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ABSTRACT
Gliomas are the most common and aggressive primary tumors in adults. The 

current approaches, such as histological classification and molecular genetics, have 
limitation in prediction of individual therapeutic outcomes due to heterogeneity 
within the tumor groups.  Recent studies have proposed several gene signatures to 
predict glioma’s prognosis. However, most of the gene expression profiling studies 
have been performed on relatively small number of patients and combined probes 
from diverse microarray chips. Here, we identified prognostic 89 common genes from 
diverse microarray chips. The 89-gene signature classified patients into good and bad 
prognostic groups which differed in the overall survival significantly, reflecting the 
biological characteristics and heterogeneity. The robustness and accuracy of the gene 
signature as an independent prognostic factor was validated in three microarray and 
one RNA-seq data sets independently. By incorporating into histological classification 
and molecular marker, the 89-gene signature could further stratify patients with 
1p/19q co-deletion and IDH1 mutation. Additionally, subset analyses suggested 
that the 89-gene signature could predict patients who would benefit from adjuvant 
chemotherapy. Conclusively, we propose that the 89-gene signature would have an 
independent and accurate prognostic value for clinical use. This study also offers 
opportunities for novel targeted treatment of individual patients.

INTRODUCTION

Gliomas are the most common and aggressive 
primary tumors in adults [1, 2]. Based on the histological 
appearance, gliomas can be subdivided into astrocytomas, 
oligodendrogliomas, and mixed oligoastrocytomas [3]. 
In 2007, World Health Organization (WHO) further 
subclassified gliomas into grade I (pilocytic astrocytomas), 
grade II (diffuse infiltrating low-grade gliomas), grade III 
(anaplastic gliomas, AA), and grade IV (glioblastomas 

multiforme, GBM) depending on the degree of 
aggressiveness [4].

In current clinical practice, histological classification 
is a critical prognostic factor that determines the choice of 
therapy. The response to therapy and the overall survival 
(OS) of glioma patients varies in different histological 
subtypes and grades [4]. Generally, oligodendrogliomas 
have a better prognosis than mixed oligoastrocytomas, and 
astrocytomas have the worst prognosis [3]. The median 
survival time is only 1.6 and 0.4 years for grades III 
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and IV gliomas, respectively [5]. However, histological 
classification has a limited role in the treatment decision 
and prediction of individual outcomes due to their 
subjective criteria and lack of reproducibility [6]. 
Therefore, recent molecular genetic analyses, such as 
1p/19q co-deletion and isocitrate dehydrogenase 1 (IDH1) 
mutation, have been extensively investigated to develop 
more objective approaches. Unfortunately, molecular 
genetic approaches are also limited by the heterogeneity 
within the tumor groups [7].

Recently, microarray gene analytic tools have been 
developed for diverse cancers for diagnosis, prognosis 
or prediction of therapeutic response [8–12]. In various 
cancers, there are several reports on gene expression 
profiles for its classification, prognosis and identification 
of biological processes including cell differentiation 
and proliferation [13–16]. However, most of the studies 
on glioma were performed on small number of patients 
and combined probes of diverse microarray chips. If the 
patients number is small, gene-expression profiles can 
vary according to the microarray platform and the analytic 
strategy, resulting in increased bias [17]. In previously 
published reports, the gene expression analyses on glioma 
also have a limitation due to the lack of reflected histology 
and molecular heterogeneity. In addition, well-defined 
target genes which predict chemotherapy response in 
glioma are rare.

In this study, we identified 89 common genes from 
diverse microarray chips using relatively large number of 
patients and investigated whether the 89-gene signature could 
be robustly validated in independent and combined data sets. 
Moreover, we attempted to establish a prediction model by 
incorporating the 89 gene set into other clinicohistological 
factors and molecular markers. Herein, we reported the 89-
gene signature that could predict the survival of patients as 
well as their response to chemotherapy.

