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ABSTRACT

The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the 
transformation of epithelial cells, through the disruption of p53 and Rb function. The 
binding of cellular transcription factors to cis-regulatory elements in the viral Upstream 
Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that 
the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR 
and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 
transcription through the transactivation of multiple cellular transcription factors. NF-
YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional 
p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, 
we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging 
agent Doxorubicin, via p53-mediated transcriptional response.

INTRODUCTION

The infection with high-risk human papillomavirus 
(HPV), usually of type 16 and 18, is the main cause 
for cervical cancer [1, 2]. In the course of cancer 
development, the HPV genome is frequently integrated 
into host-cell DNA. The open reading frame (ORF) of E2, 
E4, E5, and part of L2 genes are deleted after integration. 
Differently, the E6 and E7 early genes are preserved 
and encode for oncoproteins, which are responsible for 
initiation and progression of cervical cancer [2, 3]. E6 and 
E7 can independently immortalize human cells, but their 
cooperation results in a robust increase in transforming 
activity in most types of primary cells [4, 5]. E7 interacts 
with and degrades retinoblastoma (Rb), thus triggering 
E2F-dependent gene transcription of S-phase genes 
[6, 7]. Prominent functions of E6 are the degradation 
of the oncosuppressor p53 [8] and the inhibition of its 
transcriptional activity [9]. In addition, E6 degrades 
the pro-apoptotic protein BAX, leads to transcriptional 
activation of hTERT [10] and inhibits the degradation of 
SRC-family kinases [11].

The expression of E6 and E7 is transcriptionally 
controlled by specific elements within the viral Long 

Control Region (LCR), also termed Upstream Regulatory 
Region (URR), a non-coding sequence between the 
ORFs of L1 and E6 genes. To date, only a handful of 
Transcription Factors (TFs) have been associated to 
positive regulation of HPV transcription, such as AP1, 
SP1, Oct1, YY1 and NF1 [12]. The TRANSFAC database 
revealed that other TFs could control HPV early gene 
expression, and ChIP assays detected FOXA1 and MYC 
binding to HPV18 URR [13]. More recently, ChIP-seq data 
from Hela-S3 cells have been re-analyzed to determine the 
occupancy of TFs on the integrated HPV18 genome [14]. 
Elk1, IRF3, MafK, MAZ, USF2 and ZKSCAN have been 
pointed out as possible HPV18 regulators.

The CCAAT sequence-specific transcription factor 
NF-Y activates the expression of multiple genes involved 
in cell proliferation [15]. NF-Y is composed of three 
subunits, NF-YA, NF-YB and NF-YC, whose association 
is necessary for DNA binding and transcriptional activity. 
A connection between NF-Y and p53 exists [16]. First, 
the inactivation of NF-YA, the regulatory subunit of the 
complex, triggers DNA damage and the activation of p53-
mediated apoptosis [17]. Second, NF-Y and p53 interaction 
is required for the repression of cell cycle CCAAT-genes 
following DNA damage (18–21). Finally, NF-YA is the 
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target of PANDA, a p53-induced lncRNA involved in the 
regulation of apoptosis and senescence [22, 23].

Distinct effects were observed on cell cycle and 
gene transcription following NF-YA or NF-YB loss in 
wtp53-positive cells [17]. NF-YA knock-down suppresses 
cell growth by impairing S phase progression [17, 24]. 
Replication defects are coupled with DNA damage 
response, p53 activation and apoptotic cell death. 
Differently, NF-YB inactivation triggers a delay in the 
G2/M progression without p53 activation, DNA damage 
response or overt apoptosis. Nevertheless, the GO term 
“apoptotic program” is significanly enriched in genes up-
regulated both by NF-YA and NF-YB knock-down [17].

Here, we show a new connection between NF-Y and 
p53 in HPV18+ cancer cells. NF-Y binds viral URR and 
transcriptionally induces HPV18 genes. By mutational 
analysis and Chromatin Immunoprecipitations (ChIPs), 
we identified a non-consensus NF-Y binding motif within 
the URR. NF-YA loss reduces the expression of E6 and E7 
viral genes and results in the re-activation of a functional 
p53. This in turn triggers apoptotic cell death. Analysis of 
gene expression profiles in NF-YA-inactivated Hela cells 
indicates that NF-Y transactivates other key TFs driving 
the expression of viral genes. Finally, we show that NF-YA 
loss sensitizes Hela cells to Doxorubicin treatment.

