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ABSTRACT:
In the era of new and mostly effective therapeutic protocols, multiple myeloma 

still tends to be a hard-to-treat hematologic cancer. This hallmark of the disease 
is in fact a sequel to drug resistant phenotypes persisting initially or emerging 
in the course of treatment. Furthermore, the heterogeneous nature of multiple 
myeloma makes treating patients with the same drug challenging because finding 
a drugable oncogenic process common to all patients is not yet feasible, while our 
current knowledge of genetic/epigenetic basis of multiple myeloma pathogenesis 
is outstanding. Nonetheless, bone marrow microenvironment components are well 
known as playing critical roles in myeloma tumor cell survival and environment-
mediated drug resistance happening most possibly in all myeloma patients. Generally 
speaking, however; real mechanisms underlying drug resistance in multiple myeloma 
are not completely understood. The present review will discuss the latest findings 
and concepts in this regard. It reviews the association of important chromosomal 
translocations, oncogenes (e.g. TP53) mutations and deranged signaling pathways 
(e.g. NFκB) with drug response in clinical and experimental investigations. It will also 
highlight how bone marrow microenvironment signals (Wnt, Notch) and myeloma 
cancer stem cells could contribute to drug resistance in multiple myeloma. 

INTRODUCTION 

Multiple myeloma (MM) is the second most 
common but as yet incurable hematologic malignancy 
characterized by infiltration in the bone marrow of 
malignant plasma cells. MM is usually preceded by a 
pre-malignant stage termed monoclonal gammopathy 
of undetermined clinical significance (MGUS) which 
progresses to overt MM at a rate of 0.5% to 3% per year 
[1]. The major clinical manifestations are the outcome of 
tumor expansion and survival within the bone marrow and 
resistance to chemotherapy as the final sequel. Basically 
MM displays a complicated karyotype and high level of 
genomic/chromosomal instability associated with various 

gene mutations and chromosomal translocations [1]. On 
the other hand, oncogenomics studies have found only 
a few differences that distinguish MM from MGUS [2], 
because both conditions can present either a hyperdiploid 
karyotype or a non-hyperdiploid karyotype [3] and similar 
IgH or IgL chromosomal translocations [4], implying 
that most above genetic changes may not contribute to 
MM progression. MM pathogenesis can also be largely 
explained on the basis of interaction of MM cells with 
bone marrow microenvironment (BMME) components 
and signaling pathways thereof leading to MM cells 
growth and survival, angiogenesis, osteolytic lesions 
and drug resistance (DR). In this respect, a variety of 
candidates (genes/proteins) have been identified mostly 
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through gene expression profiling (GEP) studies, which 
include heat shock proteins (HSPs), some miRNAs, 
c-MAF, NFκB, Notch and Wnts and their relevant 
signaling pathways. Perhaps the main feature of these 
pathways which has made them attractive drug targets 
is that they are mostly active in MM cells in the context 
of BMME hence contributing to various aspects of MM 
pathology especially DR. Furthermore, the new concept 
of MM cancer stem cell (MMCSC) indicates involvement 
of Notch and Wnt signaling pathways in biology of this 
“MM-initiating” cell which takes advantage of bone 
marrow stromal cells (BMSCs) protection, and indeed new 
efforts on targeting MMCSC are ongoing [5]. 

Drug resistance in malignancies: general concepts 

Chemotherapy refractoriness tends to be a clinical 
frustration in blood cancers and a variety of solid tumors 
including breast, ovarian, lung, and lower gastrointestinal 
tract cancers [6-8]. During the past decades, multitudes 
of mechanisms have been suggested for this DR. For 
example, drug may be prevented from entering the cells or 
be pumped out of the cells; it may become enzymatically 
inactive, mutation or alteration in expression of the drug 
target, and derangement in mechanisms of apoptosis, 
senescence and DNA repair could also contribute to DR. 
Likewise, in hematologic malignancies DR eventually 
happens although most acute leukemias respond efficiently 
to chemotherapy at the beginning [8]. Basically, malignant 
tissues consist of a heterogeneous population of cells 
with different levels of sensitivity to chemotherapy [7, 
9, 10]. Some of these cells may be easily eliminated by 
the drug while others may become totally resistant. This 
is in clear contrast to normal cells which usually respond 
homogeneously to the chemotherapeutic drug. In most 
cases, malignant cells may become resistant to a single 
drug in which case DR can be circumvented by using a 
combination of structurally and functionally different 
chemotherapeutic drugs. However, cancer cells may 
also become cross-resistant to various drugs leading to a 
situation known as multiple drug resistance (MDR). The 
main mechanism controlling MDR is overexpression of 
an ATP-dependent efflux pump known as P-gp [11]. This 
170KD protein is encoded in humans by MDR1 gene and 
is the first known member of ABC (ATP-binding cassette) 
transporter superfamily. In MDR phenotypes, P-gp is 
overexpressed and through pumping the drug out of the 
cells reduces the intracellular concentration of the drug 
below minimum threshold for effective response, hence 
rendering cancer cells drug resistant. Other members of 
transporter superfamily include multi-drug resistance 
protein-1 (MRP-1), lung resistance related protein (LRP) 
and breast cancer resistance protein (BCRP). P-gp, MRP-
1 and LRP have been found upregulated and associated 
with DR in acute lymphoid and myeloid leukemia patients 

leading to those markers being used as targets for MDR 
modulation [12]. In MDR, it appears that mechanisms 
controlling drug accumulation inside the cells are 
defective, most possibly through altering membrane lipids 
(ceramides) which in turn limit drug uptake or increase 
drug efflux [13]. Interestingly, sphingosine-1-phosphate 
(S1P), a metabolite of ceramide, can confer resistance to 
drugs in hematologic cancers [14, 15]. The outcome of 
above transformations is inhibiting apoptosis (which is 
normal mechanism of most anti-cancer drugs), limiting 
normal processes of drug detoxification and DNA repair, 
and alteration in mechanisms of cell cycle control and 
check points. It should be noted that gene mutations of 
drug transporters or drug receptors could also contribute 
to MDR phenotype [11, 16]. 

Notably, the concept of cancer stem cell (CSC) in 
both solid and hematologic cancers indicates that “cancer 
initiating cells” resist chemotherapy due to their ability to 
self-renew, differentiate and remain relatively quiescent, 
features in fact hampering the effects of chemotherapeutic 
cytotoxic drugs which typically target rapidly dividing 
cells [10, 17]. 

