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ABSTRACT
Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which 

could be caused by many factors, including disturbances of metabolism and protein-
protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network 
and a weighted COPD-related PPI network were constructed base on COPD disease 
genes and functional information. Candidate genes in these weighted COPD-related 
networks were prioritized by making use of a gene prioritization method, respectively. 
Literature review and functional enrichment analysis of the top 100 genes in these two 
networks suggested the correlation of COPD and these genes. The performance of our 
gene prioritization method was superior to that of ToppGene and ToppNet for genes 
from the COPD-related metabolic network or the COPD-related PPI network after 
assessing using leave-one-out cross-validation, literature validation and functional 
enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic 
and PPI networks could promote the better understanding about the molecular 
mechanism of this disease from different perspectives. The top 100 genes in COPD-
related metabolic network or COPD-related PPI network might be potential markers 
for the diagnosis and treatment of COPD.

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) 
is the third leading cause of morbidity and mortality 
worldwide [1]. As a complex disease, COPD is caused by 
many factors, including smoking, advanced age, systemic 
inflammation, and especially disturbances of metabolism 
[2] and protein-protein interactions (PPIs). For example, 
glucose metabolism disturbances were more observed 
in COPD patients than in control individuals [3]. An 
elevated energy metabolism was also detected in COPD 
patients [4]. In the COPD pathogenesis, the interaction 
between CCR6 and its ligand CCL20 promotes the effect 
of dendritic cells [5]. The interaction of TPP1 with the 

Sirtuin 1 complex could be disrupted by cigarette smoke. 
This caused reduced level of TPP1 on telomeres in lungs 
from COPD patients [6].

Molecular changes occurring in the process of 
complex diseases could be represented in terms of 
metabolic networks [7] and PPI networks, which have 
been used in many researches from various aspects. 
Shang et al. identified disease-related metabolites from a 
global metabolic network based on the assumption that 
the metabolites related to the same disease tend to be 
modularized in metabolic networks. Good performance 
and robustness were achieved for different disease classes, 
especially for respiratory diseases [8]. By integrating 
coexpression networks with metabolic networks, Ni et 
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al. developed a computational method to predicted key 
enzyme-coding genes in both Parkinson’s disease and 
Huntington’s disease. These predicted metabolic genes 
might act as novel biomarkers the diagnosis and potential 
therapeutic treatments of these diseases [9]. Wang et al. 
identified 23 novel genes potentially related to infertility 
from a human PPI network based on previously validated 
infertility-related genes. The identified genes were strongly 
related to dysfunction of four main biological processes of 
fertility [10]. By integrating the gene expression profile 
data and PPI data, Huo et al. constructed two coexpression 
PPI networks in a coronary heart disease (CHD) state 
and a non-CHD state. They found that the treatment of 
CHD with Danshensu may be partly attributed to the 
regulation of immunization and blood circulation. Several 
potential therapeutic targets for CHD were also identified 
[11]. Integrating other information into networks could 
help to better reveal disease mechanisms. Blais et al. 
predicted biomarker changes in response to drugs by 
integrating transcriptomics data to metabolic networks 
for hepatocytes. Their results were validated with 
literature-based evidence and new experimental data [12]. 
Zeng et al. used a novel relevance measure to prioritize 
candidate disease genes based on a heterogeneous 
network integrating PPI and phenotype information. The 
3-fold experiments showed that their methods were better 
than or similar to existing methods [13]. Transcriptome 
data were integrated to PPI networks of differentially 
expressed genes in peripheral blood mononuclear cells 
and pancreatic β-cellsto to identify key genes associated 
with Type 1 diabetes risk [14]. Many researches have 
found that genes with similar functions are more likely 
to be associated with similar diseases [15–17]. Therefore, 
it is necessary to further integrate functional information 
into disease-related networks to study the mechanism of 
diseases.

In this paper, two weighted COPD-related networks 
were constructed base on COPD disease genes and 
functional information. Candidate genes in each COPD-
related network were prioritized by making use of a gene 
prioritization method, respectively. The top-ranked genes 
in the COPD-related metabolic network or COPD-related 
PPI network could reflect the molecular mechanism of 
COPD and might be potential markers for its diagnosis 
and treatment.