RESULTS

Significant association of prognosis with two 
groups found by hierarchical clustering

We selected four microarray and one RNA-seq data 
sets, which consisted of GSE16011, TCGA, GSE4412 
and GSE4271. GSE16011 was used as the training data 
set because it had enough number of patients with clinical 
information such as grade, chemotherapy, radiotherapy, 
and gene mutation. Detailed informations for these data 
sets were described in Materials and Methods (Table 1). 

To generate a potential molecular classifier of glioma, 
genes with an expression level of at least 2-fold difference 
relative to median value were selected from the training 
data set. Then, hierarchical clustering was performed 
and the results revealed two major groups (n = 154 and 
n = 110) of glioma that differed in gene expression patterns 
(Supplementary Figure S1). Next, a stringent threshold cut-
off (p < 0.001 and 2.5 fold difference) was applied, and 

129 genes whose expression was tightly associated with 
the two groups were selected (Supplementary Figure S2). 
Because 89 genes were common among all training and 
validation data sets, they were used as prognostic signature 
(Figure 1A). To evaluate groups’ prognosis, Kaplan–Meier 
survival curves were plotted and the log-rank test showed 
significant difference in overall survival (OS) (p < 0.001, 
Figure 1B). Patients were classified into high and low risk 
groups by risk relied on differences in OS in the training set. 

A previous report showed that patients with grade II 
survived for more than 5 years, whereas the median 
survival time of patients in grade III was 1.6 years, 
indicating malignant gliomas [5]. The Kaplan–Meier 
plots and the log-rank test showed significantly different 
OS in all of the grades in training data set (p < 0.001, 
Supplementary Figure S3). Unfortunately, patients in 
grades II and III could not be stratified in the training set 
contrary to general findings in histological classification. 
However, our gene signature demonstrated a prognostic 
value beyond the standard clinical classification of grades.

Prognostic gene signature and clinical relevance

To investigate the association between prognostic 
gene signature and clinicohistological characteristics, 
including gender, grade and survival, Chi-square (χ2) 
test was performed in training data set (Table 2). The 
grade (p = 0.03) was significantly correlated to our gene 
signature, while other covariates were not associated. To 
evaluate prognostic accuracy of the 89-gene signature 
in combination with covariates, including patient age at 
diagnosis, gender, grade, and adjuvant chemotherapy, 
univariate and multivariate Cox proportional hazards 
regression analyses were performed using the training data 
set. In both of univariate and multivariate analyses, grade 
was significantly associated with OS (HR: 2.66, 95% CI 
2.11–3.36, p = 1.2e–16 and HR: 1.65, 95% CI 1.24–2.21, 
p = 0.001, respectively). Notably, the 89-gene signature 
showed stronger prognostic ability over histological grade 
(HR: 0.27, 95% CI 0.20–0.36, p = 3.8e–18 and HR: 0.23, 
95% CI 0.15–0.34, p = 8.8e–18, respectively) in both 
of univariate and multivariate analyses (Table 3). No 
significant difference was obtained in other covariates.

Validation of prognostic gene expression 
signature in independent validation data sets

To evaluate the robustness of the newly identified 
89-gene signature, validation processes were done on 
three independent microarray and one RNA-seq data 
sets of glioma. A flow chart of the validation procedure 
was described in Figure 2A. During leave-one-out cross-
validation (LOOCV), the specificity and the sensitivity for 
predicting groups in all validation data sets were 0.94 and 
0.93, respectively. To identify whether the gene signature 
could be a more accurate prediction model, we validated 
in the combined three validation data sets. As expected, 
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Table 1: Clinical and histological characteristics of patients with glioma

Variable EUMC GSE16011 TCGA UCLA GSE4412 MDAS GSE4271

Patients (n) 264 342 85 77
 Male 177 210 32 52
 Female 87 132 53 25
Age (years) 51 (11–82) 59 (10–89) 42 (18–82) 45 (22–82)
Grade (n) 
 I 6
 II 23
 III 84 26 21
 IV 151 342 59 56
Adjuvant chemotherapy (n)
 Yes 27 258
 No 168 61
 N/A 69 23
Radiotherapy
 Yes 193 280
 No 51
 N/A 71 11

