, recent studies have shown its 
anti-proliferative effect against lymphoma, leukemia and 
hepatocellular cancer cell lines [225–228]. In addition, 
TSN also inhibits proliferation of U87 and C6 cell line at 
nanomolar (10 nM) concentrations [229]. Additionally, 
TSN reduced the growth of U87 xenografts in vivo feasibly 
by upregulation of p53 and estrogen receptor β, which are 
known tumor suppressors in many cancers [229–231].

Berberine

The alkaloid berberine is extracted from the stem 
bark, rhizome and root of several Chinese medicinal 

Table 2: Natural products which displayed anti-cancer activities in GBM pre-clinical models
S. No Scientific Name Component Function Refs
1 Withania somnifera Water extract ↓ tumor volume in rat orthotopic glioma allograft 

model
[198]

2 Withania somnifera Withaferin A ↑ median survival of orthotopic xenograft mouse 
model by 40%

[199]

3 Curcuma longa Curcumin ↓ intracranial tumor growth of U87 GBM xenografts 
and ↑ the overall survival of mice

[201]

4 Angelica sinensis Root chloroform 
extract

↑ apoptosis in both p53 independent and dependent 
pathways
↓tumor growth in a rat GBM model & human GBM 
orthotopic model

[220]

5 Ardisia pusilla Ardipusilloside 1 
(ADS-1) polymer 

microspheres

able to retain ADS-1 release for 36 days in in vitro 
Higuchi model of kinetics; inhibited tumor growth 
in vivo C6 intracranial tumor model and ↑ overall 
survival of the animal

[224]

6 Berberis aristata Berberine elicited more cytotoxicity than TMZ in U87, U251 
and U118 GBM cell lines;
↓ EGFR-RAF-MEK-ERK signaling and induced 
senescence; ↓ tumor growth in GBM xenografts

[237]

7 Anemone taipaiensis Saponin 1 ↓ expression of survivin, XIAP, Bcl-2/Bax ratio, 
activating caspase-9, caspase-3 and apoptosis in 
U251 and U87 GBM cell lines; ↓ tumor growth in 
U251 and U87 GBM xenografts in mice

[238]

8 Panax ginseng Ginsenoside RG3 ↑ TMZ sensitivity, ↓ VEGF-A and BCl-2 in HUVEC 
and rat glioma cell lines;
RG3 and TMZ combinational treatment significantly 
↓ angiogenesis.

[244]

9 Iris versicolor  Iridin ↓ intracranial growth of U87 and G144 GBM 
xenografts in mice 

[257]
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plants including Berberis aristata, Berberis aquifolium 
and Tinospora cordifolia [232, 233]. Berberine shows 
significant antihelmintic, anti-inflammatory, antimicrobial 
and antioxidative properties [234, 235]. Ki et al. 
demonstrated apoptosis inducing effects of berberine on 
human GBM T98G cells in a concentration dependent 
manner [236]. Furthermore, berberine induced cell death 
was coupled with increased ROS production, intracellular 
calcium levels and endoplasmic reticulum (ER) stress 
[236]. A recent study showed more cytotoxicity of 
berberine in U87, U251, and U118 GBM cells than 
by TMZ [237]. They showed that berberine induced 
senescence was associated with EGFR-RAF-MEK-ERK 
signaling pathway inhibition. They further reported growth 
inhibition of GBM xenografts using berberine [237].

Saponins

Anemone taipaiensis from the Ranunculaceae family 
is a traditional Chinese medicine used against rheumatism 
and phlebitis. Recent studies demonstrated that saponin-1 
and saponin-B from the Anemone taipaiensis inhibited 
the growth of brain tumor in vitro and in vivo [238, 239]. 
Mechanistic studies revealed that saponin-B induced 
apoptosis in U87MG cells was associated with cell cycle 
arrest in S phase, activation of Fas-l, increased Bax/Bcl-2 
ratio and caspase-3 activation [239]. Similarly, saponin-1 
was shown to decrease survival and induce apoptosis in 
U251MG and U87MG cells by decreasing the expression 
of survivin, XIAP, Bax/Bcl-2/ ratio and activation of 
caspase-9/3 [238]. Moreover, Li et al. also showed that 
saponin-1 inhibited the growth of U251MG and U87MG 
xenografts in nude mice [238]. Similarly, saponin-6 also 
induced cell cycle arrest and apoptosis in U87 MG cells 
by DNA fragmentation, increasing caspase 3/9 activity, 
increasing expression of Fas and Fas ligand, and decreasing 
Bcl2 expression [240]. In a comparative analysis, Xiaoyang 
showed that oleanane type saponins display more 
cytotoxicity to U87 GBM cells than to benign human lung 
(A549), hepatocellular (HepG2), cervical (Hela) and human 
promyeleocytic leukemia HL-60 cell lines [241].

