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ABSTRACT

To investigate whether genetic variants of platelet-derived growth factor (PDGF) 
signaling pathway genes are associated with survival of cutaneous melanoma (CM) 
patients, we assessed associations of single-nucleotide polymorphisms in PDGF 
pathway with melanoma-specific survival in 858 CM patients of M.D. Anderson 
Cancer Center (MDACC). Additional data of 409 cases from Harvard University were 
also included for further analysis. We identified 13 SNPs in four genes (COL6A3, 
NCK2, COL5A1 and PRKCD) with a nominal P < 0.05 and false discovery rate (FDR) 
< 0.2 in MDACC dataset. Based on linkage disequilibrium, functional prediction and 
minor allele frequency, a representative SNP in each gene was selected. In the meta-
analysis using MDACC and Harvard datasets, there were two SNPs associated with 
poor survival of CM patients: rs6707820 C>T in NCK2 (HR = 1.87, 95% CI = 1.35-2.59, 
Pmeta = 1.53E-5); and rs2306574 T>C in PRKCD (HR = 1.73, 95% CI = 1.33-2.24, Pmeta 
= 4.56E-6). Moreover, CM patients in MDACC with combined risk genotypes of these 
two loci had markedly poorer survival (HR = 2.47, 95% CI = 1.58-3.84, P < 0.001). 
Genetic variants of rs6707820 C>T in NCK2 and rs2306574 T>C in PRKCD of the PDGF 
signaling pathway may be biomarkers for melanoma survival.

INTRODUCTION

Cutaneous melanoma (CM) is the most aggressive 
form of skin cancer. Its incidence rates continuously 
increased in white men (2.1% per year) and women (2.4% 
per year) between 1999 and 2008 in the United States [1]. It 
is predicted that there will be 76,380 new cases and 10,130 

deaths of CM in the United States in 2016 [2]. To date, tumor 
Breslow thickness, tumor stage, ulceration and mitotic rate 
remain the most important prognostic factors for CM patients 
[3]. In general, CM patients with thinner tumors have a longer 
survival than those with thicker tumors, and currently all 
patients with microscopic nodal metastases, regardless of the 
extent of tumor burden, are classified as stage III, including 
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micrometastases detected by immunohistochemistry [3]. 
However, these methods are not sufficient to accurately 
discriminate CM patients for personalized clinical assessment 
or prediction of their survival, and additional effective 
clinical or molecular characterization of CM patients with 
more accurate prognostic potential for personalized health 
care is needed [4, 5]. There is growing evidence for the role 
of genetic (germline) variants in CM prognosis [5], and 
genetic variant discovery may also provide clues about the 
mechanisms underlying melanocyte carcinogenesis and CM 
progression, leading to improved prediction of CM prognosis.

A number of investigations have indicated that the 
platelet-derived growth factor (PDGF) family members 
are highly expressed in some tumors, including CM, and 
play important roles in stromal fibroblast recruitment [6, 
7]. PDGF is one of the most extensively studied regulators 
of mesenchymal cell proliferation and migration [8] 
and an important molecule involved in the control and 
modulation of the interactions between pericytes and 
endothelial cells [9]. PDGF influences biologic function 
through the PI3/MAP-kinase pathway [10], results in 
fibroblast glycosaminoglycan-stimulating activity, and 
induces hyaluronan (HA) synthesis [11]. PDGFR signaling 
is also involved in reciprocal interactions between tumor 
cells and stroma, thus mediating angiogenesis [12–14]. 
The PDGF family consists of four polypeptide chains 
(PDGF-A –B –C and –D) that dimerize to form five 
biologically active growth factors (i.e., PDGF-AA –AB 
–BB –CC and –DD). While the PDGFα receptor binds to 
PDGF-A –B and –C chains, the PDGFβ receptor binds to 
PDGF-B and PDGF-D chains, and the binding receptors 
of PDGF isoforms stimulate mesenchymal origin cells to 
proliferate, migrate and survive [15, 16]. The PDGF-A 
has been documented to stimulate tumor growth in an 
autocrine fashion [17–19], while the PDGF-B may be 
implicated in stroma recruitment and can facilitate tumor 
growth through its paracrine effects on stromal cells [20]. 
Likewise, The PDGF-C maintains growth-promoting 
tumor microenvironment [18, 21], especially in CM [22], 
and the PDGF-D accelerates tumor growth through the 
activation of adjacent stromal cells [23].