Figure 1: Survival analysis of the training data set. (A) The heatmap of the median centered 89 genes’ expression profiles (red, 
relative high expression; green, relative low expression) between high and low risk groups in the training data set. (B) Kaplan-Meier plots 
of overall survival (OS) of the two groups in the training data set. The p values were computed by the log-rank test.
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the gene signature significantly classified patients into 
high and low risk groups (p = 4.9e–10, Figure 2B). Also, 
Kaplan-Meier plots predicted significant differences in 
prognosis in all independent validation data sets: TCGA 
(p = 0.001, Figure 2C), UCLA (p = 0.0002, Figure 2D) 
and MDAS (p = 0.005, Figure 2E). We also validated 
RNA-seq data from TCGA based on the 89-gene signature 
(p = 0.035, Supplementary Figure S4).

Association of the 89-gene signature with 
molecular pathway and mutation

To investigate whether the 89-gene signature could 
further stratify glioma patients associated with 1p/19q and 
IDH1 status, subset analyses were performed only in the 
training data set, because of the available clinical information. 
In both 1p/19q co-deletion and wild type groups, the 89-gene 
signature successfully classified patients into high and low 
risk groups (p = 2.16e–06 and p = 1.35e–11, Figure 3A–3B, 
respectively). Similarly, the 89-gene signature significantly 
classified patients with IDH1 mutation (p = 6.00e–04, 
Figure 3C) and wild type groups into high and low risk 
groups (p = 4.57e–09, Figure 3D). Consistent with previous 

reports demonstrating that the 1p/19q co-deletion and IDH1 
mutation generally have favorable prognosis [18–20], 
our study classified most patients in these groups into low 
risk, eighty seven (85.3%) and fifty five (70.5%) patients, 
respectively. On the contrary, the 1p/19q and IDH1 wild type 
groups were classified into high risk, one hundred sixteen 
(68.6%) and ninety eight (74.2%) patients, respectively.

Subset classification of age groups by the 89-gene 
signature 

To investigate the association of the 89-gene 
signature with age, patients were classified into under 
40 (young patients) and over 40 years of age (old 
patients) groups. Patients who are diagnosed with 
gliomas, younger age at diagnosis is a strong predictor of 
longer patient survival. In both age groups, the 89-gene 
signature significantly stratified patients in the combined 
training and validation data sets into high and low risk 
groups (p = 3.00e–04 and p = 7.7e–16, Figure 4A–4B, 
respectively). Consistent with recent report showing that 
patients under 40 years old have more favorable prognosis 
than patients over 40 years old [21], our study classified 

Table 2: Clinical and histological feature of two subgroups of gliomas patients in the EUMC 
(n = 264)

Variable High risk group Low risk group p-value 

No. of Patients 154 110 0.42

 Male 102 75

 Female 52 35

Grade 0.03

 I 5 1

 II 22 1

 III 66 18

 IV 61 90

Table 3: Univariate and multivariate Cox proportional hazard regression analyses of OS in the 
EUMC (n = 264)

