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ABSTRACT
Hepatocellular carcinoma (HCC) has a high incidence and mortality worldwide, 

and its carcinogenesis and progression are influenced by a complex network of gene 
interactions. A weighted gene co-expression network was constructed to identify 
gene modules associated with the clinical traits in HCC (n = 214). Among the 13 
modules, high correlation was only found between the red module and metastasis 
risk (classified by the HCC metastasis gene signature) (R2 = –0.74). Moreover, in the 
red module, 34 network hub genes for metastasis risk were identified, six of which 
(ABAT, AGXT, ALDH6A1, CYP4A11, DAO and EHHADH) were also hub nodes in the 
protein-protein interaction network of the module genes. Thus, a total of six hub 
genes were identified. In validation, all hub genes showed a negative correlation with 
the four-stage HCC progression (P for trend < 0.05) in the test set. Furthermore, in 
the training set, HCC samples with any hub gene lowly expressed demonstrated a 
higher recurrence rate and poorer survival rate (hazard ratios with 95% confidence 
intervals > 1). RNA-sequencing data of 142 HCC samples showed consistent results 
in the prognosis. Gene set enrichment analysis (GSEA) demonstrated that in the 
samples with any hub gene highly expressed, a total of 24 functional gene sets 
were enriched, most of which focused on amino acid metabolism and oxidation. In 
conclusion, co-expression network analysis identified six hub genes in association 
with HCC metastasis risk and prognosis, which might improve the prognosis by 
influencing amino acid metabolism and oxidation.

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most 
common malignancies worldwide, and it is the second 
leading cause of cancer-related death among males [1]. 
Multiple factors were reported to be related with the 
carcinogenesis and progression in HCC, like chronic 
infection of hepatitis B virus (HBV) or hepatitis C virus 
(HCV), alcohol consumption and smoking [2]. However, 
the mechanism remains obscure. In recent years, with the 
development of gene microarray and RNA sequencing, 
gene expression profiling has been used to identify genes 

associated the carcinogenesis and development of HCC. 
Through gene ontology analysis, the mechanism has been 
partially illustrated. However, most studies focused on the 
screening of differentially expressed genes, and ignored 
the high interconnection between genes although genes 
with similar expression patterns are probably correlated in 
function [3]. In this study, we adopted the systems biology-
based approach of weighted gene co-expression network 
analysis (WGCNA) to construct a co-expression network 
based on the relationship between genes, and identified 
significant gene modules and hub genes associated with 
the clinical traits in HCC.
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RESULTS

DEGs screening

After outlier exclusion, the gene profiles of 443 
samples were analyzed. Under the threshold of FDA < 0.05  
and |log2FC| > 0.585, a total of 3670 DEGs (2213 up-
regulated and 1457 down-regulated in HCC) were selected 
for subsequent analysis.

Characteristics of the included samples in co-
expression analysis

214 HCC samples with complete clinical data were 
included in co-expression analysis. The samples had an 
average age of 50.7 years, and a high proportion of males 
(86.4%, 185/214) (Figure 1). 87 (40.7%) cases had high 
levels of serum alanine aminotransferase (ALT, > 50 U/L), 
and 97 (45.3%) with high levels of serum alpha-fetoprotein 
(AFP, > 300 ng/ml). 197 (92.1%) cases were concomitant 
with cirrhosis. 44 (20.6%) cases were multinodular, and 
the main tumor size in 77 (36.0%) cases were more than 
5 cm. Three kinds of tumor staging were adopted: TNM 
(Tumor Node Metastasis), BCLC (Barcelona Clinic Liver 
Cancer) and CLIP (Cancer of the Liver Italian Program). 
Metastasis risk (PRMS) was predicted based on the 161 
gene HCC metastasis signature, and 103 (48.1%) cases 
were at high risk [4].