Hence, it is likely that the PDGF signaling pathway 
is important to some cancers and to CM in particular. This 
motivated us to investigate whether genetic variants of 
the PDGF signaling pathway genes are associated with 
survival of CM patients, using published genome-wide 
association study (GWAS) datasets [24, 25].

RESULTS

Patient characteristics in The University of Texas 
MD Anderson Cancer Center (MDACC) and 
Harvard University GWASs

The MDACC GWAS included 858 melanoma 
patients with complete information in clinicopathological 

features [24]. The patients were aged between 17 and 94 
years at diagnosis (52.4 ± 14.4 years), and there were 
more men (496, 57.8%) than women (362, 42.2%). More 
patients in stages I/II (709, 82.6%) than those in stages 
III/IV (149, 17.4%) at presentation. After the initial 
GWAS, 95 patients died of CM. In univariate analyses, 
six variables, including age, sex, tumor stage, Breslow 
thickness, ulceration and mitotic rate, were marginally 
or significantly associated with melanoma-specific 
survival (MSS). In multivariate analyses, only tumor 
stage, Breslow thickness, and ulceration were found to be 
significantly associated with MSS. (Supplementary Table 
1). There were 409 cases available for survival analysis 
in the Harvard GWAS [25]. Eligible cases were between 
34 to 87 years of age at diagnosis (61.1 ± 10.8 years). 
A total of 48 CM-specific deaths were observed in the 
Harvard dataset, and only age was significantly associated 
with MSS in the univariate analysis (Supplementary Table 
1). Besides follow-up information and genotype data, 
only age and sex were available in the Harvard study. 
Therefore, subsequent stratification or subgroup analyses 
by clinical variables and multivariate analyses with 
adjustment for clinical variables were performed using the 
MDACC dataset only.

Multivariate analysis of single nucleotide 
polymorphisms (SNPs) in MDACC patients

The 129 autosome genes in the PDGF signaling 
pathway were extracted from the Molecular Signatures 
Database (http://software.broadinstitute.org/gsea/msigdb/
search.jsp). A total of 22,128 SNPs located within 2-kb 
upstream and downstream of the 129 genes were extracted 
from the GWAS datasets (Figure 1).

In multivariate Cox regression analysis with 
adjustments for age, sex, Breslow thickness, tumor stage, 
ulceration and mitotic rate, we found that 1,578 SNPs 
were significantly associated with MSS at P < 0.05 in 
a signal-locus analysis with an additive genetic model. 
Among these 13 SNPs with FDR < 0.2 in four genes 
were considered significant after multiple test correction 
Supplementary Figure 1A). Potential functionality 
of the 13 SNPs was predicted by using SNPinfo and 
RegulomeDB (Supplementary Table 2). According to 
functional prediction, minor allele frequency (MAF), 
and linkage disequilibrium, we selected a representative 
SNP for each of the four genes as potentially functional 
SNPs for further analyses (NCK2 rs6707820 C>T, PRKCD 
rs2306574 T>C, COL5A1 rs13301426 C>T and COL6A3 
rs2645768 A>C, Supplementary Figure 1B). These four 
putative functional SNPs together with clinical prognostic 
variables were selected into a multivariate stepwise Cox 
model. As a result, four independent functional SNPs 
remained significantly associated with MSS at P ≤ 0.05 
(Supplementary Table 3).
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Meta-analysis of the results from MDACC and 
Harvard studies

We assessed the associations of the four identified 
SNPs in the Harvard study with adjustment for age and 
sex. Two SNPs (NCK2 rs6707820 C>T and PRKCD 
rs2306574 T>C) showed consistent, but non-significant, 
associations with MSS in this independent study. In the 
meta-analysis of MDACC and Harvard studies, the two 
SNPs remained significantly associated with MSS (HR = 
1.87, 95% CI = 1.35-2.59, Pmeta = 1.53E-5; HR = 1.73, 
95% CI = 1.33-2.24, Pmeta = 4.56E-6, respectively.) (Table 
1).