RESULTS

Base on COPD disease genes, a COPD-related 
metabolic network and a COPD-related PPI network were 
constructed, respectively. Nodes and edges of these two 
COPD-related networks were weighted by integrating 
functional information. For genes in each COPD-related 
network, disease risk scores were calculated taking the 
transfer of disease risks into consideration.

Gene prioritization

COPD candidate genes were prioritized in each 
COPD-related network according to their risk scores in 
descending order (details in Methods). The top-ranked 
genes in each network had higher disease risk scores and 
were more associated with COPD. To further demonstrate 
the relationships between these genes and COPD, 
literature validation and functional enrichment analysis 
were applied for the top 100 genes in each COPD-related 
network.

For the top 100 genes in the COPD-related 
metabolic network, it was found that higher ranked genes 
were validated with higher proportion in literature. That 
is, 56% of the top 100 genes, 66% of the top 50 genes 
and 90% of the top 10 genes were associated with COPD 
in literature, such as CYP2E1 (Rank: 1), CYP2C9 (Rank: 
4), NOS1 (Rank: 5) and CYP1B1 (Rank: 8). These 
associations have been explained in our previous work 
[18].

For top genes in the COPD-related PPI network, 
61% of the top 100 genes and72% of the top 50 genes have 
been validated by literature, though only 40% of the top 
10 genes were validated to be associated with COPD by 
literature. COPD was independently associated with lower 
prevalences of EGFR (Rank: 2) mutations [19]. Human 
COPD lungs had decreased protein levels of CTNNB1 
(Rank: 4), which was positively correlated with pulmonary 
function [20, 21]. The protein level of UBB (Rank: 7) was 
significantly different between control and COPD lung 
tissue by western analysis [22]. Higher SRC (Rank: 8) 
activation was measured in small airway epithelial cells 
from patients with COPD compared with healthy control 
subjects, which indicated that the activation of SRC 
promotes COPD-related processes [23].

Of the top 100 genes in two COPD-related networks, 
11 genes were common (Figure 1), 8 of which have been 
validated by literature. For example, SOD1 was supposed 
to participate in the antioxidant defense of lungs in COPD 
patients, since its protein levels were found to be significantly 
higher in COPD patients than in those with no COPD [24]. 
Quantitative digital image analysis revealed increased 
cytoplasmic expression of FGF2 in bronchial epithelium 
and airway smooth muscle in COPD patients compared 
with controls [25]. Zanini et al. also found that FGF2 were 
significantly increased in COPD patients as compared to 
controls [26]. These common genes played important roles 
in COPD. It was speculated that unique genes of the top 100 
genes prioritized from COPD-related metabolic and PPI 
networks could reflect the molecular mechanism of COPD 
from different perspectives. These common or unique genes 
could be involved in various COPD-related processes about 
metabolism or protein interactions.

Functions annotated by COPD disease genes were 
defined as COPD-related functions. 45 COPD-related 
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functions were significantly enriched by the top 100 
genes in the COPD-related metabolic network and the top 
100 genes in the COPD-related PPI network (Benjamini 
adjusted P value < 0.05) (some are illustrated in Figure 1 
and Figure 2), including “Angiogenesis” and “extracellular 
regions”. The associations of these functions and COPD 
have been explained in our previous work [18].

153 GO functions were significantly enriched by 
the top 100 genes in the COPD-related metabolic network 
(Benjamini adjusted P value < 0.05), 86 (56.209%) 
of which were COPD-related (some are illustrated in 
Figure 2). “Heme binding” was one of these COPD-
related functions, whose role in COPD has been described 
in our previous work [18]. The “organelle membrane”-
permeant iron chelator deferiprone could contribute to 
alleviate experimental COPD [27]. The “steroid metabolic 
process” was involved by downregulated genes screened 
from a dataset including three COPD samples and three 
normal samples [28].