Ginsenoside RG3

Ginsenoside RG3 is mainly extracted from Panax 
ginseng (or ginseng) that is widely used as a medicinal 
plant in Asia [242]. Ginsenosides are triterpenoid saponins 
and ginsenoside RG3 comes under protopanaxatriols 
group, in which sugar moieties are linked to the β-OH 
group at C-20 or C-3 [243]. Caixing et al. showed that 
ginsenosides RG3 increased TMZ sensitivity in C6 
rat glioma cells, downregulated VEGF-A and BCl-2 
and induced apoptosis in HUVEC [244]. In addition, 
ginsenosides RG3 combined with TMZ also significantly 
reduced angiogenesis [244]. 

Natural products on GBM Cancer Stem Cells

CSCs also termed tumor initiating cells are a very 
small population of cancer cells that are responsible for 
the tumor initiation and resistance to CRT [245–247]. 
In GBM, CSCs are distributed in a specialized location 
known as the perivascular niche (PVN), which also harbors 
endothelial cells, astrocytes, tumor cells, microglia and 
pericytes [248, 249]. The PVN is presumed to maintain 
stemness and thereby the resistant nature of the CSCs 
[250–253]. While conventional CRT has been shown to 
enrich the CSC population and promote tumor recurrence, 
natural products may better target CSCs in multiple cancer 
types including GBM [254–256]. Rajarshi et al., identified 
three plant based non-toxic natural compounds from the 
Microsource Spectrum Collection library (MSCL)– 
namely, Iridin, triacetyl-resveratrol (TAR) and tigogenin–
which specifically target the PVN [257] and inhibit the 
intracranial growth of U87 and G144 GBM xenografts in 
mice [257], suggesting that additionally targeting the PVN 
may improve survival of GBM patients. 

CSCs that are isolated from GBM8401 cells are 
resistant to the cytotoxic drug TMZ [258]. MSC500 is 
a Korean natural medicine recipe consisting of eight 
herbs including Gastrodia elata, Phellinus linteus, and 
Mulberry leaves. Interestingly, MSC500 treatment to the 
GBM8401 cells resulted in a dose dependent decrease in 
aldehyde dehydrogenase (ALDH) activity associated with 
a reduction of the CSC population [258]. In addition, it 
downregulated the expression of ABC transporters (ABCG2 
and ABCB5) in GBM8401 CSCs, known to impart drug 
resistance [258]. While a recent study showed decreased 
CSC population (from 3.6 % on day 3 of treatment reduced 
to 0.55% on day 10) by curcumin in the C6 rat glioma 
cells [259]; its encapsulation using a biodegradable nano-
carrier dentrosome (DC) also reduced the growth of U87 
cells and decreased the expression of pluripotency genes 
like Nanog, SOX2, OCT 4A & 4B1 [260, 261]. DC also 
increased the expression of tumor suppressor miRNA-145, 
which is usually downregulated in several tumor tissues 
[260, 261]. It is noteworthy that polyurethane-short branch 
polyethylenimine vehicle mediated miRNA-145 delivery 
in CSCs abolished their stemness [262]. Other studies 
showed that by inhibiting PI3K/AKT/NF-kB signaling and 
decreasing MMP-2 expression, resveratrol inhibited GBM 
CSCs invasion in both in vitro and in vivo models [263]. 
Similarly, eckol, a phlorotannin compound extracted from 
Ecklonia cava with known anti-oxidant activity [264, 265] 
was shown to suppress the stemness in U87 and U373 GBM 
cells and in GBM patient derived CSCs XO1 GB and XO3 
AOA by inhibiting PI3K/Akt and Ras/Raf-1/Erk signaling 
[266]. In another study, eckol was also shown to abolish 
the anchorage independent growth of U373 glioma cells 
and growth of xenografts [266]. It is not yet clear if the 
mechanism of action for this effect on CSCs was mediated 
through ROS generation.
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Natural products and Blood Brain Barrier