Co-expression network construction and key 
modules identification

Using “WGCNA” package in R, the DEGs with 
similar expression patterns were grouped into modules 
via the average linkage hierarchical clustering. Here, the 
power of β = 6 (scale free R2 = 0.85) was selected as the 
soft-thresholding to ensure a scale-free network (Figure 2). 
A total of 13 modules were identified (Figure 3A). Two 
methods were used to test the relevance between each 
module and clinical traits. Firstly, the ME in several 
modules showed a correlation with certain clinical traits 
(P < 0.05). However, most of the correlations were low 
to moderate (R2 < 0.5), and only the correlation between 
the red module and metastasis risk (PRMS) was high 
(P = 3 × 10–38, R2 = –0.74) (Figure 3B). Secondly, in 
relation with metastasis risk, the red module also had 
the highest MS (Figure 3C). Thus, the red module with 
metastasis risk was identified as the clinical significant 
module, which was extracted for further analysis.

Identification of hub genes for metastasis risk in 
the red module

Highly connected hub genes in a module play 
important roles in the biological processes [5]. Therefore, 
34 genes with the high connectivity (weighted correlation 
coefficients > 0.8) in red module were taken as candidate 
hub genes for metastasis risk in the module (Table 1). 

Figure 1: Clustering dendrogram of 214 tumor samples and the clinical traits. The clustering was based on the expression 
data of differentially expressed genes between tumor samples and non-tumor samples in hepatocellular carcinoma. PRMS: predicted risk 
metastasis signature. ALT: alanine aminotransferase. TNM: Tumor Node Metastasis. BCLC: Barcelona Clinic Liver Cancer. CLIP: Cancer 
of the Liver Italian Program. AFP: alpha-fetoprotein. The red color represented high metastasis risk, female, high ALT levels (> 50 U/L), 
large tumor size (> 5 cm), multinodular, cirrhosis and high AFP levels (> 300 ng/ml). The color intensity was proportional to older age and 
higher stage of TNM, BCLC and CLIP.
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Furthermore, We also constructed a network of protein-
protein interaction (PPI) for the genes in red module 
according to the STRING database, and six hub genes 
(ABAT, AGXT, ALDH6A1, CYP4A11, DAO) in the 
co-expression network were also identified as hub nodes 
in the PPI network (Figure 4). Finally, these six genes 
were regarded as “real” hub genes for metastasis risk and 
selected for further analyses.

Hub genes validation

The hub genes were identified in strong correlation 
with HCC metastasis risk. As the metastasis risk increased 
with HCC progression and high metastasis risk indicated 
a poor prognosis, we validated the hub genes indirectly 
by investigating their roles in HCC progression and 
prognosis.

Table 1: Hub genes in the module related with metastasis risk

Gene Probe
Co-expression analysis Hub gene in 

PPI network
DEG analysis

p.Weighted q.Weighted cor.Weighted logFC FDR
ABAT 209459_s_at 0 0 –0.85 YES –1.80 8.77E-54
AGXT 210326_at 0 0 –0.80 YES –1.88 5E-38
ALDH6A1 221590_s_at 0 0 –0.83 YES –2.26 1.98E-63
CYP4A11 211231_x_at 0 0 –0.81 YES –2.53 3.28E-86
DAO 206878_at 0 0 –0.83 YES –1.38 2.75E-33
EHHADH 205222_at 0 0 –0.81 YES –1.55 7.15E-45
ABCA6 217504_at 0 0 –0.80 NO –1.55 6.37E-42
AGXT2L1 221008_s_at 0 0 –0.82 NO –2.53 5.85E-44
ALDH2 201425_at 0 0 –0.85 NO –1.50 4.39E-68
ALDH5A1 203608_at 0 0 –0.81 NO –1.03 9.4E-29
ALDOB 204704_s_at 0 0 –0.83 NO –2.90 4.04E-57
APOC4 206738_at 0 0 –0.85 NO –2.07 2.73E-40
CAT 201432_at 0 0 –0.84 NO –1.18 2.23E-49
CES2 213509_x_at 0 0 –0.83 NO –1.41 9.92E-31
CYB5A 207843_x_at 0 0 –0.80 NO –0.72 1.26E-21
DCXR 217973_at 0 0 –0.88 NO –1.87 4.93E-53
DHRS1 213279_at 0 0 –0.83 NO –1.73 6.04E-59
EPHX2 209368_at 0 0 –0.82 NO –1.95 1.06E-59
F13B 207810_at 0 0 –0.81 NO –0.85 2.7E-11
FMO4 206263_at 0 0 –0.83 NO –1.26 8.51E-32
GLYAT 222083_at 0 0 –0.82 NO –3.57 1.87E-90
GYS2 214621_at 0 0 –0.81 NO –3.42 1.93E-81
HAGH 205012_s_at 0 0 –0.88 NO –1.29 2.92E-43
HGD 205221_at 0 0 –0.80 NO –1.59 4.94E-40
HRSP12 203790_s_at 0 0 –0.81 NO –1.48 1.18E-43
HSD17B6 37512_at 0 0 –0.81 NO –1.87 7.7E-30
PCK2 202847_at 0 0 –0.87 NO –1.53 3.88E-49
PXMP2 219076_s_at 0 0 –0.82 NO –1.08 1.48E-32
RGN 210751_s_at 0 0 –0.81 NO –1.47 3.99E-51
SEC14L2 204541_at 0 0 –0.87 NO –1.78 2.27E-53
SERPINC1 210049_at 0 0 –0.82 NO –1.09 1.34E-16
SLC10A1 207185_at 0 0 –0.85 NO –3.04 2.13E-50
SLC27A5 219733_s_at 0 0 –0.90 NO –2.62 3.86E-66
SULT2A1 206292_s_at 0 0 –0.85 NO –1.77 1.62E-28