Although no melanoma-specific survival data 
available in the TCGA database, we also explored the 
correlations of the four identified SNPs with the overall 
survival of 287 melanoma patients in the TCGA database 
with available information about age, sex and stage. 

However, no significant result was found for these four 
SNPs (Supplementary Table 4).

Genetic variants in the PDGF signaling pathway 
genes as independent survival predictor in 
MDACC patients

As shown in Table 2, the effects of that two 
SNPs remained significant in the MDACC dataset after 
adjustment for age, sex, Breslow thickness, regional/
distant metastasis, ulceration, mitotic rate of tumors 
[rs6707820 CT+TT vs. CC: adjusted hazards ratio (adjHR) 
= 2.05, 95% confident interval (CI) = 1.31-3.22, P = 0.002; 
rs2306574 CT+CC vs. TT: adjHR = 1.97, 95% CI = 1.30-
2.99, P = 0.001]. As shown in Figure 2A–2D, these two 
SNPs had a significant association with poor MSS in both 
additive and dominant model (Padditive= 0.002 and Pdominant= 
0.050 for SNP rs6707820; Padditive < 0.001, Pdominant= 0.001 
for rs2306574).

Figure 1: Study workflow: we firstly chose 129 PDGF-related genes from the databases integrated in MSigDB (http://
software.broadinstitute.org/gsea/msigdb) and included a total of 22,128 genotyped or imputed SNPs that were located 
within 2-kb upstream and downstream of those genes in the MDACC dataset; 13 SNPs were found significantly 
associated with FDR < 0.2 and four intendent SNPs were further chosen to be replicated in the Harvard study; there 
were two SNPs with consistent, by non-significant, associations with melanoma-specific survival in the Harvard study, 
and further functional analyses were performed.
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Survival of MDACC patients with unfavorable 
genotypes of the two SNPs

We combined risk genotypes of NCK2 rs6707820 
C>T and PRKCD rs2306574 T>C into a composite 
count variable as the number of unfavorable genotypes 
(NUGs) in the MDACC study. All patients were 
separated into three groups with 0, 1, and 2 NUGs, 
which had 413, 352, and 93 patients, respectively. 
The per-unit increase in NUG was associated with an 
increased risk of death (Ptrend < 0.001, Table 3). We then 
divided all patients into a low-risk group with 0 NUGs 
and a high-risk group with 1-2 NUGs. The high-risk 
group had a two-fold increased risk of death (adjHR 
= 2.47, 95% CI = 1.58-3.84, P < 0.001), compared 
with the low risk group with adjustment for clinical 
covariates. To illustrate these results, Kaplan-Meier 
curves are shown in Figure 2E–2F.

Stratified analyses for NUGs in MDACC patients

Compared with the low-risk group, the high-risk 
group showed a remarkably increased risk of death in 
patients who had Breslow thickness > 1 mm, Mitotic rate 
> 1, ulceration and regional/distant metastasis. However, 
there was no evidence for a multiplicative interaction of 
risk genotypes with any of clinical variables (all Pinteraction 
> 0.050, Table 4).

Receiver operating characteristic curve and 
time dependent area under the curve (AUC) in 
MDACC patients

We further evaluated the NUG for its potential to 
predict CM prognosis by receiver operating characteristic 
curve (Figure 2G). The AUC of the 5-year MSS 
significantly increased from 86.0% to 87.8% (P = 0.021, 
DeLong’s test). In the time-dependent AUC, the plot 
indicated an improved prediction performance with the 

adding of NUGs to the multivariate model between the 
beginning and the remaining of the follow-up over times 
(Figure 2H).