As GBM is highly invasive in nature, resection of 
all microscopic disease is not practically feasible, even 
when tumor is in non-eloquent regions. Though targeted 
therapy has attracted much attention, it has not increased 
the overall survival (OS) of GBM patients, due partly to 
the poor penetration of drugs through the BBB. Therefore, 
agents capable of modulating the BBB permeability to 
improve the bioavailability of therapeutic drugs to the 
tumors are highly desirable.

The BBB is a complex cellular vascular structure 
that by paracellular or transcellular pathways regulates 
the access of molecules to the brain. It is composed of 
numerous tight junctions between endothelial cells, ATP 
dependent multidrug resistance (MDR) pathway proteins 
known as P-glycoprotein (P-gp), enzymes, and receptors 
[267]. While the phosphorylation of endothelial tight 
junctional (TJ) proteins, occludin or zonula occludens-1 
(ZO-1) regulate the paracellular permeability of the BBB 
[268], pharmacological inhibition of P-gp can increase 
drug influx to the brain [269]. The BBB microenvironment 
that includes astrocytes, microglia, pericytes, neurons, 

fibroblasts, basement membrane, extracellular matrix 
(ECM) and adjacent cell types [270], also influence BBB 
functions [271, 272]. The BBB of tumors (BBB) originates 
from tumor capillaries supplying nutrients and oxygen to 
the tumor [273]. The glioma BBTB microenvironment 
consists of tumor cells, ECM, tumor -associated microglia, 
infiltrating macrophages and other cell types. Interestingly, 
targeting the glioma microenvironment suppressed tumor 
growth in rat GBM models [274].

Natural products are known to modify the BBTB 
microenvironment through modulating the function of 
endocytosis, P-gp and secretion of MMPs. Shikonin, the 
prominent naphthoquinone isolated from a medicinal herb 
Lithospermum erythrorhizon, is known for its anti-oxidant 
and anti-inflammatory activities [275–277]. Lina et al., 
found that shikonin treatment significantly suppressed 
MMP-9 expression while it increased claudin-5 and 
BBB permeability in mice after ischemic stroke [278]. 
Additionally, shikonin treatment was found to reduce the 
viability, migration and invasion of the GBM cell lines 
U87 and U251 and also to decrease the expression of 
MMP-2 and MMP-9, conceivably through the inhibition 
of PI3K/Akt signaling [279]. Haidong et al., observed that 

Figure 2: Natural products modulating blood brain barrier permeability. Natural products aid the permeation of 
chemotherapeutic drugs in the brain. On the left of the diagram I: A- shows the influx of sugars and amino acids from the blood to the brain 
by a selective nutrient transporter in the endothelial cells, identified as solute carrier proteins and passive diffusion of chemotherapeutic 
lipophilic drugs; B- showing P-gp present in the endothelial cells pumps out most drugs in a ATP dependent manner and lowers the drug 
concentrations in the brain. On the right side of diagram II: C & D- shows natural compounds like procyanidine and scillarenin inhibit P-gp 
protein thereby allow accumulation of drug ( ) in the brain to reduce the tumor burden. TJ, Tight junctions; EC, endothelial cells; P-gp, 
P-glycoprotein; PC, pericytes; AE, astrocytic endfoot; MG, microglia. 
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resveratrol treatment protects the integrity of the BBB by 
regulating expression and activities of MMP-9 and TIMP-
1 in rat brains that were re-perfused after ischemic insult 
[280]. Similarly, procyanidine from the bark of Pinus 
massoniana also modulated microvessel endothelial cell 
permeability perhaps by modulating P-gp proteins in a rat 
brain model. More interestingly, procyanidine increased 
adriamycin permeation through BBB resulting in enhanced 
therapeutic efficacy and increased overall survival of mice 
[281]. In addition, Scillarenin from scilla [272], has also 
been shown to prevent P-gp mediated efflux [282] (Figure 
2). Yan-feng et al. also demonstrated that during hypoxia 
and glucose deprivation, curcumin maintains the BBB 
integrity by regulating ZO-1 and occludin expression [283].