Genetic alterations in signaling pathways 
downstream to target activation will also have effect 
on drug response. In most cases, signals will impinge 
on mutated oncogenes in latter pathways leading 
to upregulation of survival and drug resistance or 
downregulation of cell death responses. For example, 
resistance to Trastuzumab (in treatment of HER-2 positive 
breast cancer) can be due to upregulation of signaling 
pathways downstream to HER-2, as a result of PTEN loss, 
or mutations in PI3K or AKT1 [10]. Genomics technology 
has now deciphered the impact of somatic mutations on 
some critical oncoproteins including RAS, EGFR, BCR-
ABL and many others. These somatic alterations cause the 
tumors rely unusually on a specific molecular pathway or 
signaling system. This has been referred to as “oncogene 
addiction”, which is in fact excessive tumor dependence 
on at least one gain-of-function gene mutation for survival 
[9].  

Drug resistance in multiple myeloma 

In spite of current efficient therapeutic regimens 
for MM patients, DR is perhaps still the major concern. 
For instance, bortezomib which continues to be used 
as a first-in-class drug in MM; many patients may 
be intrinsically resistant to it or develop resistance in 
the course of treatment. Although real mechanisms 
of resistance to bortezomib in MM patients are not 
yet deciphered, mutation in β5-subunit of proteasome 
(PSMB5) (conflicting reports), derangement of stress 
response, survival and antiapoptotic pathways have been 
indicated to be involved [18]. During the past years many 
studies were focused on the mechanisms underlying DR 
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in MM, and considering the complex and heterogeneous 
nature of MM the number of these studies is noticeably 
increasing. However, with that bulk of research in the 
past and present, we still don’t know exactly how MM 
progresses from its precursor state, how drug resistant 
MM clones persist in the presence of effective therapies, 
and why some MM patients relapse. Here to make a more 
mechanistic picture of DR in MM based on the most recent 
findings, we will pursue the discussion covering four 
categories of explanations: a)-Impact of cytogenetic and 
epigenetic alterations, b)-Role of deregulated signaling 
pathways, c)-Role of bone marrow microenvironment, d)-
MM cancer stem cell. 

Impact of cytogenetic and epigenetic alterations

MM is universally recognized as having a high level 
of genomic instability and a very complex cytogenetic 
constitution which is displayed as changes in both 
number and structure of various chromosomes [19, 20]. 
Notably, aberrant homologous recombination (HR) has 
been identified as the main mechanism in MM genome 
instability which increases overtime contributing to MM 
aggressiveness and DR [20]. Based on karyotype changes 
MM patients are placed in two groups: hyperdiploid 
(HRD) which have 48-75 chromosomes (involving 
mostly odd-numbered chromosomes 3,5,7,9,11,15,19,21) 
and non-hyperdiploid (NHRD) which have less than 
45 or more than 75 chromosomes and display IgH 
translocations or chromosomal deletions such as del 
(13) [21]. It has been suggested that only 10% of HRD 
group show a primary IgH translocation at 14q32 locus 
while it amounts to 70% in NHRD group [21], this might 
partly explain the better survival and prognosis of HRD 
group relative to NHRD group. The IgH translocation 
usually involves juxtaposition of immunoglobulin gene 
to an oncogene on partner chromosomes creating several 
reciprocal translocations, including two more frequent 
ones t(4;14)(p16;q32) in 15% and t(11;14)(q13;q32) 
in 17% of MM patients [22]. Translocation t(4;14) 
deranges at p16 locus the expression of FGFR3 which is 
a proto-oncogenic receptor tyrosine kinase, and multiple 
myeloma SET domain (MMSET) which apparently has 
methyl transferase function [23](readers are also referred 
to ref. [24] for FGFR3 biologic  function). Translocation 
t(11;14) causes upregulation of cyclin D genes which play 
key role in cell cycle. Of all chromosomal translocations 
in MM, t(4:14)(p16;q32) has frequently been associated 
with adverse outcome (and possibly resistance to 
alkylating agents) in patients under high dose therapy 
(HDT) modalities or ASCT, but t(11;14) usually confers 
a favorable prognosis [25-29]. Of important note, 
several studies confirm that including bortezomib in the 
treatment regimen of patients with t(4:14) translocation 
improves and even overcomes the risk factor [30-33]. 

Less frequent translocations, t(14;16) and t(14;20), 
which upregulate expression of oncogenes c-MAF and 
MAFB, respectively, have also been associated with 
MM adverse clinical outcomes [22]. The deletion 17p13 
is one of the most important prognostic markers in MM 
which is observed in 10% of newly diagnosed patients 
but increases significantly at later stages [21, 27, 30, 34]. 
This abnormality is associated with aggressive disease and 
failed outcome even in the face of novel bortezomib or 
IMiD-based modalities. In (del) 17p, TP53 heterozygosity 
is lost leaving it in a monoallelic form. This mechanism 
in fact limits the key role of p53 in controlling cell 
cycle and apoptosis and might partly explain the failed 
treatment. Additional genetic aberrations include c-MYC 
rearrangements which occur in 15% of newly diagnosed 
MM, 40% of advanced MM tumors and almost 90% of 
human myeloma cell lines (HMCLs), indicating that 
c-MYC overexpression is a marker of MM progression 
[35-37]. Compared to MM, c-MYC is almost not detected 
in MGUS [37, 38], and it has also been implicated in DR 
in MM [39].

MM patients who relapse or become refractory 
(primary or after a salvage therapy) carrying any                
“bad” prognostic cytogenetic marker, might refer with 
some level of (acquired/intrinsic) drug resistance [40, 
41]. While the real impact of cytogenetic aberrations on 
DR or MM relapse is not mechanistically understood, 
in some cases experimental studies have yielded helpful 
clues. For example, in patients with t(14;16) and t(14;20) 
translocations where MAF genes are overexpressed, it was 
shown that blocking MEK pathway could downregulate 
MAF, inhibit cell proliferation and sensitize MM cells 
to the drugs, indicating that MAF exploits a common 
pathway in both translocations and MEK would be 
an additional drug target for above patients [42, 43]. 
Furthermore, +1q is found in 39% of newly diagnosed 
MM and in almost 70% of MM patients harboring t(14;16) 
or t(4:14) translocations, and has been associated with 
adverse outcome even in intensively treated patients [33, 
44, 45]. Studies have shown that the amplified region 
in chromosome 1q carries the oncogenes PDZK1 [46] 
and CKS1B [47]. PDZK1 was suggested to be involved 
in MM cells resistance to several drugs, as its silencing 
led to increased drug sensitivity. Surprisingly, PDZK1 
was first identified through its interaction with several 
proteins including MRP2 to make a functional cluster 
involved in MDR phenotype in cancer cells [48, 49]. 
CKS1B has also been shown to promote MM cells growth 
and proliferation [50], and to confer DR through MEK/
ERK and JAK/STAT3 signaling pathways [51]. On the 
other hand, 1q21 deletion was also found a risk factor 
independent of CKS1A amplification in MM patients [52]. 
Moreover, a group of researchers showed that t(4:14) and 
t(11;14) translocations, which confer different clinical 
outcomes, contribute to pathologic complications through 