RESULTS

NF-YA loss induces p53 and apoptotic cell death 
in Hela cells

We previously showed that p53-lacking HCT116 
cells were less sensitive to apoptosis following NF-YA 
inactivation, compared to isogenic wt p53 cells [17]. In the 
course of that study, we noticed that NF-YA inactivation 
in Hela cells, which do not express p53 protein, led to a 
strong decrease in cell proliferation. Here we observed 
that SubG1 events raised from about 3% in cells infected 
with scramble shRNA (SHC) to 16% upon NF-YA loss 
(shNF-YA) (Figures 1A and 1B). Cytofluorimetric analysis 
of AnnexinV staining confirmed that about 16% of shNF-YA 
cells were apoptotic, as observed in p53+ cells [17] (Figure 
1C). Western Blot analysis of PARP1, whose cleavage is a 
hallmark of caspase-mediated apoptosis, further confirmed 
the activation of apoptosis (Figure 1D).We reasoned that 
NF-YA loss could re-activate p53, whose gene status is wt 
in Hela cells. Indeed, the expression of γH2AX, marker of 
DNA damage response, and p53 increased in shNF-YA cells 
compared to control cells (Figure 1D). In order to rule out the 
possibility that off-target effects were causing the described 
effects, we used pooled shRNAs targeting different exons of 
NF-YA. p53 and apoptosis raised also in these experimental 
conditions (Supplementary Figure S1A). qRT-PCRs were 
performed to assess mRNA levels of p53. In shNF-YA cells, 
p53 transcription significantly increased, in opposition to 

NF-Y-regulated cell cycle genes (Ccnb1, Ccnb2, Cdc2 and 
Top2A) (Figure 1E). Similarly, NF-YA inactivation resulted 
in activation of apoptosis and p53 re-expression in C4-I cell 
line, derived from a HPV18+ squamous cell carcinoma of the 
uterine cervix (Supplementary Figure S1B).

A functional p53 would be expected to drive 
expression of its own target genes: we therefore analyzed 
Affymetrix gene expression profiles, obtained after 72 
hours from infections with scramble and NF-YA-targeting 
shRNAs [25]. 1492 genes were down-regulated and 1500 
genes were up-regulated upon NF-YA loss, considering 
a threshold of 1.3-fold difference and a p-value smaller 
than 0.1. We analyzed the affected promoters by pscan, 
a software for the identification of enriched TFBS 
(Transcription Factors Binding Sites) [26]. NF-Y sites 
were over-represented in down-regulated genes (p-value= 
2,41923E-14), indicating that NF-Y removal significantly 
decreased CCAAT-driven transcription (Figure 2A). 
Additional TFBS were found, hinting that NF-YA loss 
could inhibit the expression of genes regulated by other 
TFs. In agreement with this, we know that: i) NF-Y 
transcriptionally activates specific TFs, such as E2F1 and 
Myc, and ii) a transcriptional partnership exists between 
NF-Y and other growth-controlling TFs [24, 25, 27-29]. 
KEGG analysis was performed with the three sets of up and 
down-regulated genes, and cell cycle was the major term 
identified in this cluster (Figure 2B), as already observed in 
HCT116 cells [17]. The NF-Y motif was less represented 
in activated genes (p-value= 9,96824E-05), suggesting that 
increased gene expression was at least in part due to indirect 
effects. Importantly, the terms p53 signaling pathway and 
apoptosis were identified as the major represented KEGG 
terms in shNF-YA cells. These data support the hypothesis 
that NF-YA abrogation triggers the activation of functional 
p53. The heat map in Figure 2C highlights the differential 
expression of p53-target genes upon NF-YA loss. These 
results were validated by qRT-PCRs on bona fide p53-
targets. The levels of Cdkn1a (p21Waf1/Cip1), Bax, Puma 
and the p53-dependent inducible Mdm2-P2, but not the 
p53-independent constitutive Mdm2-P1 transcript [30], 
significantly increased (Figure 3A). To verify whether p53 
was functionally active, its association to regulatory regions 
of target genes was investigated by ChIP. A robust increase 
in p53 binding to the promoters of Cdkn1a, Mdm2-P2, Bax 
and Puma was induced by NF-YA depletion (Figure 3B).