The top 100 genes in the COPD-related PPI 
network were significantly enriched in 541 GO functions 
(Benjamini adjusted P value < 0.05). 223 (41.220%) were 

COPD-related functions (some are illustrated in Figure 
2). “Transcription factor binding” site (TFBS) analysis 
confirmed that multiple COPD eQTL SNPs disrupted 
TFBS [29]. Dampening the “innate immune response” to 
smoking played a critical role in modifying pulmonary 
inflammation and lung remodeling, which might slow 
the progression of COPD [30]. Nasal epithelial cells 
are involved in many airway diseases, including asthma 
and COPD, through their “innate immune response” 
and interaction with immune and airway stromal cells 
[31]. Bush et al. found that genes important in “lung 
development” and early wheezing were implicated in 
COPD [32].

In COPD-related pathways that were annotated by 
COPD disease genes, 18 could be significantly enriched 
by the top 100 genes in the COPD-related metabolic 
network and the top 100 genes in the COPD-related PPI 
network (Benjamini adjusted P value < 0.05) (Some are 
illustrated in Figures 1 and 3). These pathways included 
both metabolic pathways and signaling pathways, which 
indicated their involvement in COPD. Through “regulation 
of the actin cytoskeleton” and up-regulation of integrin-β1, 

Figure 1: The overlap of the top 100 genes and literature validation from the COPD-related metabolic and PPI 
networks, and part of COPD-related functions and pathways for these 11 common genes.
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normal contractile function could be restored for COPD 
patients [33]. The “PI3K/Akt signaling pathway” was 
required for epithelial-mesenchymal transition in small 
airway fibrosis of COPD patients [34].

The top 100 genes in the COPD-related metabolic 
network were significantly enriched in 34 KEGG pathways 
(Benjamini adjusted P value < 0.05), 32 (94.118%) of 
which were COPD-related (Some are illustrated in Figure 
3). Most of these pathways were “metabolic pathways”, 
such as “Steroid hormone biosynthesis”, “Metabolism 
of xenobiotics by Cytochrome P450” and “retinol 
metabolism”. The associations of these pathways and 
COPD have been explained in our previous work [18].

104 KEGG pathways were significantly enriched 
by the top 100 genes in the COPD-related PPI network 
(Benjamini adjusted P value < 0.05). 78 (75%) were 
COPD-related pathways (Some are illustrated in Figure 
3), most of which were signaling pathways. “T cell 
receptor signaling” molecules were down-regulated in 
COPD pulmonary CD8 cells [35]. In the development 
of “Non-small cell lung cancer”, COPD and smoking 
played a vital role. Local progression and metastasis of 
“Non-small cell lung cancer” has been associated with the 
epithelial mesenchymal transition, which was implicated 
in COPD pathogenesis [36]. “Platelet activation” was a 
potential therapeutic target in patients with COPD aiming 

to reduce their risk of thrombosis or other cardiovascular 
events [37–39].

These results demonstrated the top-ranked genes in 
each COPD-related network were more associated with 
COPD, and could be enriched in COPD-related functions 
or pathways.

Performance evaluation and comparison

The performance of our gene prioritization method 
was assessed for each COPD-related network using leave-
one-out cross-validation (LOOCV) (details in Methods). 
Then, our method was compared with ToppGene and 
ToppNet based on the area under the receiver operating 
characteristic (ROC) curve (AUC). ToppGene and 
ToppNet are two tools in the ToppGene Suite (https://
ToppGene.cchmc.org) [40] for prioritizing candidate 
genes based on a set of disease genes considering various 
factors, such as GO annotations and protein interactions. It 
was showed that AUCs of our gene prioritization method 
for both COPD-related networks (0.949 and 0.799) were 
higher than those of ToppGene (0.912 and 0.714) and 
ToppNet (0.854 and 0.687) (Figure 4).

