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ABSTRACT
Multipotent mesenchymal stem cells (MSCs) are recruited into tumor 

microenvironment in response to multiple signals produced by cancer cells. Molecules 
involved in their homing to tumors are the same inflammatory mediators produced 
by injured tissues: chemokines, cytokines and growth factors. When MSCs arrive into 
the tumor microenvironment these are “educated” to have pro-metastatic behaviour. 
Firstly, they promote cancer immunosuppression modulating both innate and adaptive 
immune systems. Moreover, tumor associated-MSCs trans-differentiating into cancer-
associated fibroblasts can induce epithelial-mesenchymal-transition program in tumor 
cells. This process determinates a more aggressive phenotype of cancer cells by 
increasing their motility and invasiveness and favoring their dissemination to distant 
sites. In addition, MSCs are involved in the formation and modelling of pre-metastatic 
niches creating a supportive environment for colonization of circulating tumor cells.

The development of novel therapeutic approaches targeting the different 
functions of MSCs in promoting tumor progression as well as the mechanisms 
underlying their activities could enhance the efficacy of conventional and immune 
anti-cancer therapies.

Furthermore, many studies report the use of MSCs engineered to express different 
genes or as vehicle to specifically deliver novel drugs to tumors exploiting their strong 
tropism. Importantly, this approach can enhance local therapeutic efficacy and reduce 
the risk of systemic side effects.

INTRODUCTION

In these last decades, many researches focused on 
the possible role of mesenchymal stem cells (MSCs) to 
promote tumor progression by interacting with tumor 
cells and other stroma cells in the complex network of 
microenvironment [1]. The multiple properties of these 
cells such as self-renewal, plasticity to differentiate into 
several cell types and ability to modulate immune response 
as well as strong tropism to tumors make them crucial 
players in the development of metastatic phenotype.

Once the MSCs come into contact with the tumor 
microenvironment (TME) they are “educated” to evolve 
and differentiate in tumor-associated MSCs (TA-MSCs) 

and cancer associated fibroblasts (CAFs) [2–4]. Both 
these cells cooperate to support all hallmarks of cancer 
including sustaining proliferative signaling, evading 
growth suppressors, resisting cell death, enabling 
replicative immortality, inducing angiogenesis, and 
activating invasion and metastasis [5] (Figure 1). 

Many signals are involved in the cross-talk 
between TA-MSCs and other component of tumor 
microenvironment. Several chemokines, cytokines, growth 
factors and others are produced by tumor cells to recruit 
MSCs from bone marrow and adipose tissue. In turn, 
TA-MSCs release the same molecules to repress immune 
surveillance, to induce epithelial-mesenchymal transition 
(EMT) program and to promote tumor cell migration 
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and invasion. Recently, on this topic we reported that 
bone-marrow MSCs (BM-MSCs) derived from patients 
induced the metastatic phenotype of osteosarcoma and 
hepatocellular carcinoma through stromal derived factor 
1 (SDF-1)-C-X-C-Chemokine receptor type 4 (CXCR4) 
axis and also through the aquaporin 1 (AQP1) membrane 
channel [6, 7]. Furthermore, it has been observed that 
MSCs can contribute to prepare the pre-metastatic 
sites by inducing a favorable microenvironment for the 
colonization of circulating tumor cells [1].

Although many studies reported the pro-tumorigenic 
activity of MSCs many others showed their tumor 
suppressive properties [8].

Here, we mainly focused on the progress made to 
elucidate the key mechanisms in which MSCs are involved 
to promote a pro-metastatic phenotype. 

Nowadays, there are few reports regarding the 
possibility to target MSCs to hamper cancer progression. 
However, recently Ramos et al. (2017) reported that the 
inhibition of Histone deacetylases 8 in MSCs derived from 
myeloproliferative neoplasms selectively decreases their 
hematopoietic-supporting ability [9]. 

TROPISM OF MESENCHYMAL STEM 
CELLS TOWARDS TUMORS

Currently, there has been a heightened focus on 
the homing abilities of MSCs into tumors and their role 
in promoting tumor progression [10, 11] but the specific 
mechanisms behind this are not yet well elucidated. MSCs 
that show a strong tropism to cancer, are derived from 

bone marrow [12, 13], adipose tissue [14] and also the 
umbilical cord [15].

Nakamizo et al. (2005) isolated human MSCs 
(hMSCs) from the bone marrow and followed their fate 
labeled them using fluorescent protein. Then, they injected 
labeled-MSCs into the opposite hemisphere of mouse 
brain of a orthotopic glioma model and after 14 days 
observed that the fluorescent hMSCs were exclusively 
within the brain tumors [13].