Oncotarget 2013; 4:2189www.impactjournals.com/oncotarget

different molecular mechanisms and that they share 
only few mutated genes [53]. Finally, FGFR3 which is 
overexpressed in t(4:14) translocation was demonstrated 
to confer resistance to dexamethasone in MM cells [54], 
and FGFR3 has been used as a drug target in t(4:14)-
positive MM cells [25, 55]. However, another group 
reported that t(4:14) is by itself a risk factor conferring 
poor drug response independent of FGFR3 expression 
[25]. Hence, the extent to which above findings can 
explain DR in relapsed / refractory MM patients with 
above cytogenetic aberrations is not clear, with most 
clinical studies suggesting associations (not causes and 
effects). Nevertheless, gene expression profiling (GEP) 
and whole genome sequencing (WES) technologies have 
made possible the establishment of first portraits of gene 
mutation spectrum and molecular categorization or risk 
stratification of MM [23, 56-61]. One major goal of 
these approaches is also finding any collaborative effect 
of cytogenetic changes and gene mutations on adverse 
clinical outcome, relapse or DR in MM. TP53 gene 
mutations are rare in MM and basically occur at later 
stages of the disease with strong association with therapy 
resistance [62-65]. Loss of TP53 locus in MM has been 
consistently associated with poor survival and resistance 
to therapy, and with deregulation of various p53 target 
genes [34, 66]. 

Recent investigations have unraveled substantial 
contribution of epigenetic changes to hematologic 
cancers progression and pathogenesis (reviews at [67, 
68]). Epigenetic changes in human genome occur in two 
common forms, DNA methylation and chromatin (histon) 
modifications (acetylation and deacetylation). But much 
to our surprise, recognition of abnormal DNA methylation 
in human cancers has a long history [69]. Basically, 
DNA methylations occur at CpG islands of promoters 
influencing the expression of various genes which in 
most cases are oncogenes controlling proliferation, 
apoptosis, DNA repair and drug sensitivity of malignant 
cells [70]. In spite of extensive investigations on genetic 
and cytogenetic alterations in MM, our knowledge of the 
mechanistic role (s) that epigenetic changes might play 
in MM drug response is limited. Nonetheless, the role 
of epigenetic markers in MM pathogenesis and MGUS 
transition to overt MM is increasingly evidenced, with 
frequency of some hypermethlyated genes being low 
at early stages but increasing with MM progression. 
Using methylation-specific polymerase chain reaction 
(MSP) most studies have detected hypermethylation of 
such genes as p15, p16, p73 (cell cycle), DAPK, CASP8 
(regulation of apoptosis), SOCS1 (cytokine signaling), 
FHIT1 (tumor suppressor gene), O6-methylguanine DNA 
methyl transferase or MGMT (DNA repair), TGFBR2 
(growth factor receptor signaling) and e-cadherin (cell 
adhesion) [71-79]. However, latest investigations on 
MM epigenome using genome-wide methylation arrays 

have yielded amazing findings shedding more light on 
epigenetic changes contribution to MM progression and 
partly DR [80-82]. In these studies, it is shown that the 
methylation rate increases in transition from MGUS to 
MM or from MM to plasma cell leukemia (PCL), and that 
the global methylation pattern in normal B cells, normal 
plasma cells and MGUS is explicitly hypomethylation. 
More interestingly, they show that tumor suppressor 
genes involved in drug response (TGFB1) and interaction 
with bone marrow microenvironment (SPARC) are 
hypermethylated and associated with a short OS [81]. 
In another recent study, researchers tried to find the 
association between epigenetic changes and pattern of 
response to bortezomib in relapsed MM patients. Using 
DNA methylation PCR, they analyzed CpG island-related 
DNA methylation profile of 30 genes in 75 relapsed MM 
patients under bortezomib treatment. They detected a low 
global methylation status in all patient samples and found 
that patients with a higher global DNA methylation (more 
than 3.95% of total DNA methylated) had higher overall 
survival (OS) than patients with more unmethylated 
DNA following bortezomib treatment. Furthermore, in 
gene-specific methylation they found that patients with 
lower frequency of methylated NFKB1 and CXCR4 
genes had higher OS and progression free survival (PFS), 
respectively. Also, lower global DNA methylation and 
higher NFKB methylation pattern conferred a very short 
OS after bortezomib treatment. Moreover, it has been 
reported that hypermethylation in CDKN2A, CDKN2B, 
TNF and RB genes is detected more frequently in 
relapsed MM patients than newly diagnosed MM patients 
[83]. Although, in above studies little focus is on the 
functional and mechanistic aspect of epigenetic changes 
to MM biology especially in terms of drug response, 
they convincingly recognize some epigenetic markers as 
promising drug targets. On the other hand, an association 
of DNA methylation in MM with drug (dexamethasone) 
resistance has only been reported in one study [84]. They 
showed that hypermethylation of RASD1 gene in MM cells 
was associated with resistance against dexamethasone and 
treating the cells with 5’-aza-cytidine sensitized the cells 
to the drug. Additionally, most of above gene methylations 
have also been reported in acute lymphoid and myeloid 
leukemias, and methylations of HIC1 and WIT1 were 
associated with late stage AML and chemotherapy 
resistant AML, respectively [12]. Indeed some epigenetic 
markers are being considered as interesting drug targets 
in hematologic malignancies [85]. It should be noted that 
histone modifications also have known roles in cancer, 
but we still don’t have sufficient evidence to support role 
of chromatin changes in MM pathogenesis. However, 
histone deacetylase inhibitors (HDACi) alone or in 
combination with chemotherapeutic drugs have always 
shown profound anti-myeloma activities in both in vitro 
and in vivo assessments [85-89]. Taken together, how 
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epigenetic changes in MM might affect drug response 
of the patients and whether they play role in DR of MM 
is not quite understood. One general inference from all 
above studies could be, at least partially, involvement 
by epigenetic changes of some pathways controlling cell 
cycle and proliferation. This idea is rather supported by 
the study at ref. [90]

Role of deregulated signaling pathways  

To elucidate the biological and biochemical 
mechanisms underlying DR of MM cells, various 
researches have been focused on signaling molecules, 
scaffolds, complexes and mediators in a variety of 
signaling pathways to reveal targets which could possibly 
mediate DR following drug treatment. These signaling 
pathways are mostly involved in two main DR-associated 
mechanisms: aberrant drug transport, anti-apoptosis. 
aberrant drug transport: MDR phenotype