The three methods were also compared on the 
validated proportion of their top 100 genes in literature. 
For genes from the COPD-related metabolic network, 

Figure 2: Some of COPD-related GO functions significantly enriched by the top 100 genes in the COPD-related 
metabolic network (left) and the top 100 genes in the COPD-related PPI network (right). GO functions (horizontal axis) 
were significantly enriched by the top 100 genes (the number in the vertical axis) using DAVID (Benjamini corrected P value < 0.05).
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the proportions for ToppGene and ToppNet have been 
described in our previous work (Supplementary Figure 1) 
[18], which were less than that for our gene prioritization 
method. For genes from the COPD-related PPI network, 
47% of the top 100, 42% of the top 50, and 50% of the 
top 10 genes prioritized by ToppGene were validated, 
while 31% of the top 100, 30% of the top 50, and 30% of 
the top 10 genes prioritized by ToppNet were validated 
to be involved in COPD (Supplementary Figure 2). Most 
of these proportions were less than those of our gene 
prioritization method (61%, 72% and 40%).

The performance of the three methods were 
further compared on enriched COPD-related function 
or pathway proportion of the top 100 genes employing 
functional enrichment analysis (Supplementary Table 1). 
For genes from the COPD-related metabolic network, the 
comparison of the numbers and proportions of COPD-

related functions or pathways have been described in our 
previous work [18]. For genes from the COPD-related 
PPI network, the top 100 genes of our gene prioritization 
method could be enriched in more COPD-related functions 
or pathways than those of ToppGene and ToppNet, 
although the proportions were slightly smaller.

These results showed that the top-ranked genes of 
our gene prioritization method had better performance on 
AUC of LOOCV, literature validation and COPD-related 
function or pathway proportion. Thus, these genes were 
more associated with COPD than those of ToppGene and 
ToppNet for both COPD-related networks.

DISCUSSION

In this paper, COPD candidate genes were 
prioritized in two weighted COPD-related networks 

Figure 3: Some of COPD-related KEGG pathways significantly enriched by the top 100 genes in the COPD-related 
metabolic network (left) and the top 100 genes in the COPD-related PPI network (right). KEGG pathways (horizontal 
axis) were significantly enriched by the top 100 genes (the number in the vertical axis) using DAVID (Benjamini corrected P value < 0.05).

Figure 4: The ROC curves of our gene prioritization method, ToppGene and ToppNet for COPD-related (A) metabolic and (B) PPI 
networks.
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according to their risk scores by using a gene prioritization 
method, respectively. Literature validation and functional 
enrichment analysis were assessed for the top 100 genes 
from each COPD-related network. The performance of 
the gene prioritization method was superior to that of 
ToppGene and ToppNet on AUC of LOOCV, literature 
validation and COPD-related function or pathway 
proportion for their top 100 genes.

To further exhibit the classification performance of 
the top-ranked genes in two COPD-related networks, a 
support vector machine with linear kernel was employed 
to classify samples of a COPD-related expression 
profile GSE57148. The profile was obtained from Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) [41], which contained 98 COPD patients and 91 
normal controls. The classification process was conducted 
for the top 10 (the same number as COPD disease genes 
in the COPD-related metabolic network), the top 29 (the 
same number as all COPD disease genes) and the top 
100 genes in two COPD-related networks, respectively. 
Then the same classification process was conducted for 
10 COPD disease genes in the COPD-related metabolic 
network and 29 COPD disease genes in the COPD-related 
PPI network (see Data). AUC was used to compare their 
classification performance (Table 1). It was showed that 
the classification performance of the top 10 genes in both 
COPD-related networks was better than that of 10 COPD 
disease genes. The classification performance of 29 COPD 
disease genes was better than that of the top 29 genes in 
the COPD-related metabolic network, while that of the 
top 29 genes in the COPD-related PPI network was even 
better. The top 100 genes in two COPD-related networks 
could both classify samples with good performance.

The performance of the top 100 genes in the COPD-
related metabolic network was better on the numbers and 
proportions of enriched functions or pathways and AUC of 
LOOCV than those from the COPD-related PPI network, 
while the performance of the top 100 genes in the COPD-
related PPI network was better on literature validation and 
the classification performance than those from the COPD-
related metabolic network. These results indicated that 
the top-ranked genes prioritized from these two COPD-
related networks could reflect the molecular mechanism 
of COPD from different perspectives by participating in 
various COPD-related processes about metabolism or 
protein interactions.