Moreover, fluorescent-labeled MSCs were detected 
in metastatic breast tumors in mice after their systemic 
administration and monocyte chemotactic protein-1 
(MCP-1) produced by tumor cells was involved in their 
recruitment [16].

Interestingly, it has been reported that human 
adipose-derived MSCs (AD-MSCs) transduced with 
a retroviral vector encoding full-length human tumor 
necrosis factor-related apoptosis-inducing ligand (TRAIL) 
specifically localized into xenografts and mediated tumor 
cell apoptosis without significant apparent toxicities to 
normal tissues [14].

Furthermore, Hu et al. (2011) observed that human 
umbilical blood mononuclear cell (UBMC)-derived 
mesenchymal stem cells (UBMC-MSCs) transfected 
with recombinant pIRES2-IL-21-enhancement green 
fluorescent protein delayed tumor growth and prolonged 
survival in ovarian-cancer-bearing mice [15].

Tumors are considered the “wounds that never heal” 
and due to this are in a constant inflammatory status [17]. 
Indeed, cancer cells and tumor associated stroma cells 
produce various inflammatory molecules such as cytokines, 
chemokines and growth factors that are involved in MSC 

Figure 1:  MSCs trans-differentiation into tumor microenvironment. MSCs deriving from bone marrow or from adipose tissue 
can be recruited to tumor microenvironment in response to multiple signals: chemokines, cytokines and growth factors. Here, MSCs can 
trans-differentiate into tumor-associated MSCs (TA-MSCs) and cancer-associated fibroblasts (CAFs). They are characterized by specific 
markers such as α-smooth muscle actin (α-SMA), fibroblast activating protein (FAP) and fibroblast-specific protein 1 (FSP1). TA-MSCs and 
CAFs promote metastatic phenotype acting on: immunosuppression, inflammation, tumor growth, invasion, metastasis and angiogenesis.
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recruitment [18–20]. Moreover, it has been reported that 
MSCs respond to these signals by expressing high levels of 
specific receptors, adhesion molecules, cell surface markers 
and toll-like receptors [21]. 

At present, although much research is being carried 
out in this field, it has not yet been cleared which factor 
could play the most important role in this mechanism, it 
would seem that more factors are involved in the mediation 
of MSC tropism to a specific tumor site. In TME there is a 
chemotactic gradient consisting of different chemokines: 
CC-chemokine ligand 2 and 5 (CCL2, CCL5), CXC 
– chemokine ligand 12 and 16 (CXCL12, CXCL16), 
which are able to recruit MSCs [1]. Recently, it has been 
reported that the chemokine CCL2 plays a crucial role in 
the ionizing radiation induced tropism of MSCs to gliomas 
[22]. Furthermore, it has been shown that CCL2 and 
CCL5 produced by macrophages induce MSC recruitment 
in tumor sites [23]. Interestingly, a study evaluated the 
role of SDF-1a/CXCL12 in the migration of MSCs in 
response to tumor cells elucidating that Jak/STAT, MEK/
ERK as well as NFkB pathways are activated downstream 
of SDF-1 [24]. Jung et al. (2013) provided evidence of 
an important cross-talk between MSCs and tumor cells 
in promoting a metastatic phenotype of prostate tumors. 
MSCs were both recruited as well as transformed in CAFs 
by CXCL16 produced by tumor cells. In turn, MSC-
like CAFs secreted CXCL12 that binding to CXCR4 on 
tumor cells induced an EMT, which ultimately promoted 
metastasis to secondary tumor sites [25]. 

Many growth factors such as, platelet derived 
growth factor (PDGF), vascular endothelial growth 
factor (VEGF), insulin-like growth factor 1 (IGF-1), 
transforming growth factor-β (TGF-β) and basic fibroblast 
growth factor (bFGF) have been found to effectively 
mediate MSC homing to TME [21, 26, 27].

Doucette et al. (2011) showed that syngeneic 
MSCs are capable of homing to endogenous gliomas 
in immunocompetent mice. This model of high-grade 
glioma was induced by overexpression of PDGF-BB, that 
previously has been well characterized to be a critical 
mediator of MSC tropism to tumor sites [28–30].