Variable
Univariate Multivariate

HR (95% CI) p Value HR (95% Cl) p Value
Gender (Male or Female) 0.91 (0.69–1.19) 0.511 1.02 (0.74–1.40) 0.88
Age (< 40, > 40) 2.77 (2.02–3.78) < 0.001 1.75 (1.22–2.51) 0.002
Adjuvant chemotherapy 1.50 (0.96–2.32) 0.070 1.50 (0.96–2.35) 0.070
Grade (I, II, III, IV) 2.66 (2.11–3.36) 1.2e–16 1.65 (1.24–2.21) 0.001
Gene signature (High/Low risk 
group) 0.27 (0.20–0.36) 3.8e–18 0.231 (.15–.34) 8.8e–18
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most patients under 40 years as low risk and over 40 
years of age as high risk. One hundred thirteen (64.6%) 
patients were classified into low risk in under 40 years 
of age and 448 (75.5%) patients were classified into high 
risk in over 40 years of age group. In addition, the gene 
signature significantly classified patients in over 40 years, 
even not in under 40 years, in the training set (p < 0.001, 
Supplementary Figure S5A–S5B). Similar results were 
shown in patients in both groups in validation data sets 
(p = 6.00e–04 and p = 0.006, Supplementary Figure S5C-
S5D, respectively). 

Prognostic subclassification of patients with 
grades III and IV by the 89-gene signature

To evaluate whether the 89-gene signature could 
classify patients by grade into high and low risk groups in 

the training and validation data sets, patients were combined 
in each grade; I (n = 6), II (n = 23), III (n = 131) and IV (n = 
608). The 89-gene signature clearly stratified all combined 
patients into high and low risk groups (p < 0.001, Figure 5A). 
It could not significantly classify combined patients in grades 
I and II into two groups (p = 0.29, Figure 5B). However, the 
89-gene signature significantly separated patients in grade 
III and IV into high and low risk groups (p = 3.18e–12 and 
p = 2.12e–06, Figure 5C–5D, respectively). Thirty one 
(23.6%) and 100 (76.3%) patients were classified into high 
and low risk in grade III, respectively. Four hundreds seventy 
(77.3%) and 138 (22.7%) patients were classified in grade 
IV into high and low risk. Similar results were obtained in 
patients in grade III and IV in training set (Supplementary 
Figure S6A–S6B, respectively) and all combined validation 
data sets (Supplementary Figure S6C–S6D, respectively). 

Figure 2: Prognostic significance of the 89-gene signature in independent validation data sets. (A) Schematic overview 
of the strategy used for the construction of the prediction model and evaluation of predicted outcomes in three independent data sets by 
the 89-gene signature. (B) All combined validation data sets were stratified by the 89-gene signature into two groups. The p values were 
computed by the log-rank test. (C–E) Kaplan-Meier survival plots of overall survival (OS) of the two groups in three independent data sets: 
TCGA, UCLA, and MDAS. 
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Association of the 89-gene signature with benefits 
of adjuvant chemotherapy and radiotherapy

To find the association of the 89-gene signature with 
response to chemotherapy and radiotherapy, subset analyses 
were performed in TCGA data set, for which therapeutic 
information were available. As shown in Figure 6A and 6B, 
patients in both high and low risk groups benefitted 
from radiation therapy (p = 1.03e–27 and p = 4.89e–05, 
respectively). By incorporating the 89-gene signature 
into chemotherapy information, only high risk group was 
shown to obtain benefit compared to patients without 
chemotherapy. In high risk group, over half of patients 
(80.5 %) benefited from chemotherapy (p = 3.33e–16, 
Figure 6C). On the contrary, low risk group did not 
have significant benefit from chemotherapy (p = 0.062, 
Figure 6D). Interestingly, high risk group had better 
response to combined therapies (p = 0.02, Figure 6E), while 
low risk groups did not get benefit from combined therapies 
(p = 0.74, Figure 6F). Additionally, with the EUMC data 
set, similar results were observed in chemotherapy and 
radiotherapy (Supplementary Figure S7A–S7F).