SUMMARY AND CONCLUSION

GBM, the most common malignant brain tumor in 
adults, remains incurable with a bleak median survival. 
Despite multiple efforts there have been very few FDA 
approved drugs for its treatment, which are not universally 
efficacious. The efficacy of TMZ, a DNA alkylating 
agent used in first line therapy, is weakened by the 
expression of MGMT, which repairs the DNA damage 
induced by TMZ. Interestingly, multiple compounds from 
natural sources namely resveratrol, icariin, quercetin, 
propolisis, Turmeric ForceTM and Withaferin A work 
synergistically with TMZ [28, 32, 33, 37, 49, 53, 205]. 
Zataria multiflora hydroalcoholic extract and Tet also 
significantly increased the radiosensitivity of the A172 and 
the U87 and U251 GBM cell lines respectively [86, 88]. 
Resveratrol, Withaferin A, quercetin, methanolic extract 
of Salvia menthaefolia roots, berberine, Ficus carica 
latex, propolisis, AMT, thymoquinone and cucurbitacins 
efficiently blocked cell proliferation and induced 
apoptosis, even in the TMZ resistant GBM cell lines [27, 
32, 42, 49, 53, 113, 125, 188, 190, 236]. Moreover, TMZ 
induced cytotoxicity may be modulated by wild type p53 
status. It has been observed that siRNA mediated silencing 
of p53 confers resistance to TMZ [284]. Toosendanin 
from Melia toosendan increased the p53 expression [229] 
and betulinic acid from Betula pubescens, quercetin, 
diosquinone from Diospyros tricolor, chloroform extract 
of Angelica sinensis root significantly induced cell 
death even in p53 mutated cell lines [29, 132, 164, 220]. 
Interestingly, administration of Withaferin A, curcumin, 
Angelica sinensis root chloroform extract, Ardipusilloside 
1 and berberine significantly reduced the tumor volume 
and increased the overall survival in an orthotopic GBM 
animal model [199, 201, 220, 224, 237], suggesting that 
these compounds may cross the BBB. Natural compounds 
resveratrol, curcumin, eckol and Korean natural medicine 
recipe MSC500, significantly eradicated the CSC 
population in GBM [258, 259, 263, 266] and decreased 
the in vivo tumor growth in mice xenografts [266]. Most 
chemotherapy trials have failed in GBM patients, due 

partly to the poor penetration of drugs through the BBB. 
Natural products may modify the BBB permeability by 
altering the function of its components. In particular, 
procyanidine extracted from Pinus massoniana, was found 
to inhibit P-gp and increased the therapeutic efficacy of 
adriamycin by allowing it to permeate the BBB in nude 
mice, increasing their overall survival [281].

The few clinical trials evaluating the use of natural 
products for GBM have been relatively underpowered. 
Galactoside-specific lectin from mistletoe (ML-1) plant 
extract has immunoprotective/immunostimulatory activity 
[285–287]. Addition of ML-1 to the standard treatment 
for grades III and IV astrocytoma patients significantly 
increased the overall survival (20.05 ± 3.5 Vs 9.90 ± 2.1 
months) [288]. Patupilone (epothilone B), a microtubule-
stabilizing natural cytotoxic compound with BBB 
permeation and long half-life displayed progression free 
survival in recurrent GBM patients [289, 290]. 

As summarized here, a wealth of preclinical data 
exists to support further study using natural products in 
GBM. This dismal prognosis demands that we explore 
alternative therapy to improve outcomes for these patients. 
Prospective randomized clinical trials must be done to 
explore the use of adjunctive natural therapy in better 
targeting resistance and synergistically improving upon 
standard treatments.
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