Recent studies suggest that TGF-β1 is a crucial 
player in inducing MSC migration towards prostatic 
carcinoma cells (PC3 DU145) as well as to tumor stroma 
components [31]. In addition, Beckermann et al. (2008) 
showed that MSCs migrated towards growth factors 
produced by pancreatic tumors, such as PDGF, EGF, 
VEGF and that specific inhibitors Glivec, Erbitux and 
Avastin hampered their recruitment [32]. Furthermore, 
it has been demonstrated that bFGF and downstream 
Erk/Smad3 signaling pathway are involved in BM-MSC 
tropism to 4T1 breast cancer cells by using a specific 
neutralizing antibody [33]. 

In breast cancer, hypoxic TME, through activation 
of hypoxia-inducible factors (HIFs), is able to regulate 
the complex bidirectional MSC-tumor cell interaction. It 

has been demonstrated that hypoxia-induced expression 
of Placental growth factor (PGF) and CXCL16 in breast 
cancer cells is required for MSC recruitment and their 
pro-metastatic activity [33–36]. Likewise, breast cancer 
cells under hypoxic conditions (1.5% O2) were able to 
secrete high levels of interleukin-6 (IL-6), which served 
to activate and attract MSCs through Stat3 and MAPK 
signaling pathways [34]. 

MicroRNA’s (miRNAs) have been shown to 
modulate MSC migration towards breast cancer. 
Indeed, miR-126/miR-126(*) suppressed the sequential 
recruitment of MSCs and inflammatory monocytes into 
the tumor stroma by directly inhibiting SDF-1α expression 
by cancer cells. [37].

A critical event of MSCs homing to cancer is to 
execute trans-migration through endothelial cells of the 
vessel. It has been observed that similarly to hematopoietic 
cells, MSCs express high levels of E-selectin, whereas 
lack the expression of platelet endothelial cell adhesion 
molecule-1 (PECAM-1), L-selectin and β2 integrins [38]. 
On the other hand, intravital microscopy demonstrated 
the capacity of MSCs to roll and adhere to post-capillary 
venules in vivo in a mouse model through a P-selectin and 
vascular cell adhesion molecule-1 (VCAM-1)/ very late 
antigen-4 (VLA-4) dependent manner [39].

At the present, many studies have been performed 
and are still underway to clarify the mechanisms 
underlying MSC tumor tropism and to evidence 
responsible factors which induce their recruitment in 
different tumor sites (Table 1). 

MESENCHYMAL STEM CELLS MODULATE 
TUMOR IMMUNE RESPONSE

MSCs are well known to be important modulators 
of inflammatory and immune responses affecting both 
the adaptive as well as innate immune systems [40]. In 
1998, McIntosh KR et al. reported, for the first time, 
the use of MSCs for prevention and immune responses 
in transplantation [41]. A few years after, haploidentical 
MSCs were transplanted to treat severe acute graft-versus-
host disease [42].

In TME cancer cells produce many inflammatory 
factors that are able to recruit non only MSCs but also 
many immune cells. A described above, MSCs into 
tumor sites are modified in TA-MSCs that contribute 
to generate malignant phenotype also excercising an 
immunosuppressive funcion [43, 44]. Han et al. (2011) 
reported that, when B16 melanoma cells were co-injected 
with MSCs pre-incubated with interferon-γ (IFN-γ) and 
tumor necrosis factor-α (TNF-α) in syngeneic mice, 
xenografts were developed faster than those obtained from 
B16 cells alone whereas tumor incidence was increased 
in allogeneic recipients [45]. These immunosuppressive 
effects were due to an increase of inducible nitric oxide 
synthase (iNOS) expression in MSCs [45]. Similarly, 
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MSCs pre-treated with IL-1α effectively promoted the 
growth of prostate cancer cells in vivo through TGF-β 
upregulation [46]. 

In addition, It has been shown that MSCs isolated 
from spontaneous lymphomas in mice (L-MSCs) were 
more effective in recruiting monocytes/macrophages and 
in promoting tumor growth than BM-MSCs and their 
activity was mediated via C-C-Chemokine receptor type 
2 (CCR2). Importantly, when BM-MSCs were TNFα-
pretreated they mimicked L-MSCs in their chemokine 
production profile and in their ability to promote 
tumorigenesis not only of lymphoma but also melanoma, 
and breast carcinoma [47]. Recently, Yu et al. (2016) 
showed that TNFα-activated MSCs expressed CXCR2 
ligands (CXCL1, CXCL 2 and CXCL5) and through them 
efficiently recruited CXCR2+ neutrophils into breast 
cancer microenvironment. 

These neutrophils directly enhanced tumor lung 
metastasis, inducing tumor cells to express pro-metastatic 
genes [48]. In addition, in breast cancer cells indoleamine 
2,3-dioxygenase (IDO)-expressing humanized MSCs 
(MSC-IDO) were capable of suppressing T-lymphocyte 
proliferation in vitro as well as reducing tumor-infiltrating 
CD8+ T cells and B cells in vivo , similar effects were also 
observed in melanoma and lymphoma tumor models [49]. 