Protein network and gene ontology in the 
89-gene signature

The 89 probe sets corresponded to 89 annotated 
genes (Supplementary Table S1). So, we could clarify 
protein interactions of 89 genes in the 89-gene signature. 
To understand how these genes could be involved in 
networks related to glioma, we performed analysis using 
the STRING database that was able to elaborate physical 
and functional associations among proteins. The results 
showed that 81 out of 89 genes were closely connected 
in a single network (Supplementary Figure S8). We also 
investigated interactions using the Ingenuity Pathway 
Analysis (IPA) software and found putative networks 
related to NF-KB, STAT3, and AP-1 transcription factors 
(Supplementary Figure S9). In addition, 23 genes were 
involved in the activation of these transcription factors 
pathways. To identify the biological function of genes 
in the 89-gene signature, we performed GO enrichment 
analysis in DAVID, and then revealed 89 significant 
biological pathways involved in glioma. The top 61 
important pathways with p < 0.05 were selected. They 

Figure 3: Significant association of the 89-gene signature with molecular pathways and mutation in the training data 
set. (A–B) Kaplan-Meier curves of patients in 1p/19q co-deletion and wild type groups. (C–D) IDH1 mutation and wild type groups in the 
training data set. Patients were classified by the 89-gene signature. The p values were computed by the log-rank test.
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are involved in multiple cancer-related processes, such as 
cell-cell signaling, wound healing, inflammatory response 
(Supplementary Table S2). 

DISCUSSION 

Several reports have been published to predict 
prognosis in gliomas [3, 13–15]. Studies based on 
gene expression profiles have been reported to classify 
patients according to known prognostic factors; however, 
no report has yet predicted chemotherapy response 
in gliomas. An unsupervised clustering approach was 
integrated to construct the 89-gene signature from the 
training set. The 89-gene signature was validated for its 
prognostic significance in three microarray independent 
data sets (TCGA, UCLA and MDAS) and one RNA-
seq data (TCGA). Univariate and multivariate analyses 
showed significant association of the prognostic gene 
signature with survival after adjusting clinical covariates. 
In addition, the 89-gene signature has the ability to 
identify patients benefiting from chemo-and radiotherapy. 
Therefore, the established gene signature might be helpful 
in clinical management.

 Tumor grade is the major clinical variable used 
to make glioma treatment decisions [3]. However, 
heterogeneity observed in therapeutic response among 
patients within the same histological grade indicates that 
histological classification is not an adequate predictor 
of the clinical behavior of a tumor [22]. Moreover, 
histological classification is based on subjective criteria, 
and lacks reproducibility [6]. In the present study, 
although patients in low risk group more often were 
presented with grade IV glioma than those in high risk 
group (Table 2), patients in high risk group showed poorer 

OS than those in low risk group. Considering the above 
results, we concluded that the 89-gene signature was more 
correlated with survival than histological classification, a 
finding which is also supported by previous reports [6, 14]. 
Additionally, the 89-gene signature stratified patients with 
grades III and IV glioma into high and low risk groups. 
Interestingly, patients with grades I and II glioma could 
not be stratified into two risk groups using this signature. 
Although we cannot definitively assert why the 89-gene 
signature could not stratify patients with grades I and 
II glioma, we hypothesize that this is due to the small 
number of patients analyzed in this study. Considering 
that grades III and IV gliomas are rapidly progressive 
malignant tumors [4], it is noteworthy that the 89-gene 
signature could stratify these patients even harboring 
tumor heterogeneity.

Recently described molecular markers, such as 
IDH1 mutation and 1p/19q co-deletion, are considered 
predictive of clinical outcomes for glioma patients 
[18, 23]. The IDH1 mutation is a strong predictor of 
outcome irrespective of histological type and grade 
[18, 19]. However, several studies have shown a higher 
rate of malignant transformation in IDH-mutated low 
grade glioma than in wild-type IDH1 tumors, showing 
that a subset of patients with the IDH1 mutation are 
characterized as having secondary glioblastoma [24, 25]. 
Additionally, oligodendrogliomas with 1p/19q co-
deletion have been shown to progress more slowly and 
respond better to treatment [20, 26, 27]. However, the 
prognostic value of 1p/19q co-deletion in glioblastoma 
remains unknown [28]. Considering of diverse studies, 
molecular markers should be further defined according to 
molecular heterogeneity. In the present study, the 89-gene 
signature could stratify patients with IDH1 mutation and 