Overexpression of P-gp, the product of MDR1 
gene, has frequently been observed in MM and strongly 
associated with relapse and DR [91-94]. Indeed, several 
MDR modulators have already been applied to MM 
clinical trials but were mostly associated with poor benefit 
due to high toxicity [95-97]. Apparently, polymorphisms in 
MDR1 gene (SNPs) will also influence therapy outcome, 
for instance in MM patients under DAV protocol [98], 
and variously detected in MGUS, MM and relapsed MM 
tumor cells [99], however, their contribution to bortezomib 
resistance is not clear [98, 100]. In contrast, a recent 
study confirms that bortezomib functions as a substrate 
for P-gp and overexpression of P-gp could underlie 
bortezomib resistance [101], but this finding is apparently 
not supported by other studies [18]. Surprisingly, another 
recent study shows that overexpression of P-gp (ABCB1) 
defines a subpopulation of MM cells which are resistant to 
carflizomib, the newly FDA-approved second generation 
proteasome inhibitor [102]. The major concern with MDR 
markers is that they are weakly expressed at diagnosis but 
overexpressed after chemotherapy, for instance, almost 
6% of newly diagnosed MM patients but more than 43% 
after chemotherapy (vincristine and doxorubicin) were 
P-gp positive [94]. Moreover, it has been suggested that 
following treatment with MDR modulators, tumor cells 
could upregulate drug target proteins or create mutations 
abrogating drug-target interaction [97]. The other MDR-
related protein, breast cancer resistance protein (BCRP, 
ABCG2), seems not to play role in MDR in MM [103], but 
ABCG2 gene has been found methylatd and upregulated 
following chemotherapy [104]. On the other hand, a new 
study on MM cell biology and pathogenesis identified a 
chromosomal instability (CIN) gene called NEK2 whose 
overexpression upregulated MDR-related proteins, MDR1 
(P-gp), MRP1 and BCRP and was strongly associated with 

resistance to drugs (bortezomib and doxorubicin), rapid 
relapse and poor outcome in MM [105]. 
anti-apoptosis mechanisms

p53 tumor suppressor protein, known as” guardian 
of genome”, performs an outstanding task in controlling 
cell cycle, apoptosis, and DNA repair, senescence and 
autophagy [106-109]. p53 is inactivated in a variety 
of human cancers, including in 10-12% of MM tumors 
mostly due to loss of heterozygocity [110, 111]. In 
many cancers, however, p53 inactivation could also 
be the result of mutations in p53-DNA binding domain 
or through overexpression of murine double minute 2 
(MDM2) [108]. MDM2 is an E3-ubiquitin ligase which 
binds p53 to ubiquitinate and target it for degradation 
through ubiquitin/proteasome pathway [112], and is 
overexpressed in 58% of MM samples which has been 
frequently associated with chemoresistance [113, 114]. 
Of important note, MDM2 in many cancers remains 
an oncogene even in the face of functional p53, and 
overexpression of MDM2 in cell lines culminated in 
resistance to vincristine, doxorubicin and etoposide (e.g. 
see the ref. [115]). It has also been suggested that MDM2 
imposes DR effects through increase in p53 degradation 
or interaction with MDR1 gene [113]. Another tumor 
suppressor p14ARF binds to MDM2 and sequesters 
it in the nucleus to allow p53 stabilization [116]. The 
regulatory loop p14ARF-MDM2-p53 plays substantial 
role in cell fate in cases of cellular stresses such as DNA 
damage (e.g. following chemotherapy) [116]. As happens 
in MM cells [114], deletion/mutation in p53 or p14ARF 
(loss of function) or upregulation of MDM2 would direct 
the pathway toward deregulation of p53-related signaling 
pathways and downstream targets (p21, GADD45, Bax, 
Noxa, Puma), hence development of anti-apoptotic and 
DR signals. Targeting p53 in MM has been considered as 
an interesting treatment strategy based on mostly restoring 
p53 function in MM cell lines and primary cells harboring 
mutated p53. As a nongenotoxic approach, disruption of 
p53-MDM2 interaction using nutlin-3 or RITA triggered 
apoptosis in MM cells where synergistic effects with 
bortezomib were also observed [117-121]. These studies 
provided evidence that p53 protein and its pro-apoptotic 
targets Bax, Puma and Bak were upregulated but anti-
apoptotic Bcl-2 was downregulated following above 
therapeutic modulation. However, latter findings were 
not evidenced in primary tumor cells from relapse or 
refractory MM patients. A recent study demonstrated 
that inhibition of ubiquitin-specific protease-7 (USP7), 
which normally stabilizes MDM2, triggers apoptosis in 
bortezomib-resistant MM cells, confirming the idea of 
p53 downregulation as a DR mechanism in MM [122]. 
Involvement of p53 in apoptosis induced by nucleoside 
analogs (gemicitabin and clofarabin) in MM cells was 
also shown by another recent study [123]. Several 
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proteins have been described with their functions to be 
p53-dependent, including RPRM (reprimo), a newly 
identified candidate mediating cell cycle arrest by p53 
[124]. Interestingly, reprimo gene has been reported to be 
methylated in MM [125]. Two members of p53 family, 
p63 and p73, bear high level of homology to p53 but their 
contribution to MM pathogenesis, progression and therapy 
outcome has not been fully investigated, however, p73 
mutations and hypermethylations have been reported in 
MM cells especially at advanced stages [74]. Furthermore, 
one study demonstrated accumulation of p63, p73 and p53 
in the nuclei of MM cells following drug-induced DNA 
breaks [126]. Early growth response-1 (EGR1) gene 
which functions in a p53-dependent manner [127, 128], 
was shown to mediate JUN-induced apoptosis in MM 
cells and be associated with poor outcome and DR when 
downregulated [129]. All above studies highlight the key 
role of p53 and its related proteins in MM pathogenesis 
and drug response. 

The transcription factor NFκB is a well-known 
player in MM pathogenesis and biology in terms of 
tumor cell proliferation, expansion and DR [1, 130, 
131], and targeting NFκB pathway in MM (e.g. using 
bortezomib) has recently improved MM therapy [1, 132]. 
The contribution of NFκB pathway to MM pathogenesis 
is its constitutive activation in a large proportion of MM 
tumor cells and HMCLs mostly due to ligand-dependent 
activation, including effect of TNF-α, TRAIL, BAFF and 
CD40L on MM cells inside the bone marrow [1]. The latter 
cytokines are secreted by BMSCs and play critical roles in 
MM clones maintenance and DR. However, it has recently 
been discovered that mutations in some genes of NFκB 
platform result in constitutive activation of NFκB pathway 
making MM cells less dependent on BMME protection 
and more refractory to chemotherapy [56, 133, 134]. These 
findings create novel insights into role of NFκB pathway 
activation in MM pathogenesis but cannot underscore 
the contribution of extrinsic signals in BMME to NFκB 
activation-related MM complications especially DR [135]
(and see discussion below). Intriguingly, it is also specified 
that MM cells harboring TRAF3 gene mutation in NFκB 
pathway are resistant to dexamethasone but sensitive to 
bortezomib [133]. This is in line with fact that apoptotic 
function of bortezomib is partly explained by blocking 
canonical NFκB pathway; however, it unexpectedly 
induces the alternative (non-canonical) pathway making 
MM cells less responsive [136]. Moreover, in some cases 
MM cells may develop a bortezomib-resistant NFκB 
phenotype through a proteasome-inhibitor resistant (PIR) 
pathway [137]. The latter flaws of bortezomib may explain 
to a large extent why it should be applied in combined 
regimens for those MM patients who are in relapse or 
refractory to it. The transcription factor NFκB could also 
contribute to DR in MM through upregulation of some 
BCL-2 anti-apoptotic family members including BCL-XL 
[138]. A variety of other molecules and signaling pathways 

have been implicated in anti-apoptosis or DR mechanisms 
of MM cells (table 1).