Taken together, these results indicate that NF-YA 
inactivation in HPV18+ cells reactivates a functional p53, 
which in turn induces the expression of anti-proliferative 
and pro-apoptotic genes.

NF-Y regulates the transcription of HPV 
oncogenic genes

Altered regulation of the E6 gene could be the cause 
of p53 re-activation in NF-YA depleted cells. Western blot 
and qRT-PCR analysis showed a time-dependent decrease 
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Figure 1: NF-YA inactivation in Hela cells triggers activation of apoptotic cell death and p53. A. Growing curve of Hela 
cells infected with shCTR and shNF-YA. Time points are indicated. Statistical significance was calculated with independent t-test at 
120h (* p < 0.05). B. Percentage of subG1 events determined by Propidium Iodide-FACS analysis of Hela cells 96h post infection with 
shCTR and shNF-YA lentiviral particles. Statistical significance was calculated with independent t-test (** p < 0.01). C. Percentage of 
AnnexinV-positive cells 96h post infection with shCTR and shNF-YA. Statistical significance was calculated with independent t-test 
(** p < 0.01). D. Expression levels of the indicated proteins in Hela whole cell extracts 72h and 96h post-infection with shCTR and 
shNF-YA. Actin was used as loading control. E. q-RT PCR analysis of the indicated transcripts 72h and 96h post-infection with shCTR 
and shNF-YA. The housekeeping hRpl19 gene has been used for normalization. Statistical significance is calculated with independent t-test 
(* p < 0.05; ** p < 0.01). Error bars indicate Standard Error of the Mean (SEM).
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in E6 levels following NF-YA inactivation in Hela and 
C4-1 cells (Figure 4A, 4B and Supplementary Figure 
S1C, S1F). We detected a similar decrease in E7 mRNA 
expression, which is also controlled by the URR.

Genomic analysis identified two putative NF-Y 
binding sites within the URR: the first, at -394bp from 
the TSS, is an inverted CCAAT (ATTGG) sequence, 

conserved in both African (Af) and non-African (non-Af) 
HPV18 lineages [31] The second one, at -232bp, is 
represented by a canonical ATTGG motif in the Af and 
non-canonical CTTGG sequence in the non-Af lineage 
(Supplementary Figure S2). To assess gene expression 
driven by URR, we used the HPV18-URR pGL3-
Luciferase reporter plasmid, which contains the upstream 

Figure 2: NF-YA loss activates a p53-dependent transcriptional response. A. Pscan analysis of Transcription Factors Binding 
Sites (TFBS) with relative p-values in down-regulated genes following NF-YA inactivation by shRNA. B. KEGG analysis of up- and 
down-regulated genes retrieved from gene expression profiles of NF-YA-inactivated cells. C. Heat map of p53-target genes upon NF-YA 
abrogation.
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ATTGG and the downstream CTTGG sequences [32]. 
NF-YA inactivation significantly reduced HPV18-URR-
Luc activity, with respect to control cells (Figure 4C). 
Thereafter, we mutated the -394 element either in the 
core ATTGG -to ATGTG (mut1) or CGGTT (mut2)- or 
in the flanking nucleotides on both the 5’ and 3’ ends 
(mut3), potentially improving the quality of the putative 

binding site [33]. We also mutated the -232bp element 
from CTTGG to CGGTT (mut4). These constructs were 
transfected in Hela cells: reporter activity of mut1 or mut2 
was not reduced, and mutations of the flanking regions 
marginally enhanced HPV18 activity. Differently, the 
activity of mut4 was substantially reduced (Figure 4D). 
NF-YA loss decreased mut4-Luc activity (Figure 4E), 