Abbreviations: PPI: protein-protein interaction. FC: fold change. DEG: differentially expressed genes. FDR: false discovery rate.
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  In the test set of GSE6764, linear regression 
analyses were conducted on the six hub genes, all of which 
showed a negative correlation with HCC progression (P 
for trend < 0.05) (Figure 5). In the training set, based on 
the microarray data of 214 HCC samples, we investigated 
the role of hub genes in HCC prognosis. All samples were 
divided into two groups according to the expression levels 
of hub genes respectively. We found a higher recurrence 
rate and a poorer survival rate in the samples with any hub 
gene lowly expressed (Figures 6, 7). In recurrence analysis, 
the hazard ratios (HR) and corresponding 95% confidence 
intervals (CI) were 1.487 (1.037–2.131) for ABAT, 
1.585 (1.105–2.274) for AGXT, 1.495 (1.042–2.144)  
for ALDH6A1, 1.655 (1.153–2.375) for CYP4A11, 
1.727 (1.201–2.484) for DAO and 1.727 (1.201–2.484). 
In survival analysis, the HRs and CIs were 1.777  
(1.156–2.732) for ABAT, 1.926 (1.252–2.965) for AGXT, 
1.638 (1.065–2.520) for ALDH6A1, 2.165 (1.405–3.335) 

for CYP4A11, 1.753 (1.140–2.695) for DAO and 2.076 
(1.348–3.198) for EHHADH.

In the RNA-sequencing data of 423 HCC samples, 
the survival data in 142 samples were available. We also 
found a poorer survival rate in the samples with low 
expression levels of ABAT, AGXT, ALDH6A1, CYP4A11 
or DAO, and it showed a deadline effect in EHHADH 
(Figure 8). The HRs and CIs were 1.428 (1.012–2.013) 
for ABAT, 1.436 (1.018–2.026) for AGXT, 1.503  
(1.061–2.129) for ALDH6A1, 1.572 (1.111–2.224) for 
CYP4A11, 1.531 (1.083–2.164) for DAO and 1.343 
(0.954–1.890) for EHHADH.

Gene set enrichment analysis

To identify potential function of the hub genes, 
GSEA was conducted respectively to search KEGG (Kyoto 
Encyclopedia of Genes and Genomes) pathways enriched 

Figure 2: Determination of soft-thresholding power in the weighted gene co-expression network analysis (WGCNA). 
(A) Analysis of the scale-free fit index for various soft-thresholding powers (β). (B) Analysis of the mean connectivity for various soft-
thresholding powers. (C) Histogram of connectivity distribution when β = 6. (D) Checking the scale free topology when β = 6.
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in the samples with the gene highly expressed. A total of 24 
functional gene sets were enriched in the samples with high 
expression levels of any hub gene, and most sets focused 
on amino acid metabolism and oxidation (Supplementary 
Table 1). Six gene sets were enriched in the samples with 
at least three hub genes highly expressed, namely “alanine, 
aspartate and glutamate metabolism”, “complement 
and coagulation cascades”, “cysteine and methionine 
metabolism”, “drug metabolism cytochrome P450”, 
“peroxisome” and “tyrosine metabolism” (Figure 9). 