In silico functional analyses

We also performed the expression quantitative trait 
loci (eQTL) analysis by using mRNA expression data 
of 284 metastatic melanoma tissues from the TCGA 
database [26]. We found that the rs6707820 T allele and 
rs2306574 C allele was correlated with increased mRNA 
expression levels of NCK2 and PRKCD, respectively 
(Padditive = 0.063 and Padditive = 0.064, respectively Figure 
3A–3B). The Genotype-Tissue Expression (GTEx) 
project collected transcriptome data in a wide variety 
of tissue types from post-mortem donors(http://www.
gtexportal.org) [27]. In GTEx, we found that the 
rs2306574 C allele was associated with an increased 
mRNA expression level of PRKCD in data from the 
sun-exposed skin (P < 0.001, Supplementary Figure 
3A), which is consistent with that in metastatic tissues. 
However, the rs6707820 T allele showed a significant 
correlation with lower mRNA expression levels of 
NCK2 (Padditive = 0.036, Supplementary Figure 3B) in 
lymphoblastoid cell-lines from 373 Europeans in the 
1000 Genomes Project [28].

We further investigated the difference in the 
expression levels of the two genes between CM and 
normal skin tissues in the publicly available Oncomine 
Compendium of Expression Array Data (https://www.
oncomine.org/) [29]. The PRKCD expression levels in 
tumor tissue were higher than that in normal tissue in the 
Talantov study that included 45 CM tumor tissues and 
seven normal skins (P < 0.001, Supplementary Figure 
3C). The NCK2 also showed a higher expression level 
in CM tumor tissue in both Talantov (P < 0.001) and 
Riker studies that included 14 CM tumor tissues and 
four normal skins (P = 0.023) (Supplementary Figure 
3D–3E).

Table 1: Meta-analysis of four independent SNPs in MDACC and Harvard databases

SNP Allelea Gene
MDACC (n=858)b Harvard (n=409)c Meta-analysisd

HR (95%CI) P HR (95%CI) P Phet I2(%) HR (95%CI) P

rs6707820 C>T NCK2 2.19 (1.48-3.25) 9.53E-05 1.34 (0.76-2.37) 0.310 0.164 48.4 1.87 (1.35-2.59) 1.53E-05

rs2306574 T>C PRKCD 1.92 (1.40-2.64) 6.46E-05 1.31 (0.86-2.19) 0.181 0.242 27.1 1.73 (1.33-2.24) 4.56E-06

rs2645768 A>C COL6A3 1.91 (1.41-2.58) 2.40E-05 0.65 (0.37-1.14) 0.131 0.001 90.9 1.14 (0.40-3.29) 0.801

rs13301426 C>T COL5A1 2.36 (1.53-3.64) 9.54E-05 1.05 (0.52-2.14) 0.903 0.056 72.7 1.66 (0.75-3.64) 0.210

MDACC: The University of Texas M.D. Anderson Cancer Center; HR: hazards ratio; CI: confidence interval; Phet: P-value for 
heterogeneity test, SNP: single nucleotide polymorphism.
aReference allele/effect allele.
bAdjusted for age, sex, Breslow’s tumor thickness, regional/distant metastasis, ulceration and mitotic rate.
cAdjusted for age and sex.
d If Phet <0.10 or I2>50%, random-effects model was selected; otherwise fixed-effect model was selected.
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DISCUSSION

In the present study, we found that genetic 
variants of two PDGF pathway genes, namely PRKCD 
rs2306574 T>C and NCK2 rs6707820 C>T, were likely 
to independently or jointly modulate survival of CM 
patients. We demonstrated that combination of the number 

of PRKCD and NCK2 risk genotypes with other known 
clinicopathologic variables in the same multivariable 
model significantly improved the prediction accuracy of 
MSS in CM patients.