Figure 4: Kaplan-Meier survival analysis of the 89-gene signature in age. (A) Patients under 40 years of age group in the 
combined training and validation data sets were stratified into high and low risk groups. (B) Patients over 40 years of age group in the 
combined training and validation data sets were stratified into high and low risk groups. The p values were computed by the log-rank test.
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1p/19q co-deletion status into high and low risk groups. 
In agreement with previous studies, most patients with 
the IDH1 mutation and 1p/19q co-deletion were classified 
as low risk, whereas most patients who had wild type 
for these markers were classified as high risk. However, 
it is meaningful that we could precisely predict the 
clinical behavior of tumors in individual patients within 
same molecular state. Additionally, these results suggest 
that the 89-gene signature has overcome the limitations 
of genetic molecular approaches in assessing tumor 
heterogeneity. By incorporating our gene signature into 
clinical information, patients could get more benefits in 
clinical practice.

Recent reports have shown that glioblastoma 
patients under the age of 40 years survive longer 

than those patients over 40 years [21]. In the present 
study, young age (< 40) was an independent significant 
prognostic factor. However, it remains unclear whether 
young age confers a favorable prognosis for children 
with glioblastoma [29]. One previous study reported 
that the prognosis was unfavorable for pediatric patients 
with glioblastoma. Another study reported favorable 
prognosis for glioblastoma patients over 70 years old, with 
a 2-year overall survival rate of 20% [30]. Considering 
the heterogeneity in prognosis within a single age group, 
more defined prognostic factors might be required to 
stratify such patients. Our study showed that the 89-gene  
signature could further stratify both young and old 
patients into high and low risk groups. As expected based 
on previous reports, most young patients (64.6%) were 

Figure 5: Kaplan-Meier survival analysis of the 89-gene signature in grades. (A) Patients in all grades in the combined 
training and validation data sets. (B) Patients in grades I and II in the combined training and validation data sets. (C–D) Patients in 
grades III and IV in the combined training and validation data sets. Each group was classified into high and low risk groups. The 
p values were computed by the log-rank test.
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classified as low risk, whereas most old patients (75.5%) 
were classified as high risk, suggesting that the 89-gene 
signature could be of clinical value by subclassifying 
patients within same age group and so helping to make 
treatment plan decisions for individual patients. 

Generally, adjuvant chemotherapy (ACT) and 
radiotherapy (RT) after surgery constitute the standard 
treatment in glioblastoma grade IV [31, 32]. However, 
addition of ACT to RT remains controversial in grade III 
anaplastic gliomas [3]. Unfortunately, no gene signatures 
related to ACT sensitivity in glioma have been discovered 
yet, although one prior study involving the EUMC data set 
with small number of patients who had ACT demonstrated 
that some genes were implicated in chemoradiation 
sensitivity [13]. Our subset analysis of patients with 

available chemotherapy information suggested that the  
89-gene signature could predict patients who would 
benefit from ACT. Our study showed that patients in high 
risk group had significantly improved outcome with ACT, 
whereas patients in low risk group did not get significant 
benefit from ACT in all patients with available treatment 
data sets. Considering that high risk group carried a poorer 
prognosis than those in low risk group, our 89-gene 
signature has the potential to facilitate clinical decisions 
on using ACT for grade III glioma because of a poorer 
prognosis. The utility of the gene signature for treatment 
management in glioma still needs to be further evaluated 
in a prospective ACT clinical trial. 