DISCUSSION

Hepatocellular carcinoma is the most frequent 
malignant tumor in the liver, and its mortality is high 
which contributes to the high frequency of late-stage 
disease, metastasis and the “field effect” [6]. Currently, 

surgery is the most effective treatment, but the recurrence 
rate is high. As metastasis contributes to 90% of all cancer 
related death, it is important for metastasis risk prediction 
[7]. For those with high risk of metastasis, additional 
therapies were needed.

In the study of Roessler et al. and their previous 
study, they identified a 161 gene signature as a metastasis 
risk classifier, which was also validated in another cohort 
[6, 8]. The signature could also predict HCC survival 
successfully in the cases with early disease and solitary 
tumors. Furthermore, it predicted particularly well for 
early recurrence risk. In our study, we also identified six 
genes (ABAT, AGXT, ALDH6A1, CYP4A11, DAO and 
EHHADH) in association with the high risk in metastasis 
prediction, and none of the genes were included in 
the 161-gene set of Roessler et al. In further analyses, 
these six genes were also significantly associated with 

Figure 3: Identification of modules associated with clinical traits. (A) Clustering dendrogram of all differentially expressed 
genes in 214 samples of hepatocellular carcinoma. (B) Heatmap between the correlation between module eigengenes and clinical traits. 
Each cell contained the corresponding correlation and P value (C) Distribution of average gene significance and errors in the modules 
associated with the metastasis risk in hepatocellular carcinoma.
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Figure 4: Protein–protein interaction network of genes in the red module. The color intensity in each node was proportional 
to change fold of expression in comparison to non-tumor samples (up-regulation in red and down-regulation in green). The nodes with bold 
circle represented the hub genes identified by co-expression network analysis. The edge width was proportional to the score of protein-
protein interaction based on the STRING database.

Figure 5: The correlation between the expression levels of ABAT, AGXT, ALDH6A1, CYP4A11, DAO and EHHADH 
and the disease progression of hepatocellular carcinoma (HCC) (based on microarray data of GSE6764). Stage: 1 for 
very early HCC, 2 for early HCC, 3 for advanced HCC, and 4 for very advanced HCC.
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Figure 6: Recurrence analysis of the association between the expression levels of ABAT, AGXT, ALDH6A1, CYP4A11, 
DAO and EHHADH and recurrence rates in hepatocellular carcinoma  (HCC) (based on microarray data of 
GSE14520). Red line represented the samples with gene highly expressed, and green line was for the samples with gene lowly expressed. 
HR: hazard ratio, CI: confidence interval.

Figure 7: Survival analysis of the association between the expression levels of ABAT, AGXT, ALDH6A1, CYP4A11, 
DAO and EHHADH and survival rates in hepatocellular carcinoma (HCC) (based on microarray data of GSE14520). 
Red line represented the samples with gene highly expressed, and green line was for the samples with gene lowly expressed. HR: hazard 
ratio, CI: confidence interval.
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HCC prognosis including recurrence and survival. RNA 
sequencing data showed consistent results, indicating our 
results were stable and independent of cohorts and gene 
profiling technologies.

ABAT (4-aminobutyrate aminotransferase) 
is responsible for catabolism of γ- aminobutyric 
acid (GABA) (an important and mostly inhibitory 
neurotransmitter in the central nervous system) into 

succinic semialdehyde [9]. Reis et al. found that ABAT was 
a protein biomarker with high sensitivity (84.4%/84.4%) in 
the diagnosis of hepatocellular differentiation and hepatoid 
adenocarcinomas [10].