PRKCD located on chromosome 3p21.1 belongs a 
novel class serine/threonine kinase of the protein kinase 
C family [30], and it is also regulated by phosphorylation 

Table 2: Associations between MSS of CM patients and selected SNPs of the PDGF pathway in the MDACC study

Genotype Frequency Death (%)
Univariate analysis Multivariate analysis*

HR (95% CI) P HR (95% CI) P

NCK2

 rs6707820 C>T (genotyped)

 CC 644 64 (9.9) 1.00 1.00

 CT 204 27 (13.2) 1.39 (0.89-2.18) 0.153 1.87 (1.16-2.99) 0.010

 TT 10 4 (40.0) 4.99 (1.82-13.71) 0.002 6.58 (2.29-18.90) 0.001

 Trend test 0.012 <0.001

 CT+TT 214 31 (14.5) 1.53 (1.00-2.35) 0.052 2.05 (1.31-3.22) 0.002

PRKCD

 rs2306574 T>C (imputed)

 TT 534 45 (8.4) 1.00 1.00

 CT 283 39 (13.8) 1.70 (1.11-2.61) 0.016 1.68 (1.07-2.63) 0.023

 CC 41 11 (26.8) 3.92 (2.03-7.59) <0.001 4.45 (2.26-8.74) <0.001

 Trend test <0.001 <0.001

 CT+CC 324 50 (15.4) 1.94 (1.30-2.90) 0.001 1.97 (1.30-2.99) 0.001

MSS: melanoma-specific survival; CM: cutaneous melanoma; SNP: single nucleotide polymorphism; MDACC: The 
University of Texas M.D. Anderson cancer center; HR: hazards ratio; CI: confidence interval.
* Adjusted for age, sex, Breslow thickness, regional/distant metastasis, ulceration, mitotic rate of tumors.

Table 3: HRs for associations between NUGs and MSS in CM patients of the MDACC study

NUGa
Frequency Univariate analysis Multivariate analysisb

All Death (%) HR (95% CI) P HR (95% CI) P

0 413 31 (7.5) 1.00 1.00

1 352 47 (13.4) 1.92 (1.22-3.02) 0.005 2.30 (1.43-3.68) 0.001

2 93 17 (18.3) 2.62 (1.45-4.73) 0.001 3.02 (1.66-5.51) <0.001

Trend test <0.001 <0.001

0 413 31 (7.5) 1.00 1.00

1-2 445 64 (14.4) 2.07 (1.35-3.17) 0.001 2.47 (1.58-3.84) <0.001

NUG: number of unfavorable genotype; MSS: melanoma-specific survival; CM: cutaneous melanoma; SNP:single 
nucleotide polymorphism; MDACC: The University of Texas M.D. Anderson Cancer Center; HR: hazards ratio; CI: 
confidence interval.
aNumber of risk genotypes were derived from rs2306574 CC+CT and rs6707820 TT+CT.
bMultivariate Cox regression analyses were adjusted for age, sex, Breslow thickness, regional/distant metastasis, ulceration, 
and mitotic rate of tumor.
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Figure 2: Kaplan-Meier survival curves, receiver operating characteristic (ROC) curves and time-dependent AUC for 
prediction of melanoma-specific survival. Cutaneous melanoma-specific survival stratified by genotypes of rs6707820 in NCK2 (A, 
B) and rs2306574 in PRKCD (C, D) in additive and dominant model. Kaplan-Meier estimates of melanoma-specific survival by numbers 
of unfavorable genotypes (E), dichotomized subgroups by the numbers of unfavorable genotypes (F). ROC curves for five-year melanoma-
specific survival prediction (G), time-dependent AUC based on age, sex, regional/distant metastasis, Breslow thickness, ulceration, mitotic 
rate, and number of unfavorable genotypes (H).
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on various serine/threonine (e.g. T50, T141, S304, 
T451, T505, S506, T507, S643, and S664) and tyrosine 
residues including Y311 [31, 32]. PRKCD suppresses 
immunoresponsiveness and inhibits the proliferation of 
B-lymphocytes [33], and PRKCD has an indispensable 
function in negatively regulating B-cell proliferation, 
which is particularly important for the establishment 
of B-cell tolerance [34]. PRKCD appears to have dual 
functions in carcinogenesis not specific for a particular 
tumor type [35]. For example, PRKCD can be a suppressor 
in a few cancer types [33, 36], but over-expression of 
PRKCD increased the metastatic potential of murine 