Figure 3: Activation of functionally active p53 in NF-YA-inactivated Hela cells. A. qRT-PCR analysis of bona fide p53 target 
genes 72h and 96h post-infection with shCTR and shNF-YA. Amplified genes are indicated. Statistical significance was calculated with 
independent t-test (* p < 0.05; ** p < 0.01). B. ChIP analysis of p53 binding to the regulatory regions of Cdkn1a, Mdm2-P1, Mdm2-P2, 
Bax and Puma genes in shCTR and shNF-YA cells 96h after infection. CTRL- represents a CCAAT-less negative control region, localized 
at about 5000bp upstream of the Myc gene. The p53 enrichment was determined as percentage of IP recovery. Statistical significance was 
calculated with independent t-test (* p < 0.05; ** p < 0.01). Error bars indicate SEM.
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Figure 4: NF-Y transcriptionally controls the expression of HPV18-URR driven genes. A. Western Blot analysis of E6 
protein in whole cell extracts from Hela infected with shCTR and shNF-YA for 72h and 96h. Tubulin was used as loading control. B. 
Relative expression levels of E6/E7 genes normalized to the hRpl19 transcript in shNF-YA cells versus shCTR, arbitrarily set at 1. Statistical 
significance was determined with independent t-test (** p < 0.01). C. Upper panel: schematic representation of CCAAT boxes position 
in HPV18-URR, cloned upstream of the luciferase (LUC) reporter gene. Lower panel: relative HPV18-URR-driven luciferase activity in 
shCTR and shNF-YA cells. Statistical significance was calculated with independent t-test (** p < 0.01). D. Relative luciferase expression 
of mutant promoters with respect to wt HPV18 promoter. Statistical significance was calculated with independent t-test (* p < 0.05; **** p 
< 0.0001). The table indicates the position and sequence of the two wt and mutated NF-Y-motives. E. Relative luciferase activity of wt and 
mut4 HPV18 URR in shCTR and shNF-YA cells. F. ChIP analysis of NF-YA, c-FOS and TBP binding to HPV18-LCR, c-Myc promoter 
and negative control region (CTRL-) in Hela cells. Enrichment was calculated as percentage of IP recovery. Statistical significance was 
calculated with independent t-test between promoters of interest and CTRL- region (* p < 0.05; ** p < 0.01). Error bars indicate SEM.
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hinting at NF-Y indirect mechanisms occurring in URR 
regulation.

Having established the functionality of a CCAAT-
like DNA element, we wished to ascertain whether the 
role of NF-Y on HPV18 transcription was direct. Analysis 
of Hela-S3 ENCODE ChIP-Seq data scored negative in 
the HPV18 genome area, either for NF-YA or NF-YB 
[14]. Nevertheless, we decided to perform qChIPs in Hela 
cells with anti-NF-YA antibody (Figure 4F). A significant 
enrichment in NF-YA binding to HPV18-LCR was 
observed over control IgG, similar to the levels found in 
the human Myc CCAAT-promoter bound by NF-Y [24]. 
As positive controls, the same viral region showed binding 
of FOS and TBP, known to associate to HPV18-LCR 
[14]. All together, these results suggest that NF-Y directly 
affects HPV18 transcription by binding to a non-canonical 
CCAAT element within the URR region.

NF-YA inactivation affects the expression of TFs 
involved in HPV18 transcription

We next wondered whether NF-Y could be involved 
in the regulation of other TFs identified as regulators of 
viral genes. AP1 (Jun/Fos), E2F1, SP1, Myc and Elk1 
are associated to HPV18-LCR by ChIP-seq analysis 
[14], and some of them are indispensable for viral gene 
expression [12, 34, 35]. Jun, JunB and Fos, members of 
the AP1 complex, E2F1, Myc, Elk1 and SP1 were indeed 
down-regulated at the transcriptional level following 
NF-YA inactivation in Hela cells (Figure 5A). Western 
blot analysis showed a decrease in protein levels as well 
(Figure 5B). With the exception of Fos, all the other TFs 
have canonical NF-Y-motives within their regulatory 
regions. Consequently, we checked whether NF-Y could 
function as direct transcriptional regulator. ENCODE data 
from Hela-S3 ChIP-seq are positive for NF-Y binding in 
all of the analyzed genes, Fos excluded (Figure 5C). Thus, 
in addition to a direct role, NF-Y could indirectly induce 
HPV18 transcription through the transactivation of TFs 
that cooperate in viral transcription.