Conversely, in breast cancer MSCs conferred 
immune protection through TGF-β1-mediated generation 
of forkhead box P3 (FoxP3)+ Tregs (regulatory t cells), 
that in turn suppressed tumor cell cytolysis by CD8+ T 
cells and natural killer (NK) cells [50]. In triple negative 
breast cancer, the cross-talk between tumor cells and 

MSCs, caused the production of macrophage colony-
stimulating factor 1 (CSF1) that recruited in the TME, 
tumor-associated macrophages (TAMs) and myeloid-
derived suppressor cells (MDSCs) [51]. Macrophages and 
MSCs may engage in a bidirectional interaction where 
M2 or M2-like macrophages determinate an increase of 
MSCs growth and motility [52]. In turn, MSCs can induce 
macrophages to acquire an anti-inflammatory phenotype 
with immunosuppressive abilities and pro-tumor functions 
[53, 54]. Recently, Yamada et al. (2016) reported that 
mouse BM-MSCs in vivo caused the increase of melanoma 
growth and M2 macrophage polarization through milk 
fat globule EGP factor 8 protein (MFG-E8) [55]. BM-
MSCs obtained from patients with follicular lymphoma 
showed a different gene expression profile respect to 
MSCs obtained from healthy donors (HD-MSCs). These 
cells were able to recruit and polarize monocytes more 
efficiently than HD-MSCs thus sustaining malignant 
B-cell growth. Conversely, when MSCs were transfected 
to overexpress an NAD-dependent deacetylase sirtuin 
1 (MSCs-Sirt1), they inhibited the growth of breast 
and prostate carcinomas by recruiting NK cells and 
macrophages [56]. Interestingly, MSCs associated in 
pancreatic carcinoma microenvironment had an increased 
tumor-promoting potential in respect to MSCs obtained 
from normal pancreas. This effect was mediated by their 
ability to induce macrophage polarization [57]. Chiassone 
et al (2016) showed that MSCs were able to induce the 
polarization of macrophages toward a novel M2-like 
phenotype (MMSC) that in turn could inhibit NK cells 
activation and could cause the expansion of Tregs cells 

Table 1: Factors involved in mesenchymal stem cell tropism to tumor microenvironment
Factor Tumor Type Reference

Cytokines

TFN-a Glioma [151]
IFN-g Glioma [151]
IL-1b Melanoma Breast Cancer [152]
IL-6 Breast Cancer [34, 153]
IL-8 Lung Cancer Breast Cancer [154]

Growth Factors

TGF-b Glioma Prostate Cancer [31, 155]
PGF Breast Cancer [35]
PDGF Glioma Renal Cancer Breast Cancer [29, 30, 156]
HGF Gastric Cancer Lung Cancer [157]

Chemokines

SDF-1/CXCR4 Glioma Breast Cancer Skin Cancer [24, 154]
CCL2 CCL5 Glioma [22, 23]
CXCL (GRO-a) Breast Cancer [153, 160]
MCP-1 Breast Cancer [16]

Other Factors

HIF-1 Glioma Breast Cancer [35]
MMP Glioma [158]
VCAM Glioma [159]
LL-37 Ovarian Cancer [161]
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[58]. In addition, the engagement of tool-like receptor 
(TLR) reverted MMSC toward a M1 phenotype with pro-
inflammatory and immunostimulatory activities [58] thus 
becoming detrimental for tumor progression. Conversely, 
it has been reported that MSCs derived from bone 
marrow of patients with low/intermediate risk leukemia 
at diagnosis enhanced the NK cell antitumor cytolytic 
activity and their pro-inflammatory cytokine production 
[59].