Role of bone marrow microenvironment   

The role of BMME components especially BMSCs 
and extracellular matrix (ECM) protein in the pathogenesis 
of MM has been the focus of a good deal of research 
and to our best knowledge contribution of BMME is 
noteworthy (reviews at [1, 190, 191]. The fundamental 
element in this performance is a well-established adhesion 
between MM cells and BMSCs or fibronectin leading 
to maintaining the growth, proliferation, invasion and 
DR of MM clones and also promoting bone lesions and 
angiogenesis. The best explained mechanisms of MM 
drug/apoptosis resistance due to BMME effects in MM 
are soluble factor-mediated drug resistance (SFM-DR) 
and cell-adhesion mediated drug resistance (CAM-DR) 
which are in fact two forms of environment-mediated 
drug resistance (EMDR) in cancers [192]. SFM-DR can be 
better explained by involvement of IL-6, the most critical 
growth and survival factor for MM cells, and CAM-DR 
is mediated by adhesion of MM cells to BMSCs or ECM 
proteins involving adhesion molecules (β1 integrins). 
However, other cytokines including HGF [193] and IGF-
1 [194] have also been implicated in MMDR. It was 
shown that bortezomib-resistant myeloma cell lines and 
clinical samples from bortezomib-refractory MM patients 
displayed an activated IGF-1/IGF-1R signaling pathway 
and a high level of IGF-1 cytokine which were associated 
with bortezomib resistance. Blocking IGF-1R or IGF-
1 signaling alone or synergistically with bortezomib 
increased MM cells death. Intrinsic (de novo) resistance 
to drugs including bortezomib may occur in some MM 
patients, which has been suggested to arise largely due to 
CAM-DR (a transient form of DR only during cell-cell or 
cell-ECM adhesion) and more importantly may contribute 
to emergence of acquired DR in the course of treatment 
[195]. The same concept has also been supported as an 
underlying mechanism for de novo DR and minimal 
residual disease in various cancers [192, 196]. Following 
adhesion of MM cells to FN or BMSC, IL-6 is secreted by 
BMSCs or by MM cells in an autocrine manner [197-199]. 
IL-6 is certainly the best studied cytokine critical to MM 
cells, which has been implicated in MM cells resistance 
to various apoptotic signals including Fas/Apo-1 and 
chemotherapeutic drugs [200-202], with these responses 
being possibly controlled through Jak/STAT signaling 
pathway as was shown in U266 cell line [203]. It has also 
been demonstrated in MM primary samples that MM cell 
clones with autocrine IL-6 signal are more resistant to 
dexamethasone than those with no autocrine IL-6 signal 
[204]. Additionally, blocking IL-6 receptors with CNTO 
328 increased sensitivity of MM cells to bortezomib [205]. 
These observations highlight the crucial role of IL-6 in 
anti-apoptosis and DR mechanisms in MM. 
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Samples analyzed Molecule/pathway Alteration pattern Functional outcome Refs. 

HMCLs, primary cells,                      
in vivo mouse models

HSPs (HSP90, HSP70, HSP72, 
HSP-27, HSF-1)
HSPs function as buffering 
systems to safe guard various 
client targets (e.g. oncogenes) 
and signaling pathways (e.g. 
apoptosis) involved in cell 
survival. 

Overexpression, especially 
following adhesion of MM 
cells to BMSCs, and possibly 
through the effect of 
IL-6. 

Increase in growth, proliferation, DR, CAM-
DR and resistance to apoptosis mainly 
through activated STAT3, NFκB, Akt and 
MAPK pathways. Some HSPs (HSP27, 
HSP70) are upregulated following treatment 
of MM cells with proteasome inhibitors due 
to induction of stress response inducing DR 
and HSP90 inhibitors show synergism with 
bortezomib. In MM, HSPs can also stabilize 
antiapoptotic BCL-2 members (BCL-2, MCL-
1 and BCL-XL), as HSP-90 inhibition in U266 
cells resulted in significant apoptosis and 
downregulation of above proteins. 

[139-147]

HMCLs, primary cells,
 in vivo mouse models Notch signaling pathway

Overexpression of Notch 
receptors (Notch1) on MM 
cells and of Notch ligands 
(Jagged-1, Dll1) on BMSCs. 
Constitutive activation of the 
pathway in BMME.    

The Notch1-jagg1 pathway is activated due 
to MM cell-BMSC adhesion inducing CAM-
DR. Inhibition of Notch signaling by GSI 
(γ-secretase inhibitor) induces MM cells 
apoptosis through upregulation of Noxa. Dll1 
/Notch pathway also promotes MM cells 
resistance to bortezomib through upregulation 
of of CYP1A1, a Cytochrome P450 enzyme. 
Latter pathway is also constitutively activated 
in MMCSCs (CD138- cells) which show more 
resistance to drugs than CD138+ cells through 
upregulation of BCL-2, MCL-1 and BCL-XL. 
Notch pathway may contribute to MMDR 
through MM cells-osteoclast interaction. 

[148-154]

HMCLs, primary cells,                      Wnt signaling pathway 

Overexpression of Wnt 
receptors on MM cells 
and, like Notch pathway, 
constitutive activation of the 
pathway within BMME, partly 
due to hypermethylation of 
some Wnt antagonists.    

Activation of Wnt/β-catenin (canonical) 
pathway in MM cells induces tumor growth, 
proliferation and metastatic features, mediates 
CAM-DR of MM cells to lenalidomide or 
doxorubicin.

[155-160]

HMCLs, clinical studies  Cereblon (CRBN) Downregulation due to gene 
mutation.  

First identified as the primary target of 
teratogenicity in thalidomide. Associated 
with resistance to IMiDs (lenalidomide), high 
expression of CRBN is a favourable marker in 
MM patients under IMiDs protocol. In a case 
study of advanced (extra medullary) MM with 
a MDR phenotype, CRBN was found to be 
mutated. 