NF-YA loss sensitizes cells to Doxorubicin-
induced cell death

We then investigated whether p53 activation via 
shNF-YA could sensitize HPV18+ cells toward DNA-
damaging agents. Hela cells were insensitive to 0.1µM 
Doxorubicin (Doxo), a DNA intercalator used in clinics 
for a broad spectrum of tumors. Indeed, p53 expression 
and apoptosis did not increase in Doxo versus control 
cells (Supplementary Figure S3). Untreated and Doxo-
treated cells were infected with shRNA lentiviral particles 
at low MOI, in order to lower NF-YA expression without 
inducing strong apoptotic cell death (subG1~4% in shNF-
YA untreated cells) (Figure 6A). The concurrent treatment 
with Doxo and shNF-YA (shNF-YA+Doxo cells) activated 

an evident cell death response (subG1~16%). Consistently, 
the expression levels of p53, p21 and cleaved-PARP1 
increased in shNF-YA+Doxo cells (Figure 6B). qRT-
PCRs showed a significant increase in the levels of p53-
target genes in shNF-YA+Doxo cells, compared to both 
single treatments (shCTR+Doxo and shNF-YA+DMSO) 
(Figure 6C). Differently, no synergistic effect was observed 
on the transcriptional activation of Bax. The expression of 
NF-YA, E6 and E7 genes decreased following NF-YA loss, 
as expected, and did not change upon Doxo administration. 
p53 knock-down in NF-YA-inactivated cells significantly 
reduced SubG1 events triggered by Doxo treatment (Figure 
6D, 6E). Consistently with p53 loss, the transcription levels 
of p53-target genes decreased (Figure 6F).

In summary, even incomplete ablation of NF-YA 
leads to increased sensitivity to a DNA-damaging agent, 
via activation of a p53-mediated transcriptional response.

DISCUSSION

Our study shows that the abrogation of NF-YA 
triggers p53-mediated apoptosis in HPV18+ cells. We 
demonstrate that NF-Y is a transcriptional activator 
of HPV18-URR gene expression by binding to a non-
canonical inverted CCAAT box, located at -232bp from the 
TSS. Interestingly, this NF-Y-bound sequence (CTTGG) 
partially overlaps with a previously identified NF1 binding 
site (TTGGCT) (Supplementary Figure S4). Coherently 
with our results, mutation of the NF1 site, that abolishes 
NF1 binding but preserves the NF-Y motif (CTTGGta), 
does not reduce the activity of HPV18 URR in Hela cells 
[36]. This hints at a predominant role of NF-Y within these 
two overlapping TFBS.

HPV high risk types 16 and 18 share some common 
transcriptional regulators, such as SP1 and AP1 [12]. 
Nevertheless, neither canonical NF-Y motives nor the 
non-conserved element here described were identified in 
HPV16 URR (Supplementary Figure S4).

The restoration of active p53 can be achieved in 
HPV18+ cells through pharmacological treatments, such 
as Celecoxib or the combination of Actinomycin D with 
Leptomycin B [37, 38]. Also the targeting of TFs involved 
in HPV transcriptional regulation, such as NF90/NF45 [39, 
40], has been used as p53-activating strategy. We established 
here that NF-Y targeting reactivates functional p53 as well. 
Note that NF-Y inactivation induces p53 post-translational 
modifications [17, 41] and reduces the basal expression of 
CCAAT box-containing proteasome genes [42]. Therefore, 
it is likely that these mechanisms can cooperate with E6 
down-regulation to restore functional p53 upon NF-YA loss.

We also investigated the effects of NF-YA abrogation 
on other p53 family members, p63 and p73. The level of 
p63 mRNA, already low in Hela control cells, was further 
reduced following NF-YA loss. At the protein level, 
we observed a decrease in ΔNp63, the only isoform we 
detected by Western blot in control cells (Supplementary 
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Figure S5) [43, 44]. This result is consistent with the 
established role of NF-Y as transcriptional activator 
of the ΔNp63 promoter [45]. Also p73 mRNA levels 
were lowered by shNF-YA infection, presumably as a 
consequence of reduced expression of E2F1, known p73 
transcriptional activator [46] (Supplementary Figure S5).