TRANS-DIFFERENTIATION OF TUMOR-
ASSOCIATED MESENCHYMAL STEM 
CELLS INTO CANCER ASSOCIATED 
FIBROBLASTS

When MSCs arrive into TME they can differentiate 
not only in TA-MSCs but also in CAFs. Among stromal 
cells that constitute TME, CAFs are known to play a 
crucial role in promoting tumor progression [60]. They 
are involved in all tumor events preceding the metastatic 
spread such as of EMT, neo-angiogenesis, immune 
surveillance, tumor cell migration and invasion [60]. 
CAFs were found in different forms of cancer and their 
high heterogeneity probably was due to different sources: 
fibroblasts, smooth muscle cells, endothelial cells and 
epithelial cells [61]. Recently, it has been reported that 
important CAF precursors are MSCs. These cells for their 
high plastic abilities, when stimulated directly or indirectly 
by factors produced from tumor cells or others stroma 
cells can trans-differentiate into a CAF-like phenotype [1]. 
For the first time, Mishra et al. (2008) observed that the 
effect of prolonged exposure of MSCs to factors produced 
by a human breast cancer cell line MDA-MB-231 caused 
up-regulation of 53 CAF-associated genes and an higher 
expression of α smooth muscle actin (α-SMA), vimentin, 
fibroblast surface protein (FSP) and SDF-1 [2]. An 
important evidence that CAF may derive from MSCs 
was shown by injecting green fluorescent protein (GFP)-
labelled BM-MSCs in a mouse model of inflammation-
dependent interleukin 1β (IL 1β) gastric cancer. About 20% 
of CAFs were found to be GFP-positive, indicating that 
GFP-BM-MSCs were their pre-cursors [4]. Importantly, in 
2009 the first report was published showing that in female 
patients with gastric cancer and rectal adenoma, which had 
received bone marrow transplants from male donors, were 
identified several Y-chromosome positive CAFs [62].

In the last years, many studies investigated the key 
role played by TGF-β in the mechanism underlying MSC 
differentiation to CAFs. Recently, an interesting paper 
reported that in prostate cancer, MSCs are both recruited 
as well as induced to differentiate into CAFs in response 
to TGF-β produced by tumor cells. In addition, respect 
to normal MSCs, CAF-like MSCs performed vascular 
mimicry and recruited monocytes, which were polarized 
to M2 macrophages within the prostate cancer (PCa) 

environment [31]. Previously, Shangguan et al. (2012) 
observed that, when human BM-MSCs were transduced 
with a lentiviral vector encoding bone morphogenetic 
protein and activin membrane-bound inhibitor (BAMBI, 
a decoy TGF-β receptor), TGF-β/Smad signaling was 
significantly inhibited. Consequently, CAF markers 
were down-regulated in human BM-MSCs treated with 
TGF-β1 or tumor-conditioned medium or co-cultured 
with cancer cells [63]. Moreover, it has been reported 
that an endoplasmic reticulum (ER) chaperone GRP78, 
overexpressed in a variety of tumors, was able to induce 
BM-MSCs differentiation into CAFs through activating 
TGF-β/Smad signalling pathway. The importance of 
TGF-β involvement in MSC transformation was confirmed 
by another study where a TGF-β type I receptor kinase 
inhibitor, SB431542, caused a significant decrease of CAF 
markers expression [64]. 

It has also been observed that BM-MSCs were able 
to migrate towards 4T1 breast cancer cells and there trans-
differentiate into CAFs in response to bFGF signaling 
pathway [33].

Several CAFs markers were identified in trans-
differentiated MSCs, the main ones are α-SMA, the 
fibroblast activation protein (FAP) and FSP, but also 
thrombospondin-1, tenascin-C, desmin-1, and VEGF-
AA can be involved [5, 65, 66]. α-SMA has been known 
to play a pivotal role in the embryonic stem cell-derived 
cardiomyocyte differentiation. On the other hand, 
expression of α-SMA in the stroma increases fibroblasts 
contractile ability and contributes to alterations in the 
cytoskeletal organization [61, 66, 67]. CAFs may alter 
the extracellular matrix (ECM) through the production 
of proteases such as FAP. High levels of this enzyme are 
expressed in over 90% of human epithelial carcinomas 
including breast, lung, and ovarian cancers. Conversely, 
normal healthy adult tissues have almost no detectable 
FAP expression [68]. Generally, MSC-like CAFs that 
are positive for FSP and FAP originate from MSCs 
which derive from the bone marrow, whereas it has been 
observed that adipose-derived MSC mainly differentiate 
into vascular and fibrovascular stromal cells. [65]. 
Compared to normal fibroblasts and myofibroblasts, CAFs 
are perpetually activated, and cannot revert back to their 
original phenotype nor undergo apoptosis [61], confirming 
their dramatic role in tumor progression. 