BL16 mouse melanoma cells [37, 38]. PRKCD is not 
required for the proliferation or survival of normal cells, 
but it is required for proliferation of multiple types of 
cancer cells, both in vitro and in vivo, including those 
from cancers of the breast, pancreas and prostate as well 
as melanoma [39]. By using the TCGA and GTEX data, 
we also showed that the rs2306574 variant C allele was 
correlated with increased mRNA expression levels in 
metastatic melanoma tissues and the sun exposure skin. 
The present study supports PRKCD to be a predictor 
for survival of CM patients, which is further supported 
by the high expression levels of PRKCD in CM tumor 

Table 4: Associations in stratified analysis of MSS and NUG across genes in the MDACC study

Characteristics
0 NUGsa 1-2 NUGsa Multivariate analysisb

Pinteraction
c

All Death (%) All Death (%) HR (95% CI) P

Age 0.154

 ≤50 183 7 (3.8) 188 24 (12.8) 4.25 (1.73-10.49) 0.002

 >50 230 24 (10.4) 257 40 (15.6) 1.86 (1.10-3.16) 0.021

Sex 0.874

 Female 180 9 (5.0) 182 17 (9.3) 2.67 (1.13-6.30) 0.025

 Male 233 22 (9.4) 263 47 (17.9) 2.37 (1.40-4.00) 0.001

Regional/distant 
metastasis 0.104

 No 342 17 (5.0) 367 34 (9.3) 1.84 (1.01-3.34) 0.046

 Yes 71 14 (19.7) 78 30 (38.5) 3.40 (1.72-6.72) <0.001

Breslow's tumor 
thickness (mm) 0.221

 ≤1 174 3 (1.7) 173 4 (2.3) 0.65 (0.11-3.72) 0.626

 1-2 140 9 (6.4) 136 17 (12.5) 2.14 (0.93-4.91) 0.074

 2-4 64 13 (20.3) 103 28 (27.2) 1.72 (0.87-3.42) 0.120

 >4 35 6 (17.1) 33 15 (45.5) 3.36 (1.25-9.03) 0.016

Ulceration 0.068

 No 335 18 (5.4) 346 30 (8.7) 1.66 (0.92-2.99) 0.090

 Yes 70 13 (18.6) 85 30 (35.3) 3.79 (1.88-7.62) <0.001

 Missing 22

Mitotic rate 
(mitoses/mm2) 0.398

 <1 132 3 (2.3) 143 6 (4.2) 1.68 (0.40-7.08) 0.481

 ≥1 281 28 (10.0) 302 58 (19.2) 2.10 (1.34-3.30) 0.001

MSS: melanoma-specific survival; NUG, number of risk genotype; MDACC: The University of Texas M.D. Anderson 
Cancer Center; HR: hazards ratio; CI: confidence interval.
anumber of risk genotypes were derived from rs2306574 CC+CT and rs6707820 TT+CT.
bMultivariate Cox regression analyses were adjusted for age, sex, Breslow thickness, distant/regional metastasis, ulceration 
of tumor and tumor cell mitotic rate, where appropriate.
cP-value for multiplicative interaction.
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tissues than in the normal skin from the Oncomine gene 
expression database.