NF-Y plays an important role in the transcriptional 
control of genes encoded by the genome of different 
viruses, such as the human Herpes Simplex Virus type 
1 (HSV-1) [47], the Epstein Barr Virus (EBV) [48], the 
Kaposi’s sarcoma-associated herpesvirus (KSHV) [49] and 
the Minute Virus of Mice (MVM) [50]. The transcriptional 
control of the MVM P4 promoter is determined by the 
association of NF-Y to an unusual site -CCAAC-, similarly 
to what we described here. The atypical NF-Y motif found 
in the non-Af lineage is functional, presumably thanks to 
nucleotides on both the 5’ and 3’ flanking sides. Since a 
canonical inverted CCAAT box is present in Af, it is likely 
that the -232bp element has preserved its transcriptional 
function in both lineages. In general, NF-Y requires a 
perfect match of the pentanucleotide, as well as flanking 
sequences, for efficient DNA-binding [51]. However, 

the 3D structure of the NF-Y complex bound to CCAAT 
indicates that the final T is the only nucleotide of CCAAT 
not contacted in a sequence-specific way by NF-YA 
[52]. This suggests that a higher degree of tolerance is 
allowed at this position. Moreover, ChIP-Seq data clearly 
recovered a vast majority of CCAAT-containing locations 
(>80%), but non canonical sites usually have a different 
nucleotide instead of the final T [25].

The inhibition of the interactions of NF-Y to its binding 
site through DNA sequence-specific conjugated polyamides 
is a successful strategy to affect the transcription of specific 
CCAAT-promoters [53–55]. It is therefore tempting to 
speculate that drug specific inhibition of NF-Y association 
to its binding site in HPV18-URR could represent and 
interesting therapeutic strategy against HPV+ cancer cells.

In summary, our results identify an additional 
mechanism through which NF-Y and p53 are connected in 
HPV+ cancer cells (Figure 7). NF-YA inactivation might 
represent an interesting anti-tumor strategy to induce 
apoptosis in high-risk HPV infected cancer cells, or to 
sensitize them to conventional anti-tumor drugs, through 
the re-establishment of p53-mediated cell death.

Figure 5: NF-YA inactivation affects the expression of key transcription factors regulating HPV18-URR activity. 
A. qRT-PCR analysis of the indicated genes 72h and 96h post-infection with shCTR and shNF-YA. hRpl19 has been used as reference 
gene. Statistical significance was calculated with independent t-test (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001). Error bars 
indicate SEM. B. Western blot analysis of the indicated proteins in shCTR and shNF-YA cells 96h post-infection. C. The table indicates the 
effect of NF-YA loss on gene transcription of the indicated transcription factor (TF), observed by qRT-PCR and gene expression profiling, 
the binding of NF-Y (ENCODE ChIP-seq data) and the presence (+) or not (-) of canonical NF-Y binding site in TF-promoters (-500bp 
from the TSS).
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Figure 6: NF-YA loss sensitizes Hela cells to Doxorubicin-induced p53-dependent cell death. A. DNA distribution analysis 
of Propidium Iodide-stained Hela cells infected with shCTR and shNF-YA for 72h and then treated with DMSO or 0.1 µM Doxorubicin 
(DOXO). The percentages of SubG1 events are indicated. Shown images are representative of three independent experiments. B. Western 
blot analysis of whole cell extracts in the experimental conditions described above. Antibodies are indicated. Actin was used as loading 
control. C. qRT-PCR relative expression analysis of p53 target genes in shCTR and shNF-YA cells treated or not with DOXO. The 
housekeeping hRpl19 gene has been used for normalization. The expression levels of control cells (shCTR +DMSO) have been arbitrarily 
set at 1. D. p53 expression levels in NF-YA-inactivated cells infected with shCTR and shp53 and treated with DOXO. E. Effects of p53 loss 
(shp53) on SubG1 events in NF-YA-inactivated cells treated with DOXO. The percentage of SubG1 in NF-YA-inactivated cells infected 
with shCTR has been arbitrarily set at 100%. F. qRT-PCR analysis of the indicated transcripts in NF-YA/p53 double knocked down cells 
versus NF-YA-inactivated cells (set at 1), following DOXO treatment. Statistical significance was calculated with independent t-test (* p < 
0.05; ** p < 0.01; **** p < 0.0001;). Error bars indicate SEM.
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MATERIALS AND METHODS

Cell culture, treatments and shRNA inactivation

The cervical cancer Hela and C4-I HPV18+ cell 
lines were maintained in complete Dulbecco’s Modified 
Eagle’s Medium (DMEM) with 10% Foetal Bovine 
Serum (FBS) and grown at 37°C in a humidified incubator 
containing 5% CO2 [56]. Doxorubicin (Sigma Aldrich) 
was solved in DMSO and added to the cells at the 
indicated concentrations for 24 hours.