Recently, some reports have suggested that the 
irreversible activation of fibroblasts might be driven by 
epigenetic alterations [69, 70]. Albrengues et al (2015) 
identified the DNA methyltransferase (DNMT) family 
epigenetic modifiers as regulators of the pro-invasive 
CAF activity that affects Janus kinase 1 (JAK1)–signal 
transducer and activator of transcription 3 (STAT3) 
activation [71]. Dual inhibition of DNMT and JAK 
activity restored the non-invasive phenotype of CAFs. 
Conversely, a global gene hypometylation was observed in 
CAFs isolated from human gastric cancers [72]. Moreover, 
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Shakya et al found globally decreased 5-methyl-cytosine 
(5-mC), along with increased amounts of 5-hydroxymethyl-
cytosine (5-HmC) in CAFs, in progression from 
pancreatic intraepithelial neoplasia to pancreatic ductal 
adenocarcinoma [73]. Among these epigenic changes the 
post-trascriptional control involving miRNA statutes plays 
an important role [69]. For example, it has been observed 
that upregulation of miRNA-21 in CAFs is associated with 
high proliferation in breast cancer [74, 75], poor-disease-
free survival in colorectal carcinoma [76] and invasion of 
esophageal squamous cell carcinoma [77].

Notably, CAFs are able also to migrate with epithelial 
cancer cells through endothelial cell layers, thus contributing 
to establishment of new pre-metastatic niches [78–80]. 

MESENCHYMAL STEM CELLS 
PROMOTE CANCER CELL EPITHELIAL–
MESENCHYMAL TRANSITION AND 
INVASION

In these last years, research studies on mechanisms 
underlying tumor progression and acquisition of pre-
metastatic phenotype have demonstrated well that MSCs 
actively participate in inducing oncogenic EMT (Figure 2) 
[81, 82].

In particular, in TME where a complex crosstalk 
between tumor cells and stromal cells takes place, the 
epithelial tumor cells undergo profound morphological 
and functional changes trans-differentiating in a 
mesenchymal-like phenotype with a higher metastatic 
potential [83]. Generally, EMT represents a physiological 
developmental process by which the epithelial cells in 
particular conditions (normal embryogenesis, tissue repair 
and in tumors), upon extracellular cues, undergo profound 
morphogenetic changes, to become cells with phenotype 
and morphology similar to stem cells [81, 84]. EMT of 
tumor cells is characterized by a sequence of molecular 
events: 1) down-regulation of E-cadherin, 2) secretion of 
enzymes (i.e. matrix metalloproteinases), 3) up regulation 
of mesenchymal markers (i.e vimentin, N-cadherin and 
fibronectin) [85, 86].

Many EMT inducible factors have been demonstrated 
to be produced or secreted by MSCs such as cytokines 
(IL1, IL6) [87], chemokines (CCL5 , CXCL1, CXCL5, 
CXCL7 and CXCL8) [88, 89], growth factors (TGF-β, 
FGF, Hepatocyte growth factor HGF and epidermal growth 
factor, EGF) [90, 91] as well as hypoxia inducible factors 
and reactive oxygen species. Interestengly, in breast cancer 
a part from MSCs, other stromal cells such as adipocytes 
are able to promote a more aggressive phenotype by 
producing CCL5 and IGF-1 [92, 93].

Figure 2: Mesenchymal stem cells promote cancer cell epithelial–mesenchymal transition (EMT). MSCs in TME produce 
many factors that induce or repress in tumor cells different genes encoding proteins involved in EMT program. In tumor cells epithelial 
markers are down-regulated: E-cadherin, claudins, occludins, desmoplakin and cytokeratins; whereas mesenchymal markers are up-
regulated: N-cadherin, vimentin, fibronectin, snail and and smooth muscle actin.
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These molecules acting in a paracrine manner are 
able to orchestrate EMT program. It has been reported the 
importance of expression and functional activation of a 
group of EMT-inducing transcription factors (Twist, Snail, 
Slug, zinc finger E-box-binding homeobox 1 (ZEB1) and 
ZEB2 [81, 94]. The activation of these transcription factors 
causes the down-regulation of genes responsible to encode 
epithelial junction proteins determining a disassembly 
of adherens junctions, desmosomes, and tight junctions 
[95]. Conversely, they can up-regulate expression of 
mesenchymal genes encoding N-cadherin, fibronectin and 
vimentin [96]. The trigger of these transcription factors 
is sufficient to induce EMT in tumor epithelial cells as 
observed in different invasive carcinomas [97]. On this 
regard, recently we reported that CXCL12/CXCR4 axis 
is involved in migration and invasion of osteosarcoma 
and hepatocellular carcinoma cell lines through EMT 
activation [6].

The pivotal role of EMT program in cancer 
progression, has been investigated in several pre-clinical 
cancer models such as breast [98], ovarian [99], colon 
[100], and esophageal carcinomas [101].