[161-166]

HMCLs, MM primary 
cells,  in vivo mouse 
models

Telomerase 

Hyperactivity of telomerase, 
partly due to co-operation of 
KRAS and RB1 oncogenes 
with telomerase main gene 
hTERT. 

Maintenance of telomere length leading to 
MM cell proliferation, survival and drug 
resistance. Hyperactivity of telomerase has 
been reported in a large number of relapsed, 
refractory or newly diagnosed MM patients, 
and was suggested to indicate a poor prognosis. 
A possible mediator of bortezomib resistance. 

[167-171]

HMCLs, MM primary 
cells, in vivo mouse 
models, clinical studies 

miRNAs 
Aberrant expression, up-or-
downregulation, possibly by 
epigenetic mechanisms.  

Correlation with patient survival. Down-or-up-
regulation of several miRNA (e.g. miRNA-21) 
in drug resistant HMCLs compared with 
drug sensitive parent lines. Induction of 
BMME-related DR by upregulated miRNAs, 
miRNA-21,-19a and 19b, or by downregulated 
miRNAs, miRNA-15/16a (possibly through 
IL-6 upregulation or SOCS1 downregulation). 
Overexpression of some oncogenes including 
CCDN1, TACC3, MAFB, FGFR3 and MYC 
by other downregulated miRNAs (miRNA-425, 
miRNA-152, miRNA-24). Inactivation of p53 
protein or its related targets by downregulated 
(miRNA-214) or upregulated (miRNA-
125b/25b/30d and miRNA-181a,b/32) 
miRNAs.    

[172-183]

Table 1: Other molecules/pathways with demonstrated roles in MMDR
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CAM-DR to doxorubicin, melphalan, vincristine, 
bortezomib and mitoxantrone has been induced in MM 
cell lines and patient primary cells through adhesion to FN 
or BMSCs which was mostly mediated by VLA4 integrin 
(α4β1) [206-209] and also through LFA-1 [210]. It should 
be noted that other integrin molecules including β7 and 
VLA5 (α5β1) could also play role in CAM-DR in MM 
cells [207, 211]. More importantly, MM primary cells 
with a higher expression of adhesion molecules (VLA4 
and ICAM-1) are drug resistant and believed to be selected 
by the chemotherapy during treatment tipping contribution 
to acquired DR by CAM-DR [212]. Of note, acquired 
DR is genetically much more complex than de novo DR 
(CAM-DR) and indeed takes a long time to emerge. To 
examine this idea, Hazlehurst et al. induced de novo DR 
to melphalan in RPMI8226 cell line through adhesion 
to FN and also in patient primary cells to confirm the 
clinical relevance [213]. They then established an acquired 
melphalan-resistant RPMI8226 subline (RPMI8226-LR5) 
through long-time drug exposure. Using oligonucleotide 
microarray, they detected change in the expression of 
1479 genes in acquired DR model compared with only 69 
genes in de novo DR parent line. These findings strongly 
indicate that unlike acquired DR which is associated 
with an outstanding transcriptome change, de novo DR 
(CAM-DR) is mostly regulated by post transcriptional 
mechanisms. Indeed, induction of β1-integrin mediated 
CAM-DR in MM cells was characterized by G1 cell cycle 
arrest accompanied by an increase in p27Kip1 protein level 
and decrease in enzymatic activity of cyclin A and cyclin E 
[208], upregulation of p21Cip1/Waf1 [149] or downregulation 
of Bim (the apoptotic BCL-2 family member) [213] 
implying involvement of posttranscriptional mechanisms. 
Furthermore, adhesion through β1 integrin also induces 
resistance to apoptotic signals such as Fas/Apo-1 in 
various hematopoietic cancer cell lines including MM 
with a post-transcriptionally regulated mechanism. 
Observations in one study indicated that CAM-DR in 
MM cells was associated with increase in solubility and 
redistribution of c-FLIPL allowing its binding to and 
inhibiting death-inducing signaling complex (DISC) 
(which forms following CD95 ligation) and thus blocking 
apoptosis [214]. 

As a matter of fact in vitro analysis of CAM-DR and 

SFM-DR as two separate systems is oversimplification, 
because it is not unexpected to think that two processes 
work hand in hand inside the bone marrow (figure 1). 
In line with this, one study demonstrated the synergistic 
anti-apoptosis resistance effect of adhesion to FN (β1 
integrin signaling) and IL-6 (gp130 signaling) in MM cells 
associated with activated STAT3 signaling pathway [199]. 
Moreover, treating MM cells with HGF increased their 
adhesion to FN which was mediated by VLA4 integrin 
and PI3K and NFκB pathways implying a synergistic 
effect of FN-adhesion and HGF in promoting CAM-DR 
of MM cells [193]. More interestingly, it is suggested that 
SFM-DR and CAM-DR confer resistance to drug-induced 
apoptosis in MM cells through distinct mechanisms [215]. 

However, in recent years many other studies have 
been focused on deciphering molecular mechanisms 
of drug/apoptosis resistance in MM conferred by bone 
marrow stroma. Adhesion of MM cells to BMSCs induces 
upegulation of Notch receptors on former cells which 
bind to their specific ligands (Jagged) on latter cells 
culminating in resistance to drug-induced apoptosis [149]. 
BMSCs were shown to induce bortezomib-resistant NFκB 
activity in MM cells which was mediated by soluble 
factors including IL-8 from BMSCs [216], providing 
a supportive explanation to bortezomib resistance in a 
large number of MM patients [137]. HSPs have also 
been implicated in CAM-DR of MM, as adhesion of 
MM cells to BMSCs and FN upregulated HSP-70 in 
MM cells, and blocking HSP-70 resulted in increase in 
melphalan-induced apoptosis and reversed CAM-DR 
[144]. Co-culture of HMCLs (U266 and NCI-H929) with 
MM patient BMSCs upregulated survivin in MM cells 
conferring resistance against daunorubicin [217]. Notably, 
blocking survivin had already been associated with growth 
inhibition of MM cells and decrease in their resistance to 
doxorubicin, melphalan and dexamethasone [218]. CD44 
the receptor for hyaluronic acid (HA) mediated resistance 
to lenalidomide in MM cells and lenalidomide-resistant 
MM cells adhered more strongly to BMSCs and HA 
implying a role for CD44 in CAM-DR of MM cells [219]. 
Upregulation of B7-H1 molecule on MM cells following 
their adhesion to BMSCs was associated with resistance to 
dexamethasone and melphalan in MM cells and increase 
in Bcl-2 and FasL levels [220]. Of note, B7-H1 is also 

HMCLs, MM primary 
cells Krüppel-like factor 4 (KLF4)

Overexpression in MM 
patients harboring t(4;14)
(p16.3;q32), not expressed 
in HMCLs due to DNA 
methylation. 