Most of the identified 89 genes play a critical role 
in aggressiveness, angiogenesis, local invasion, migration, 

Figure 6: Kaplan-Meier survival analysis of the 89-gene signature with adjuvant chemotherapy and radiation 
therapy. (A–B) Patients in high and low risk groups with radiotherapy in TCGA data set. (C–D) Patients in high and low risk groups with 
chemotherapy in TCGA data set. (E–F) Patients in high and low risk groups with combined therapies in TCGA data set. Each group was 
stratified according to chemotherapy, radiotherapy, and combined therapies. The p values were computed by the log-rank test. 
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and proliferation. These genes included COL1A2, 
COL3A1, CLO6A3 [33], FABP7 [16, 34-37], GDF-15, 
SH3GL2 [38, 39], ADM, VEGFA, and PTX3 [40, 41]. 
Our gene signature also contained proneural genes, BMP2, 
DCX, IGFBP2, PDPN, and PLAT, which are associated 
with anaplastic oligodendroglioma harboring 1p/19q 
co-deletion [42]. The proneural genes indicate a better 
prognosis of malignant glioma [43]. The 89-gene signature 
consists of a number of hypoxia and inflammation-
related genes such as AKR1C3 [44], PTX3, PLAT [45] 
and IGFBP2 [46], showing that these two inseparable 
hallmarks are involved in tumor progression [47, 48] and 
play significant roles in glioma pathogenesis. Purinergic 
signaling related genes such as GPR17 [49], VEGFA [50] 
and CCL2 [51] are involved in inflammation leading to 
glioma growth [52, 53]. In addition, BCAT1 was reported 
to promote cell proliferation in gliomas carrying wild-type 
IDH1 [54]. Our gene signature also possessed several 
genes related to clinical characteristics of recurrent 
glioblastoma. Furthermore, genes such as AKR1C3, 
ETNPPL, FXYD1, SH3GL2, SH3GL3, SNAP91, and 
SYT1 have important role in reprograming and are 
also involved in drug resistance [55]. Additionally, IPA 
revealed that most of the genes were controlled by NF-KB, 
STAT3, and AP-1 transcription factors. These transcription 
factors play a vital role in cancer and are important 
regulators of immune and inflammatory functions [56–58]. 
Finally, many novel genes including CHRNA9, CNGA3, 
FERMT1, FZD7, GABRB3, METTL7B, USD5, and 
SYT4 were also identified, suggesting that our 89-gene 
signature contains novel information which may provide 
new biomarkers to assist in clinical decision making 
concerning new opportunities for targeted treatment of 
individual patients.

In conclusion, we identified the 89-gene signature 
as a highly discriminative predictor of prognosis. The 
prognostic value of the 89-gene signature was statistically 
significant in a reliable and reproducible manner across 
independent and combined data sets. Furthermore, 
our study revealed that patients could be stratified into 
high and low risk groups with different OS regardless 
of histology classification and molecular markers. In 
addition, the 89-gene signature might suggest which 
patients would benefit from ACT. Therefore, we propose 
that the 89-gene signature has an independent and 
accurate prognostic value for clinical use. Also, this study 
offers new opportunities for novel targeted treatment of 
individual patients.

MATERIALS AND METHODS

Patients and gene expression data

All gene expression data sets were obtained from 
the National Center for Biotechnology Information Gene 
Expression Omnibus database (http://www.ncbi.nlm.nih.

gov/geo) and The Cancer Genome Atlas database (http://
cancergenome.nih.gov/). Data were selected based on 
following criteria: raw CEL files and clinical information 
of patients with survival event and time. The raw data 
were preprocessed using robust multiarray averaging 
(RMA) method for normalization. Gene expression data 
from the GSE16011 (n = 264, Erasmus University Medical 
Center (EUMC)) was used as the training data set. The 
Cancer Genome Atlas data (TCGA, n = 342), GSE4412 
(n = 85, University of California Los Angeles (UCLA)) 
and GSE4271 (n = 77, MD Anderson (MDAS)) were used 
as validation data sets (Table 1). To test the prognostic 
significance of gene expression signature, we used only 
gene expression data with available survival data. The 
information of adjuvant chemotherapy and radiotherapy 
were available for only 285 and 473 patients respectively 
from EUMC and TCGA data sets. In addition, RNA-seq 
data from TCGA (n = 165) was also used as validation 
data set (https://genome-cancer.ucsc.edu).