Most recently, it has been reported that EMT 
program is also under miRNAs control that may promote 
mesenchymal or inhibit epithelial gene expression. 
miRNA-9 which is up-regulated in breast cancer cells, 
directly targets the E-cadherin-encoding messenger RNA, 
leading to an increase in cell motility and invasiveness 
[102]. Conversely, miRNA 200b was able to revert EMT 
in prostate carcinoma animal model increasing pan-
epithelial marker such as E-cadherin, cytokeratins 8 and 
1 and down-regulating mesenchymal markers, fibronectin 
and vimentin [103]. Furthermore, miRNA-21 promoted 
the acquisition of luminal markers and EMT in prostate 
cells suppressing B-cell translocation gene 2 (BTG2) 
expression [104].

In conclusion, EMT process can be drawn as very 
interesting and complex phenomena that offers a way to 
move cancer cells from primary tumor to the confined 
tissues and blood vessels thus facilitating metastatization 
process [85]. In addition, it has been well demonstrated 
that tumor-like mesenchymal stem cell cells can also 
undergo a reverse phenotype switching to again become 
phenotypically epithelial cells via mesenchymal-to-
epithelial transition (MET) [105]. This process is 
associated with formation of metastatic niches [97]. 

A particular pre-requisite for tumor invasion 
is represented by modifications of ECM involving 
the degradation of its components by enzymes as the 
metalloproteinases 2 and 9 (MMP-2 and MMP-9) [106–
108]. It has been reported that MSCs increased MMPs 
expression in lung and pancreas carcinoma activating 
EMT program [109, 110]. In particular, it seem plausible 
that MMPs could be directly involved in EMT program 
during cancer progression by different mechanisms: (a) 
the increase of MMPs in the tumor microenvironment 

can prompt EMT in epithelial cells, (b) cancer cells that 
use EMT programming produce extra MMPs and (c) 
epithelial cells can be subjected to EMT through additional 
MMP [111]. MSCs can also act on ECM modifying its 
organization by production of molecules as collagen [112]. 
Furthermore, Kaplan et al. (2005) investigating the role of 
MSCs to contribute to pre-metastatic sites, observed that 
bone marrow-derived hematopoietic progenitor cells that 
expressed vascular endothelial growth factor receptor 1 
(VEGFR1; also known as Flt1) homed to tumor-specific 
pre-metastatic sites and formed cellular clusters before the 
arrival of tumor cells [113].

MESENCHYMAL STEM CELLS AS 
VEHICLES FOR CELL-BASED CANCER 
THERAPY

MSCs are being investigated as cellular vehicles 
for the delivery of anti-cancer agents on the basis of their 
pronounced tropism and integration capacity into tumor 
microenvironment as well as for their immunomodulatory 
abilities [114] (Table 2). Indeed, MSCs can be infused into 
HLA-non-identical recipients because they do not activate 
the host immune response and escape immunological 
rejection [115]. They may be genetically engineered to 
express anti-proliferative, anti-angiogenic, pro-apoptotic 
factors as well as cytokines and suicide genes. Recently, 
Marini et al. reported the therapeutic activity of MSC 
stably transfected to express a TNF-Related Apoptosis-
Inducing Ligand (TRAIL)-EGFR specific against 
Colo205 xenograft tumor model [116]. Similarly, when 
MSC expressing TRAIL were injected in pre-established 
Ewing’s Sarcoma mouse model they caused significant 
tumor apoptosis and showed anti-angiogenic function 
respect to control group [117]. It has been observed that 
MSCs engineered to produce and deliver scFv-Ftd-tBid, 
a novel γ-SM-targetd immuno-proapoptotic molecule, 
inhibited prostate cancer growth both in vitro and in vivo 
[118]. Furthermore, MSCs combined with an adenovirus 
vector to deliver NK4 caused a decrease of growth and 
migration of high metastatic liver carcinoma cells as well 
as neo-angiogenesis [119]. Many other anti-angiogenic 
approaches have been used to impair tumor progression 
using MSCs as cargo. These cells have been engineered to 
produce anti-angiogenic factors in different tumor models 
such as soluble VEGF receptor-1 (sFLT-1) in Lewis 
lung cancer [120], endostatin in colorectal carcinoma 
[121], throspondin-1 (TSP-1) in glioblastoma [122] and 
pigment epithelium-derived factor (PEDF) in prostate 
carinoma [123]. Interestingly, MSCs can be transfected to 
express different cytokines to elicit an immune response 
and/or to inhibit tumor progression. Several findings 
reported the ability of IFN-β gene modified MSCs to 
reduce tumor growth in hepatocellular carcinoma [124], 
glioblastoma [125] and pancreatic tumors [126]. In 
addition, it has been observed that the secretion of IL-12 
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from engineered MSCs in tumor microenvironment of 
different cancer models such as glioma, Ewing sarcoma, 
renal cell carcinoma and breast cancer, causes reduction of 
tumor growth [126–130]. Another interesting therapeutic 
approach use MSCs loaded with suicide genes such as 
the herpes simplex virus-thimidine kinase (HSV-TK) and 
cytosine deaminase (CD) to hamper tumor progression. 
HSV-TK converts non-toxic ganciclovir (GCV) into 
phosphorylated toxic compound (GCV-ppp) whereas 
CD modifides low-toxic substrat 5-fluorocytosine into 
a 5-fluorouracil potent anticancer agent, in both cases 
MSCs delivery efficiently these genes in tumor sites. A 
significant decrease in tumor growth and a subsequent 
increase in survival were observed when mice bearing 
highly aggressive GBM were treated with MSC co-
expressing S-TRAIL and HSV-TK [131], while sequential 
combination gene therapy using MSC/dTRAIL-TK 
achieved long-term remission of metastatic renal cell 
carcinoma without noticeable toxicity [132]. Importantly, 
it has been reported a single-arm phase I/II study which 
assessed the safety and efficacy of HSV-TK genetically 
modified autologous MSCs as delivery vehicles for 