The NCK2 gene located on chromosome 2q12.2 is 
involved in signaling pathways mediating proliferation, 
cytoskeleton organization and integrated stress response 
[40–42]. NCK proteins belong to the SH2/SH3 adaptor 
proteins, and there are two known family members 
including Nck1/Nck/Nckα and Nck2/Nckβ/GRB4 
(growth factor receptor binding protein 4) [40, 43]. It 
has been shown that Nck2 is specifically involved in the 
PDGF-induced membrane ruffling and the formation 
of lamellipodia. Nck2 acts either in parallel with or 
downstream of Rac1, a mediator between PDGFR and the 
actin cytoskeleton, and that Nck2, but not Nck1, blocks the 
PDGF-induced actin polymerization and plays a specific 
role in the PDGFR signaling to the actin cytoskeleton [44]. 
Other studies have suggested that the middle SH3 domains 
of Nckα and Nckβ could independently mediate PDGF-
BB signaling to promote human dermal fibroblasts (HDFs) 
migration, and that overexpression of the middle SH3 
domain of Nckα or Nckβ alone in HDFs could also block 
PDGF-BB-induced cell migration [45]. Furthermore, 
in another investigation Nck2 protein and mRNA levels 
were increased in human metastatic melanoma cells 
compared with human primary melanoma cells that rarely 
metastasized. Nck2 promoted cell proliferation, migration 
and invasion in human melanoma cells; increased Nck2 
expression in human primary melanoma cells promoted 
the melanoma-derived tumor growth rate; and Nck2 
promoted phosphorylation of proteins on tyrosine and 
down-regulation of cell surface adhesion proteins in 
human primary melanoma cells [41].

Finally, in other studies up-regulation of 
NCK2 was present in melanoma tumor samples from 
metastasis compared to nevocellular nevus lesions by 
semi-quantitative RT–PCR and custom array analysis, 
suggesting a role of NCK2 in melanocytic tumor 
progression [46]. Consistent with this observation, 
the Oncomine cancer microarray data (https://www.
oncomine.org/) also suggested that Nck2 was up-
regulated in human melanoma in both Talantov and Riker 
melanoma studies in the Oncomine Compendium [28]. 
Because NCK2 is considered an oncogene, its variants 
may play an important role in CM progression. We also 
found marginally significant associations between the 
variant allele of NCK2 rs6707820 and increased mRNA 
expression levels of NCK2 in metastatic melanoma 
tissues, although inconsistent eQTL results were found in 
the lymphoblastoid cell lines from normal CEU people, 
which may due to tissue heterogeneity. Taken together, the 
variant rs6707820 in the NCK2 gene may be a predictor 
for survival in CM patients.

In the present study, we found interesting 
associations of MSS with some novel genetic variants (i.e. 
PRKCD rs2306574 T>C, NCK2 rs6707820 C>T COL5A1, 
rs13301426 C>T, and COL6A3 rs2645768 A>C). These 
SNPs could modulate MSS independently in MDACC 
patients, and the combined NUG of these SNPs could 
better discriminate prognostic groups in multivariate 
analyses, independent of other clinical characteristics. 
These findings suggest that PDGF pathway genetic 
variants might have biological roles in CM progression. 
However, the present study has some limitations. In the 
meta-analysis of the selected SNPs from MDACC data 

Figure 3: Correlations between SNPs and mRNA expression levels of NCK2 and PRKCD.  Analyses of mRNA expression 
levels by genotypes of NCK2 rs6707820 (A) and PRKCD rs2306574 (B) in an additive genetic model using the data from 284 metastatic 
melanoma tissues in the TCGA database. The Y-axis shows the normalized mRNA expression level. The boxes represent the median (black 
middle line) limited by the first (Q1) and third (Q3) quartiles. The whiskers are the upper and lower adjacent values, which indicate the 
value of Q3+1.5(Q3−Q1) or the maximum value [if it is less than Q3+1.5(Q3−Q1)], and the value of Q1−1.5 (Q3−Q1) or the minimum 
value [if it is greater than Q3+1.5(Q3−Q1)], respectively.
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and Harvard data, only rs6707820 in NCK2 and rs2306574 
in PRKCD remained statistically significant in predicting 
MSS. Because of unavailable data from the Harvard 
study, we could only perform multivariate analyses using 
the MDACC data. Therefore, additional validation is 
warranted.

