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Figure 3: IMP2 expression increases with tumor size, metastasis and poor prognosis. (A) Expression of IMP2 in esophageal 
adenocarcinoma (n = 64) grouped by tumor stage (T0–T4; T0: n = 13, T1: n = 9, T2: 6, T3: n = 15, T4: n = 2) (GSE13898). Error bars 
show the interquartile range. (B) Expression of IMP2 in esophageal adenocarcinoma (n = 20) and esophageal squamous carcinoma (n = 44) 
grouped by clinical tumor stages. (C) Representative immunohistochemical staining for IMP2 in metastatic esophageal squamous cell 
carcinoma (a) and adenocarcinoma (b). Scale bars: 50 µm. (D) Heatmap showing expression of IMP2 (bottom row) and 52 marker genes 
for poor prognosis described by Pennathur et al. [8] in esophageal adenocarcinoma (n = 64; GSE13898). (E) Kaplan-Meier survival plot 
referring to low and high IMP2 expression levels in TCGA dataset (n = 57). High expression are those samples with IMP2 expression higher 
than 7000. Low expression < 7000, respectively.
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line with other studies which reported that IMP2 is involved 
in obesity and liver steatosis [18–20]. In steatohepatitis 
IMP2 overexpression led to the accumulation of free 
cholesterol and the activation of a fatty acid elongase 
[21, 22]. The observed correlation of IMP2 and signaling 
pathways such as MAPK and Jak-STAT seems reasonable 
since IMP2 expression results in increased levels of IGF2 
[20], which can activate both of these pathways. A link 
between inflammation and IMP2 expression was previously 
shown. The observed relationship between IMP2 and genes 
regulating post-translational modifications and protein-
processing is more likely to be due to co-expression of 
genes regulating IMP2 activity. The level of activity of 
mRNA-binding proteins depends on their post-translational 
modifications [23]. 

Taken together, our data show that IMP2 might 
serve as both a diagnostic and prognostic marker for 
esophageal cancer.

Materials and Methods

Tissue microarray and immunohistochemistry

Esophageal carcinoma tissue microarray was 
purchased from US Biomaxx (#ES804, Rockville, 
United States). Details of esophageal tissues are given in 

Table 1. Of the total 80 cases, eight cases did not contain 
the respective tissue on the slide and thus could not be 
analyzed. Immunohistochemical stainings against IMP2 
were performed as previously described [15] using the 
Dako Envision DAB Kit (#K4003, Dako, Germany) 
for antibody detection according to the manufactor’s 
instructions. 

Statistical analysis

Data analysis and statistics of experimental data 
were performed using either R software or Origin software 
(OriginPro 8.1G; OriginLabs). Differential expression 
analysis was based on the Kolmogorov–Smirnov test. 
Fisher-exact -test was used for categorical data. Pearson 
correlation was applied to detect correlations between 
genes of interest. All tests are two-sided and differences 
were considered statistically significant when p values 
were less than 0.05.

Analysis of human Gene Omnibus (GEO) 
datasets

Preprocessed and normalized data from the 
DNA microarray (Illumina human V2) GEO dataset 
(GSE13898  [14]) was analyzed for differential gene 

Table 1: Esophageal tissue microarray
Intensity of IMP2 immunohistochemical staining p-value

0 1 2 3
gender
female 0 3 7 5
male 1 18 23 15

age
mean 56 +/–0 55.7 +/–2.3 54.2 +/–2.3 58.7 +/–1.5

normal esophageal tissue 0 0 5 0
cancer adjacent tissue 0 3 2 0
chronic esophagitis 0 3 5 0
mild atypical hyperplasia 0 5 2 0
moderate and severe atypical hyperplasia 0 0 0 2 a0.0027 b0.047
adenocarcinoma 0 4 6 6

c0.0103adenosquamous carcinoma 0 0 1 0
squamous carcinoma 1 5 9 5
metastatic adenocarcinoma 0 0 0 3

d0.0042
metastatic squamous carcinoma 0 1 0 4

Table displays details of esophageal tissues referred to the intensity of IMP2 immunohistochemical staining (score 0 = no 
staining, score 1 = low intensity, score 2 = medium intensity, score 3 = strong intensity).
acompared to mild atypical hyperplasia; bcompared to normal esophageal tissue; ccompared to normal esophageal and cancer 
adjacent tissue; dcompared to adenocarcinoma, adenosquamous carcinoma, and squamous carcinoma.
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expression between esophageal adenocarcinoma (n = 64), 
Barret’s esophagus (n = 15) including no grade (n = 2), 
low grade (n = 7), and high grade dysplasia (n = 6), and 
non-tumor tissues (n = 28) samples. GSE28302 [24] 
was analyzed for differential gene expression between 
normal esophageal squamous tissue (n = 9) and Barret’s 
esophagus without dysplasia (n = 22). Pearson correlation 
was applied to detect possible co-expressions between 
genes of interest and other genes in the dataset. For sets of 
co-expressed genes, enriched Gene Ontology terms were 
identified from the biological processes (BP) track using 
Bioconductor package GOSim [25]. Participation of co-
expressed genes in the same KEGG pathway was tested 
using Bioconductor package org.HS.eg. 

For the same GEO dataset GSE13898, unsupervised 
hierarchical clustering of the expression levels of IMP2 
and the 93 marker genes forming the esophageal cancer 
cluster “C” in [7] was performed. For each marker gene, 
the signal-noise-ratio (SNR) was calculated as previously 
described [26] to test the stability of the suggested 
clustering. 

To get a hint about possible survival relations, 
SNR values for 53 marker genes constructing a risk 
classifier provided in Pennathur et al. [8] were computed. 
By unsupervised hierarchical clustering, these authors 
showed that 59 suggested marker genes divide samples 
of 64 patients into 2 well-differentiated clusters, in 
which patient samples show a different survival profile. 
In the GSE13898 dataset, 53 out of the 59 provided 
marker genes were present. Similarly, unsupervised 
hierarchical clustering was applied to the samples of 
untreated patients with esophageal adenocarcinoma 
(EAC) using available marker genes in addition to IMP2. 

Analysis of human The Cancer Genome Atlas 
(TCGA) dataset

Level 3 RNA-Seq data and related clinical datasets 
were obtained from TCGA (downloaded on April 22, 
2016).   Datasets were analyzed in R-cran environment 
using Bioconductor package edgeR [27–29] for differential 
gene expression between different clinical tumor stages. 
Information about clinical tumor stage was available for 
n = 64 samples. Samples of TCGA dataset informative for 
survival time (n = 57) were used for survival analysis by 
Kaplan-Meier survival plot.
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