AGXT (alanine-glyoxylate aminotransferase) is 
expressed only in the liver and the encoded protein is 
localized mostly in the peroxisomes, where it is involved 
in glyoxylate detoxification [11]. In Kjersem et al. study, 

Figure 8: Survival analysis of the association between the expression levels of ABAT, AGXT, ALDH6A1, CYP4A11, 
DAO and EHHADH and survival rates in hepatocellular carcinoma (HCC) (based on RNA-sequencing data). Red line 
represented the samples with gene highly expressed, and green line was for the samples with gene lowly expressed. HR: hazard ratio, CI: 
confidence interval.

Figure 9: Gene set enrichment analysis (GSEA). Only listed the six most common functional gene sets enriched in hepatocellular 
carcinoma samples with CYP4A11 highly expressed.
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AGXT polymorphisms was associated with clinical 
outcome in metastatic colorectal cancer patients with 
5-fluorouracil/oxaliplatin [12].

ALDH6A1 (aldehyde dehydrogenase 6 family, 
member A1) encodes a member of the aldehyde 
dehydrogenase protein family, and the encoded protein 
is a mitochondrial methylmalonate semialdehyde 
dehydrogenase that plays a role in the valine and 
pyrimidine catabolic pathways [13]. Liu et al. also found 
that ALDH6A1 was down-regulated in HCC [14].

CYP4A11 (cytochrome P450, family 4, subfamily 
A, polypeptide 11) encodes a member of the cytochrome 
P450 superfamily of enzymes, which are monooxygenases 
and catalyze many reactions involved in drug metabolism 
and synthesis of cholesterol, steroids and other lipids 
[5]. Wnt/β-catenin signaling was abnormally activated 
in the progression of HCC, and activation of the Wnt/β-
catenin pathway could prevent peroxisome proliferator-
activated receptor (PPAR) α-mediated induction of  
CYP4A11 [15, 16].

DAO (D-amino-acid oxidase) encodes the 
peroxisomal enzyme D-amino acid oxidase, which is a 
flavoprotein that uses flavin adenine dinucleotide (FAD) 
as its prosthetic group [17]. Fang et al. found that tumor-
targeted delivery of polyethylene glycol (PEG)-conjugated 
DAO produced remarkable antitumor activity via 
enzymatic generation of hydrogen peroxide (H2O2) [18].

EHHADH (enoyl-CoA hydratase and 3-hydroxyacyl 
CoA dehydrogenase) encodes a bifunctional enzyme 
which is one of the four enzymes of the peroxisomal 
β-oxidation pathway [19]. Suto et al. also found decreased 
expression of EHHADH in HCC [20].

The six hub genes showed a protective role in 
carcinogenesis mainly by correlating with the amino 
acid metabolism and oxidation. In gene set enrichment 
analysis, we also found that the gene sets associated with 
amino acid metabolism and oxidation were enriched in the 
samples with hub genes highly expressed.

In conclusion, co-expression network analysis 
identified six hub genes in association with HCC 
metastasis risk and prognosis, which might improve the 
prognosis by influencing amino acid metabolism and 
oxidation.

MATERIALS AND METHODS

Data collection

Normalized data of gene expression and related 
clinical data were downloaded from Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/). Dataset GSE14520 was used as a training set 
to construct expression network and identify hub genes 
in this study. This dataset was based on the microarray 
platform of Affymetrix HT Human Genome U133A 

Array (HT_HG-U133A), and included 225 samples of 
hepatocellular carcinoma (HCC) and 220 samples of non-
tumor tissues. Another independent dataset of GSE6764 
was downloaded from GEO database and used as a 
test set to verify our results. This dataset was based on 
the platform of Affymetrix Human Genome U133 Plus 
2.0 Array (HG-U133_Plus_2) and included 35 HCC 
samples covering four stepwise pathological stages of 
HCC progression (including very early HCC, early HCC, 
advanced HCC and very advanced HCC). Moreover, 
RNA-sequencing data of 423 HCC samples were also 
downloaded from The Cancer Genome Atlas (TCGA) 
database (https://genome-cancer.ucsc.edu/) to further 
verify our results. The gene expression data were based 
on the RNA-sequencing technology of IlluminaHiseq.