MATERIALS AND METHODS

Study populations and SNP genotyping

The original MDACC study had 1,803 patients 
accrued for a hospital-based case-control study of 
CM, and the characteristics of these patients have 
also been described previously [47]. The 858 patients 
included for survival analysis were part of a molecular 
epidemiology study in which complete information for 
clinical prognostic variables and questionnaire data were 
collected. Tissue samples were collected as whole blood 
and DNA were extracted with various methods (including 
Gentra, Qiagen and phenol/chloroform). Genotyping was 
performed by the Illumina HumanOmni-Quad_v1_0_B 
array and requested from the Database of Genotypes 
and Phenotypes (accession: phs000187.v1.p1) [48, 49]. 
Genome-wide imputation was conducted with the MACH 
software based on the 1000 Genomes Project phase I 
v2 CEU data [50]. The detailed genotyping information 
and data quality control can be found in the previously 
reported GWAS [47].

The Harvard study consisted of two cohorts: NHS 
(Nurses’ Health Study) and HPFS (Health Professionals 
Follow-up Study), established respectively in 1976 and 
1986 [25]. All patients in both cohorts were diagnosed 
with histopathologically confirmed invasive CM after 
baseline until the 2008 follow-up cycle; there were 409 
patients eligible for survival analysis. DNA was extracted 
from the collected whole blood samples and genotyping 
was performed using the Illumina HumanHap610 array. 
Genome-wide imputation was also performed using the 
MACH software based on the 1000 Genomes Project CEU 
data (phase I v3, March 2012) [50]. All written informed 
consent was obtained from each participant of the two 
studies. All methods were performed in accordance with 
the relevant guidelines and regulations, and the present 
study followed the study protocols approved by the 
institutional review board for each of the participating 
institutions.

Gene and SNP selection

Based on the databases of BIOCARTA and 
REACTOME (http://software.broadinstitute.org/gsea/
msigdb/search.jsp), we included 129 genes located on 
autosomes from the PDGF signaling pathway after 
deleting duplicate genes. The genotyped or imputed 
SNPs located within 2 kb upstream and downstream of 

the PDGF pathway genes were extracted from the GWAS 
datasets with genotyping call rate ≥ 95%, MAF ≥ 5%, 
Hardy-Weinberg Equilibrium exact P value ≥ 10-6and 
imputation r2 ≥ 0.8. As a result, there were 22,128 SNPs 
including 3,315 genotyped SNPs and 18,813 imputed 
SNPs in MDACC study.

Statistical methods

MSS was determined from the time of diagnosis 
until death from CM; individuals who died of causes 
other than CM were censored. Associations between SNPs 
and MSS (in an additive model) were assessed by Cox 
proportional hazards regression analyses performed with 
GenABEL package of R software [51] with adjustments 
for age, sex, tumor stage, Breslow thickness, tumor cell 
mitotic rate, and ulceration of tumor in the MDACC 
study [3]. The FDR cut-off of 0.2 was applied to limit the 
probability of false positive findings as abundant of SNPs 
had been tested. The multivariable stepwise Cox model 
including four functional SNPs and clinical variables 
was carried out to choose the independent SNPs. A meta-
analysis was used to combine the results from two studies. 
Kaplan-Meier survival curves and log-rank tests were used 
to evaluate the effects of genetic variants on the cumulative 
probability of MSS. The multiplicative interaction between 
subgroups was assessed with the logistic regression, and 
the multiplicative interaction was considered significant 
when P < 0.050. Receiver operating characteristic curve 
was constructed from the logistic regression model, and 
the NUG was used to assess the classification performance 
of the model. Statistical significance of the improvement 
in NUGs after adding an explanatory factor was calculated 
by the Delong’s test [52]. For more biological relevance of 
our findings, we searched the Oncomine website database 
(https://www.oncomine.org/resource/login.html) for 
studies that provided gene mRNA expression data from 
melanoma cases. Linear regression analysis was used to 
test for the trends in the associations between SNPs and 
corresponding gene expression levels obtained from the 
373 lymphoblastoid cell lines from the 1000 Genomes 
European population and other datasets from GTEx 
website [27] and the Cancer Genome Atlas (TCGA) 
database (dbGaP Study Accession: phs000178.v1.p1) [26]. 
All other analyses were performed using SAS software 
(Version 9.4; SAS institute, Cary, NC), unless otherwise 
specified.
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