Development of the prognostic gene expression 
signature

A gene expression signature was developed from the 
EUMC data set. Gene expression was generated by using the 
Affymetrix GeneChip Human Genome U133 Plus 2.0 chip 
set. Differentially expressed probe sets were identified among 
two classes using a random-variancet test. Differences of 
probe sets’ expression between two classes were considered 
statistically significant if their p value was less than 0.001. A 
global and permutation tests were performed to investigate 
whether the expression profiles differed between the classes. 
The cluster analysis was performed with Cluster 3.0 (http://
bonsai.hgc.jp/~mdehoon/software/cluster) and Tree View 
(http://www.eisenlab.org/eisen/). Although initially 129 
probe sets were identified for constructing prediction models 
in t test analysis, only 89 probe sets, which were shared in 
both U133 Plus 2.0 and U133A, were used for all validation 
data sets (Supplementary Table S1). 

Validation of the prognostic gene expression 
signature

The validation of the gene signature was 
accomplished on independent data sets. Gene expression 
data from validation data sets were adjusted individually by 
subtracting the median expression value across the samples. 
To integrate each validation data set for constructing 
prediction models, 89 probe sets were aligned in each data 
set. To further refine this model and to sub-stratify the 
predicted outcomes, Compound Covariate Predictor (CCP) 
was utilized as a class prediction algorithm [59]. Gene 
expression data in the training set were combined to form a 
classifier according to CCP. The robustness of the classifier 
was estimated by the misclassification rate determined 
during the leave-one-out cross-validation (LOOCV) in the 
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training set. During prediction, the cross-validation process 
omitted one sample at a time. For each sample omitted, the 
entire analysis was repeated from scratch, including the 
determination of genes which were univariately significant 
on the reduced training sample. From that gene list, a 
multivariate predictor was constructed and applied to the 
sample that was omitted. The program recorded whether 
that prediction was correct or not. This was repeated, 
omitting all of the samples one at a time. 

Kaplan–Meier survival analyses were performed 
after the patient classification into two predicted 
subgroups, and Chi-square (χ2) and log-rank tests 
were used to evaluate the survival risk between two 
predicted subgroups of patients. The uni-and multi-
variate Cox proportional hazards model were used to 
evaluate independent prognostic factors associated with 
survival,  gene signature, tumor grade, age, and adjuvant 
chemotherapy as covariates. 

Pathway analysis 

To perform pathway analysis on these expressed 
genes between subtypes, we used GO term enrichment 
analysis, using the Database for Annotation, Visualization 
and Integrated Discovery (DAVID) bioinformatics 
resource (http://david.abcc.ncifcrf.gov/home.jsp). Pathway 
analysis was performed to map genes to the Biological 
Process (BP) categories of GO and then calculate the 
significance of overrepresented categories in the selected 
gene list. The p value less than 0.05 was used to define 
significant pathways.

Gene network analysis

Protein-protein interactions were predicted using the 
Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database v10.0 (http://www.string-db.org/). 
Proteins were linked based on the following six criteria; 
neighborhood, gene fusion, co-occurrence, co-expression, 
experimental evidence and existing databases [60]. 
Ingenuity Pathways Analysis (IPA) (http://www.ingenuity.
com) was also used for gene network analysis, using a 
global molecular network developed from information 
contained in the Ingenuity Knowledge Database. Identified 
gene networks were ranked to score (z-score = 02).

Statistical methods of microarray data
Microarray data and heatmap were analyzed using 

BRB-Array Tools Version 3.0 (http://linus.nci.nih.gov/
BRB-ArrayTools.html). All other statistical analyses were 
accomplished in the R language environment (http:///
www.r-project.org) and Statistical Package for Social 
Sciences (SPSS) software (version 20, SPSS Inc, Chicago, 
IL, USA). In all statistical analyses, p value of less than 0.05 
was considered significant.
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