Data preprocessing 

Microarray quality was assessed by sample 
clustering according to the distance between different 
samples in Pearson’s correlation matrices, and a height cut 
of 0.2 was chosen to identify potential microarray outliers. 
Two samples (GSM363045 and GSM363217) were 
detected as outliers and removed from the subsequent 
analysis (Supplementary Figure 1).

Differentially expressed genes (DEGs) screening

The “limma” (linear models for microarray data) 
R package was used to screen the DEGs between HCC 
tumor tissues and non-tumor tissues. The false discovery 
rate (FDA) < 0.05 and |log2 fold change (FC)| > 0.585 
were chosen as the cut-off criteria.

Co-expression network construction

The “WGCNA” package in R was used to construct 
co-expression network for the DEGs in 214 tumor samples 
(one was excluded for outlier and ten were for the absence 
of clinical data) [21]. At first, the Pearson’s correlation 
matrices were calculated for all pair-wise genes. Then, a 
weighted adjacency matrix was constructed using a power 
function amn=|cmn|

β (cmn=Pearson’s correlation between 
gene m and gene n; amn=adjacency between gene m and 
gene n). β was a soft-thresholding parameter that could 
emphasize strong correlations between genes and penalize 
weak correlations. Next, the adjacency was transformed 
into topological overlap matrix (TOM), which could 
measure the network connectivity of a gene defined as 
the sum of its adjacency with all other genes for network 
generation [22]. To classify genes with similar expression 
profiles into gene modules, average linkage hierarchical 
clustering was conducted according to the TOM-based 
dissimilarity measure with a minimum size (gene group) 
of 20 for the resulted dendrogram [23].
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Identification of clinical significant modules

Two approaches were used to identify modules 
related with clinical traits. First, module eigengenes 
(MEs) were defined as the first principal component in the 
principal component analysis for each gene module, which 
could summarize the expression patterns of all genes into 
a single characteristic expression profile within a given 
module. Thus, we calculated the correlation between MEs 
and clinical traits to identify the most relevant module. 
Second, gene significance (GS) was defined as the log10 
transformation of the P value in the linear regression 
between gene expression and clinical traits, and module 
significance (MS) was defined as the average GS for all 
the genes in a module. The module with the maximal 
absolute MS among all the selected modules was usually 
considered as the one related with clinical trait. Finally, 
the module highly correlated with certain clinical trait was 
selected for further analysis.

Identification of hub genes

Hub genes comprised highly interconnected nodes 
within a module, and have been shown to be functionally 
significant [24]. In this study, hub genes were defined 
as genes with high module membership (MM) (cor.
Weighted > 0.8) [25]. We identified hub genes in the 
module which were highly correlated with certain clinical 
trait. Furthermore, in the selected module, the protein-
protein interaction (PPI) network of the genes was also 
constructed. The interaction between genes was regarded 
positive with a combined score of ≥ 0.8 based on the 
STRING database (http://www.string-db.org/). In the PPI 
network, genes with a connectivity degree of ≥ 10 were 
also defined as hub genes. The common hub genes in both 
co-expression network and PPI network were regarded as 
“real” hub genes for further analyses.

Hub gene validation

In the test set of GSE6764, linear regression analyses 
were conducted to validate the role of hub genes in the 
progression of HCC. In the training set, the hub genes were 
extracted for survival and recurrence analyses to identify 
their roles in HCC prognosis. The RNA-sequencing data 
were also used to validate the role of hub genes in the 
prognosis. 

Gene set enrichment analysis (GSEA)

In the RNA-sequencing data, 423 HCC samples were 
divided into two groups according to the expression level 
of hub genes respectively. To identify potential function 
of the hub gene, GSEA (http://software.broadinstitute.org/
gsea/index.jsp) [26] was conducted to detect whether a 
series of priori defined biological processes were enriched 

in the gene rank derived from DEGs between the two 
groups. For use with GSEA software, the collection of 
annotated gene sets of c2.cp.kegg.v5.2.symbols.gmt in 
Molecular Signatures Database (MSigDB, http://software.
broadinstitute.org/gsea/msigdb/index.jsp) was chosen as 
the reference gene sets. FDR < 0.05 was chosen as the 
cut-off criteria.
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