High expression of KLF4 was associated 
with upregulation of p27Cip1 abd p27Kip1 
and conferred resistance to melphalan but not 
bortezomib.  

[184]

HMCLs, MM primary 
cells S1P (Sphingoside-1-phosphate) Overexpression 

Possibly upregulated by IL-6, S1P confers 
antiapoptosis and DR signals through MCL-1 
upregulation. 

[14, 15, 
185, 186]

HMCLs, MM primary 
cells, in vivo mouse 
models, clinical studies 

NEK2 Overexpression 
Highly correlated with rapid relapse, DR and 
poor outcome. Induction of DR mainly through 
interaction with drug efflux pumps. 

[105]

HMCLs, patient primary 
cells NRAS,  KRAS, BRAF Gene mutation Induce DR in MM cells  by triggering MAPK/

ERK pathway 
[56, 187-
189]
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considered as an immune response evasion tool expressed 
on malignant plasma cells [221].  

Some recent studies have also tried to understand 
if chromosomal translocations and gene mutations might 
control interaction of MM cells with BMME components 
and hence trigger CAM-DR. Knock-down of the MMSET 
protein in MM cells harboring t(4;14) led to decrease 
in MM cell proliferation and induction of apoptosis 
(activation of caspase-3 and caspase-9) and changed two 
genes (DSG2 and ADAM9) involved in cell-cell adhesion 
[222]. Although drug sensitivity of MMSET-silenced MM 
cells was not examined in this study, their findings imply 
a possible involvement of MMSET in controlling CAM-
DR of MM. Using whole exon sequencing (WES), another 
study detected in MM patient samples and HMCLs 
somatic mutations in adhesion molecules involved in 
interaction with BMSCs giving an implication for role 
of these mutations in CAM-DR, however; no functional 
experiment was performed [223]. Mutations in some 
oncogenes including RAS may also affect interaction of 
MM cells with BMME and hence induce CAM-DR [188]. 
Furthermore, overexpression of c-MAF was detected in 
50% of MM primary samples and also in HMCLs lacking 
c-MAF translocations and was associated with increase in 
ITGB7 (integrin β7) gene which is involved in adhesion 

of MM cells to BMSCs and induction of CAMDR [211, 
224]. 

It is interesting to remember that interaction of MM 
cells with other cells in BMME could also determine 
chemoresistance of in MM (figure 1). Osteoclasts confer 
resistance to doxorubicin-induced apoptosis in MM 
cells through secretion of IL-6 and OPN (ostepontin) 
form osteoclasts. These protective effects were largely 
dependent on direct cell-cell contact [225]. Contribution 
to chemoresistance has also been implicated by interaction 
of MM cells with bone marrow endothelial cells, mainly 
through induction of cytokines such as IL-6, SDF-1α, 
MCP-1, Ang-1, bFGF and TNF-α by endothelial cells 
[226]. Macrophages have been recently implicated in 
chemoresistance in the context of MM bone marrow 
environment. These cells also confer resistance to 
apoptosis induced by dexamethasone and melphalan 
through direct cell-cell contact and by hampering apoptotic 
caspase pathway [227] and through adhesion molecules 
PSGL1/selectins and ICAM-1/CD18 in in vitro and in vivo 
(SCID mice) via Src, Erk1/2 kinases and c-myc pathways 
[228]. Some research groups have put forward the role 
of myeloma bone marrow hypoxia in disease progression 
and chemoresistance [229]. The mainstay of this concept 
is that MM bone marrow is more hypoxic than normal 

Figure 1: SFM-DR and CAM-DR work usually together within the bone marrow environment. Adhesion of MM cells 
to BMSCs and FN through integrin molecules triggers a variety of signaling pathways (including Ras/MAPK, PI3K/Akt, NFκB, Notch, 
Wnt, HSPs) involved in cell proliferation, anti-apoptosis, DR and cytokine secretion (IL-6), and also upregulation of anti-apoptotic BCL-2 
family members BCL-2, MCL-1 or BCL-XL. The above adhesion induces secretion of several cytokines (IL-6, VEGF, HGF, IGF-1, SDF-
1α, TNF-α, MCP-1) by BMSCs leading to triggering most of above pathways and induction of resistance to apoptosis and drugs in MM 
cells (paracrine). IL-6 can also stimulate MM cells in an autocrine manner, although this system has been shown for some other cytokines 
as well. Furthermore, most above cytokines may also be secreted by osteoclasts, endothelial cells and macrophages during their direct or 
indirect interactions with MM cells leading to triggering of above functional responses in latter cells
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bone marrow, and this leads to upregulation of HIF-1α and 
HIF-2α which has been associated with suppression of p53 
in some cancer cells, however; this association in MM is 
not clear yet. Finally, the role of infectious / inflammatory 
environment of MM cells in disease pathogenesis and DR 
has recently become an interesting research focus. The 
first clue of latter concept was expression by MM clinical 
samples and HMCLs of a wide range of functional Toll-
like receptors (TLRs) [230-232]. These molecules belong 
to a family of pattern recognition receptors which control 
and integrate immune responses and have been shown to 
play multiple roles in cancer pathogenesis. Interestingly, 
stimulating MM cells with some TLR ligands induced 
secretion of IL-6, dexamethasone resistance, growth and 
proliferation [231, 232], upregulation of immune evasion 
markers [221], or differentially modulated expression 
of adhesion molecules (α4, β7 and αVβ3) and adhesion 
to FN [233]. On the other hand, stimulation of some 
TLRs could also trigger apoptosis in some MM cells and 
sensitize them to bortezomib in FN context [233]. Taken 
all together, the role that BMME plays in pathogenesis 
and chemoresistance of MM is undoubtedly vital, to the 
extent that a plethora of experimental findings pinpoint 
diverse cellular and molecular mechanisms involved in 
this BMME-induced protective shield for MM clones.   

MM cancer stem cell and DR

The bulk malignant cells in MM are plasma cells 
expressing syndcan-1 (CD138), but this marker is 
pertinent to terminally differentiated cells with limited 
proliferative potential, and this for many years has led 
researchers to explore real “MM-initiating cells” or MM 
cancer stem cells (MMCSCs). Malignant plasma cells in 
MM harbor somatically hypermutated immunoglobulin 
genes remaining constant throughout the clinical course 
of the disease and do not show intraclonal diversity 
implying that MM arises from a post-germinal center 
B cell having already experienced antigenic challenge 
in lymph nodes. Generally speaking, the CSC model is 
based on the concept that cancers constitute a hierarchical 
organization like the hematopoietic system, suggesting 
that CSC should maintain cancer cells population through 
an asymmetric division (each CSC produces a daughter 
and another CSC).