To conclude, COPD candidate genes were 
prioritized in COPD-related networks using the gene 
prioritization method. The correlation of the top 100 genes 
and COPD was validated by literature and functional 
enrichment analysis. Compared with ToppGene and 
ToppNet, our gene prioritization method had better 
performance. The top-ranked genes prioritized from 
COPD-related metabolic and PPI networks could promote 
the better understanding about the molecular mechanism 
of this disease from different perspectives. The top 100 

genes in either COPD-related network might be potential 
markers for the diagnosis and treatment of COPD.

MATERIALS AND METHODS

Data

COPD disease genes were obtained from databases 
and literature, including Online Mendelian Inheritance 
in Man (OMIM, https://www.omim.org/) [42], the 
Disease Ontology (DO, http://disease-ontology.org/) [43], 
Phenotype-Genotype Integrator (PheGenI) (https://www.
ncbi.nlm.nih.gov/gap/phegeni) [44], DISEASES (http://
diseases.jensenlab.org/) [45] and Menche’s research [46]. 
A total of 29 COPD disease genes were collected for 
further analysis.

Gene functional information was extracted as all 
annotation terms for human genes in three ontologies, 
i.e. biological processes, molecular functions and cellular 
components, from Gene Ontology (GO, http://www.
geneontology.org/) [47].

Construction of weighted COPD-related 
networks

Based on these COPD disease genes, two weighted 
COPD-related networks were constructed.  One was a 
COPD-related metabolic network, which was built using 
COPD disease genes and their direct interactors extracted 
from an integrated human metabolic network as described 
in our previous work [18]. The COPD-related metabolic 
network contained 1361 genes and their 6601 interactions, 
10 of which were COPD disease genes, and others were 
candidate genes. The other was a COPD-related PPI 
network, which was retrieved using COPD disease gene 
products and their interacting partners from the STRING 
database (http://string-db.org/) [48]. The COPD-related 
PPI network was comprised of 7791 interactions between 
3740 proteins (gene products). All of 29 COPD disease 
genes were in the network, and other genes were candidate 
ones.

Weights for genes and interactions (nodes and 
edges of these COPD-related networks) were calculated 
by integrating functional information as in our previous 
work [18].

Prioritization of candidate genes

To prioritize candidate genes in each COPD-related 
network, disease risk score of each gene was obtained 
taking the transfer of disease risks into consideration, 
respectively:

D(i = 1) = (1 – β)QD(i) + βD(0)

where D(i)  is the vector of risk scores of all genes 
at step i, and ( )1,0∈β  is a parameter to measure the 
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importance between genes and interactions. After 
assessing the performance using 9.0,,2.0,1.0 =β , β =0.1 
was chosen as the optimal parameter. Q is the disease risk 
transition probability matrix, whose element ( )hgq , the 
disease risk going from gene h  to gene g , was defined as

( ) ( )
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The process was carried out until the difference 

between D(i) and D(i+1) was less than a threshold, 10–9. 
Candidate genes from each COPD-related network were 
prioritized according to their risk scores in descending order.

To examine the association between the top-
ranked genes and COPD, literature validation was 
performed for the top 100 genes in each COPD-related 
network in literature of PubMed (http://www.ncbi.nlm.
nih.gov/pubmed). Then, functional enrichment analysis 
was applied for the top 100 genes using the Functional 
Annotation Tool in the Database for Annotation, 
Visualization and Integrated Discovery (DAVID, http://
david.abcc.ncifcrf.gov/) v6.8 [49, 50]. GO functions and 
KEGG pathways with adjusted P value (Benjamini) less 
than 0.05 were considered significant.

Evaluation and comparison of the performance

LOOCV was carried out to assess the performance 
of our gene prioritization method as described our 
previous work [18]. The ROC curves were plotted and 
AUC was computed based on the ranks of test genes. 
These results were compared with those of ToppGene and 
ToppNet using genes from COPD-related metabolic and 
PPI networks, respectively.

To compare with the top 100 genes of our gene 
prioritization method, literature validation and functional 
enrichment analysis for the top 100 genes prioritized by 
ToppGene and ToppNet were also performed.
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