a cell-based gene therapy, for advanced recurrent, 
metastatic gastrointestinal and hepatopancreatobiliary 
adenocarcinoma [133]. Furtheremore, CD-MSCs showed 
high therapeutical efficacy to treat animal models of 
osteosarcoma [134], glioma [135], melanoma [136] and 
prostate carcinoma [137].

ANTI-TUMORIGENIC ACTIVITY OF 
MESENCHYMAL STEM CELLS

MSCs derived from different sources and acting 
in different tumor contexts can have a pro- or an anti-
tumorigenic behavior. Probably, these opposite effects 
of MSCs can depend on the experimental setting in cell 
and in the animal models. It seems that among the MSCs 
which that originate from umbilical cord /cord blood 
(UC-MSCs) show more anti-cancer properties. Many 
studies report that UC-MSCs not only suppress tumor 
progression, but also promote drug sensitivity of different 
blood cancer cells including Jurkat leukemia cells [138], 
K562 erythromyeloblastoid leukemia cells [139], Burkitt’s 
limphoma cells [140] and multiple myeloma cells [141]. 

Figure 3: Cartoon showing the main steps through which MSCs promote tumor progression and a pro-metastatic 
phenotype. (A) MSCs are recruited from bone-marrow and adipose tissue in response of mediators produced by cancer and stroma cells 
in TME. (B) MSCs into TME can be “educated” to evolve in tumor-associated MSCs (TA-MSCs) and differentiate in cancer-associated 
fibroblasts (CAFs). (C) MSCs can engage in bidirectional communication with tumor cells through different signals. (D) MSCs can promote 
immunosuppression in TME modulating both innate and adaptive immune systems. (E) MSCs induce epithelial-mesenchymal transition 
causing a more aggressive phenotype of tumor cells.
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In addition, UC-MSCs exert a suppressive effect on tumor 
growth of several solid tumor cell lines: breast cancer 
[142], liver cancer [143], prostate and bladder cancer 
[144]. Similarly, adipose tissue MSCs (AT-MSCs) inhibit 
proliferation and induce apoptosis of hepatc cancer cells 
[145], breast cancer cells [146] as well as prostate cancer 
cells [147] and melanoma [148]. BM-MSCs mainly 
show pro-tumorigenic effects even if in some cases it 
has observed a their anti-proliferative activity on tumor 
growth [149, 150]. This peculiar aspect of MSCs to repress 
progression of specific tumors in particular conditions 
through production of endogenous factors suggest the 
possibility to use naïve MSCs not only as drug cargo but 
also themselves as anti-cancer agents.

CONCLUSIONS AND PERSPECTIVES

In the present review, we highlight the multiple 
activities of TA-MSCs in the TME with particular 
emphasis on their ability to stimulate cancer 
immunosuppression, to induce EMT program, to trans-
differentiate into CAFs and finally to promote pro-
metastatic phenotype (Figure 3). 

Many mechanisms underlying MSCs role in TME 
have been elucidated but still further studies are needed 
to understand completely their involvement in tumor 
progression. 

These investigations could provide information 
for targeting TA-MSCs with therapeutic approaches 
and eventually for using them as vehicles to deliver 
specifically in TME anti-cancer agents.
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