A convincing line of evidence confirms that MM 
cells contain a rare subpopulation which is clonotypic 
and drug resistant, expresses phenotypic markers of 
memory B cell-like and possess stemness features [5, 234-
236]. It has been shown that: a)-only CD138- MM cells 
have the clonogenic potential and are able to propagate 
MM tumor in NOD/SCID mice, b)-MMCSCs carry the 
immunophenotype signature CD138-/CD19+/CD20+/
CD27+, indicating that MMCSCs possess a memory B 
cell-like phanotype signature arising from a hierarchical 
pre-malignant plasma cell stage, c)-In a novel 3D 

model drug resistant MM cells were CD20+ [237], and 
MMCSCs growth was inhibited by rituximab (anti-CD20 
mAb), d)-MMCSCs (CD138- MM cells) are resistant to 
dexamethasone, lanalidomide, bortezomib, are enriched in 
a side population (SP) with high ALDH1 activity and drug 
efflux pump [238], and recently e)-CD138- MM cells are 
ALDH+, have a higher clonogenic potential than CD138+ 
cells and are able to expand tumor in NOG mice [239]. 
Several previous studies from Pilarski et al. also confirmed 
presence of clonotypic B cells in MM patients contributing 
to tumor expansion, relapse and DR [240-242]. On the 
contrary, another group of researchers claimed that MM 
initiating cells were enriched in the CD138-CD19-CD38++ 
component [243]. They showed that CD19+ MM cells 
could not produce tumor colonies and engraft SCID-rab 
mice, while these happened only with CD138-CD19-

CD38++, indicating that CD138- MM cells at least in some 
MM patients are not B cells. Of striking importance, 
MMCSCs express also functional markers such as drug 
efflux pumps (ABCC3), ALDH1 and RARα2 which have 
been associated with clonogenic potential and resistance 
to chemotherapy further highlighting their contribution to 
DR and relapse in MM patients [238, 244, 245]. It was 
demonstrated that overexpression of RARα2 renders 
MMCSCs (CD138- MM cells) drug resistant by activating 
ABCC3 gene through stem cell related pathways Hh 
(hedgehog) and Wnt. Indeed MMCSCs express mRNA 
of Hh receptors which are normally involved in Hh 
signaling and regulate homeostasis and biology of normal 
stem cells [246]. Interestingly, Hh pathway was found 
active in MMCSCs and blocking this pathway inhibited 
clonal expansion and induced differentiation. However, 
activation of this pathway was suggested to be mostly 
ligand-dependent with BMSCs being the main source of 
Hh ligands [247], and it can be speculated that interaction 
of MMCSCs with BMSCs maintains activation of Hh 
signaling and tumor dominance. Of note, inhibitors of 
Hh pathway have already entered clinical trials in MM 
[248]. Moreover, MMCSCs can also express telomerase 
which has a prominent role in controlling normal stem cell 
biology and cancer DR [249]. The inhibitor of telomerase 
activity Imetelstat blocked MMCSCs clonogenic potential 
in vitro and in vivo, triggered differentiation of CD138- 

cells into CD138+ cells and decreased the number of 
ALDH1+ cells. Taken all together, the above studies 
provide strong evidence for existence of well-defined 
stem/progenitor cells possessing the three prominent 
features common to CSCs in all cancers: self-renewal, 
proliferation and drug resistance.  

MMDR in the face of new therapeutic protocols: 
can we overcome it? 

Most therapeutic approaches to date for relapsed 
or refractory MM patients have been based on combined 
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formulations. Although emergence of new drugs has 
revolutionized therapy for MM patients, almost all of them 
finally develop relapse or DR. As discussed above, using 
advanced genomics / oncogenomics a variety of factors 
have been identified to play role in this refractoriness, 
including various gene mutations, overexpression of 
MDR genes, epigenetic changes and aberrant activation 
of various pathways. Importantly, new proteasome 
inhibitors (including Carfilzomib, ONX 0912, MLN 
9708, Marizomib), HDAC inhibitors (e.g. Tipifarnib), 
new IMiDs (Pomalidomide), kinase inhibitors (especially 
inhibitors of mTOR and HSP90), new immune-based 
therapies (antibodies against CS-1, CD38, IL-6) and new 
alkylators (Bendamustine) have proved effective mostly 
in combination with conventional drugs in phase I and 
II clinical trials for MM patients who were bortezomib-
resistant or in relapse (for reviews see [40, 250, 251]). 
However, development of DR in these contexts has 
also been reported necessitating establishment of highly 
specific targeted therapies. For instance, HSP90 inhibitors 
prove to be effective with other drugs (including 
bortezomib), but may induce upregulation of HSP-70 or 
HSP-27 leading to DR and requires including the inhibitors 
of latter HSPs [141, 252]. We now know that some genetic 
alterations detected by oncogenomics with explained roles 
in MM pathogenesis are also detected in MGUS indicating 
their poor contribution to disease progression or possibly 
DR. On the other hand, our knowledge of the role of 
BMSCs or ECM proteins in MMDR (in terms of their 
contribution to de novo or acquired DR), and of the nature 
of MMCSCs has noticeably increased.  Therefore, it is 
expected that new drugs with the specific ability to target 
these two elements of MM physiology be also developed 
in order to eradicate MM initiating clones or decrease the 
chance of DR or relapse. Interestingly, a recent thorough 
investigation identified CD138- MM cell subsets harboring 
Xbp1s- tumor B cells (plausibly MMCSCs) that were 
bortezomib resistant and targeting latter population has 
been suggested to be a promising target [253]. Xbp1s has a 
critical function in B cell development and commitment to 
plasma cells and is also an important element of unfolded 
protein response (UPR) in endoplasmic reticulum (ER) 
stress-related apoptosis.  

CONCLUDING REMARKS AND FUTURE 
PROSPECTS 

Recent progresses in understanding the molecular 
biology, molecular categorization and therapy of MM 
patients are certainly amazing. This achievement has 
been undoubtedly made through precious contribution of 
advanced technologies such as gene expression profiling 
(GEP), whole genome sequencing (WGS) or whole exon 
sequencing (WES), and a tremendous number of in vitro 
and in vivo investigations. However, MM is still dealt 
with as a hard to treat hematologic malignancy just due 

to de novo or acquired DR, indicating that some patients 
may become initially resistant to the drugs or develop 
DR in the course of treatment. This will explicitly imply 
that there still exist complexities in pathogenesis and 
progression of MM warranting unstoppable research. 
Nevertheless, identification of a variety of molecules and 
signaling pathways with different levels of contribution 
to MM pathogenesis has opened a new horizon to much 
more targeted therapy than conventional cytotoxic 
chemotherapy. For the most part, novel insights into role 
of BMME components especially BMSCs and ECM 
proteins in MM pathogenesis, progression and DR, 
and also increased understanding of nature and role of 
MMCSCs in tumor expansion and survival have provided 
us with more promising therapeutic venues to target vital 
pulses of MM through development of new agents.
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