Hela and C4-I cells were infected with PLKO1 
shRNA NF-YA (targeting exon 6) lentiviral particles 
(MOI=8), as previously described [17, 25]. A 
combination of two different PLKO1 shRNAs (Sigma 
Aldrich) targeting exons 8 and 10 of NF-YA was used 
(MOI=6 for each shRNA) (Supplementary Figure 
S1A). p53 inactivation was achieved by infecting 
cells with PLKO1 p53-targeting shRNA (Addgene, 
#19119) (MOI=8). The puromycin resistance cassette 
was replaced with the EGFP cassette, as previously 
described [17].

Cell proliferation analysis

10.000 cells have been seeded into 24-well plates 
and infected shCTR and shNF-YA lentiviral particles. 
At the indicated time points, cells have been fixed with 
Crystal Violet solution (0.25% Crystal Violet, 20% 
methanol in water) for 1h and then washed 6 times with 
water. Cell layers have been than resuspended in 1ml 

of acid isopropanol (HCl 0.1M, 20% isoprophanol) and 
the adsorbed Crystal Violet has been quantified with 
spectrophotometer at a λ of 540 nm.

Flow cytometry

For the determination of cell cycle progression, cells 
were stained with Propidium Iodide (PI), as previously 
described [57]. Apoptotic cells were detected by FACS 
using Annexin V-PE conjugate (BD Biosciences, Becton 
Dickinson Italia, Milan, Italy), following the protocol of 
the manufacturer.

Immunoblotting

For whole cell lysates, cells were resuspended in 
1X SDS sample buffer (25mM Tris–HCl pH 6.8, 1.5mM 
EDTA, 20% glycerol, 2% SDS, 5% b-mercaptoethanol, 
0.0025% Bromophenol blue). For Western blot analysis, 
equal quantity of cell lysates were separated by SDS-
polyacrylamide gel electrophoresis, transferred to PVDF 
membrane (VWR) and probed with the following primary 
antibodies: anti-NF-YA (Santa Cruz, sc-17753), anti-
NF-YB (GeneSpin), anti-p53 (Santa Cruz, sc-126), anti-
PARP1 (Santa Cruz, sc-8007), anti-H2AX (Santa Cruz, sc-
101696), anti-p21 (Millipore, 05-345), anti-E2F1 (Bethyl, 
A300-766A), anti-cJun (Bethyl, A302-958A), anti-cMyc 
(Santa Cruz, sc-764), anti-Fos (Santa Cruz, sc-52), 
anti-p63 4A4 (Santa Cruz, sc-A0311), anti-actin (Santa 
Cruz, sc-1616), anti-tubulin (Sigma Aldrich, T-6074), 
anti-E6 (Santa Cruz, sc-365089). Chemiluminescent 

Figure 7: Schematic representation of direct and indirect functions of NF-Y in the control of HPV18+ cells proliferation.
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detection reagent was purchased from Millipore Spa 
(Luminata Classico and Forte Western HRP).

Chromatin immunoprecipitation (ChIP)

ChIPs were performed as previously described [17]. 
4 µg of the following antibodies were added to each IP 
and incubated overnight at 4°C: anti-NF-YA (Santa Cruz, 
sc-10779), anti-p53 (Santa Cruz, sc-126) and anti-IgG 
(Santa Cruz, sc-2027), used as control for non-specific 
interactions. Immunoprecipitated DNA was resuspended 
in TE buffer, and Real Time PCR analyses were performed 
with the following primers:

qRT-PCR assay

2µg of the total RNA extracted from cells with 
RNeasy kit (Qiagen) was reversed transcribed with a 
Moloney murine leukemia virus reverse transcriptase 
(Promega Italia SrL, Milan, Italy) and subjected to qPCR 
with the following primers:

Promoter 5’-3’ Sequence bp 
lenght

Tm

Cdkn1a For ATTCCCCTAC 
CCCATGCT

153 60

Rev GCCAGAAAG 
CCAATCAGAG

Mdm2 P1 For CAGCCAAACC 
CAAACATTCT

184 56

Rev CGCTGGAGT 
TGTACCCAAAT

Mdm2 P2 For CAGGTAAGC 
ACCGACTTGCT

190 56

Rev GCTGGAATCT 
GTGAGGTGGT

Bax For CCCCCGTCACT 
TTATCTGCT

103 56

Rev GGGTTCTAGGGG 
ATCAGGAG

Puma For TCAGTGTGTGTG 
TCCGACTGTC

96 60

Rev GGCAGGGC
CTAGCCCA

HPV18 
LCR

For CTCTTTGGC 
GCATACAAGG

90 60

Rev GGGAGTGGA 
TATAGTTGTGCAA

c-Myc For TATCTACACTAACAT 
CCCACGCTCTG

192 60

Rev CATCCTTGTCCTGT 
GAGTATAAATCATCG

CTRL- For TTCTCAACCTCA 
GCACTGGTGACA

248 60

Rev GACTTTGCTGT 
TTGCTGTCAGGCT

Gene 5’-3’ Sequence bp 
lenght

Tm

p53 For AAGGAAATTT 
GCGTGTGGAGT

218/223 60

Rev AAAGCTGT 
TCCGTCCCAGTA

Ccnb1 For CACTTCCTTC 
GGAGAGCATC

240 60

Rev CAGGTGCTG 
CATAACTGGAA

Ccnb2 For CAGTTCCCAA 
ATCCGAGAAA

227 60

Rev TCTGAGACAAG 
CAGGAAGCA

TopoIIa For TGGCAGAGGC 
AGAGAGAGTT

82 60

Rev TCAAAAAGCAC 
CATAGAGTTGC

Cdc2 For CTGGGGTCAG 
CTCGTTACTC

172 60

Rev ATTCCACTTC 
TGGCCACACT

Mdm2 
P1

For TTTCGCAGCC 
AGGAGCACCGT

268 60

Rev GGGTCTCTT 
GTTCCG

Mdm2 
P2

For CTTTTTCTC 
TGCTGATCCAG

105 64

Rev CAGGGTCTC 
TTGTTCCGAAGCTG

Bax For GTCCGGGGAG 
CAGCCCAGAG

217 64

Rev CTCCATGTTAC 
TGTCCAGTTCGTCC

Puma For ACGACCTCAAC 
GCACAGTACGAG

145 64

Rev TAATTGGGCTCC 
ATCTCGGG

(Continued )
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Plasmids

The wt PGL3-HPV18-URR luciferase plasmid was 
a kind gift from Dr. Dan DiMaio (Department of Genetics, 
Yale University School of Medicine, New Haven,USA) 
[32]. Mutated URR plasmids were obtained by introducing 
single point mutations through SOE (Splice by Overlap 
Extension)-PCR. Briefly, mutant promoters have been 
created through two rounds of PCR: in the first round, 
we used two internal primers, containing the desired 
mutations, coupled with external primers, containing 
the desired restriction sites (XhoI, HindIII), in order 
to obtain two half fragments of the promoter; in the the 
second round, we used the two fragments, obtained by 
the first PCR round, as internal primers coupled with two 
external primers, in order to obtain the complete promoter 
embedding the mutations.

Gene 5’-3’ Sequence bp 
lenght

Tm

Cdkn1a For TGACCCTGAA 
GTGAGCACAG

183 60

Rev GGGAAAAGGC 
TCAACACTGA

HPV18 
E6

For TAATAAGGTTG 
CCTGCGGTGC

161 60

Rev TTCTCTGCGTC 
GTTGGAGTC

HPV18 
E7

For ACATTTACCA 
GCCCGACGAG

107 60

Rev GGTCGTCTGCT 
GAGCTTTCT

Jun For AGCAGCAAAG 
AACTTTCCCG

148 60

Rev CGTCCTTCTT 
CTCTTGCGTG

Jun B For TGGAACAGC 
CCTTCTACCAC

241 60

Rev GAAGAGGCG 
AGCTTGAGAGA

Fos For TTACTACCAC 
TCACCCGCAG

109 60

Rev GACCGTGGGA 
ATGAAGTTGG

E2F1 For ATGTTTTCCTG 
TGCCCTGAG

155 60

Rev ATCTGTGGTG 
AGGGATGAGG

cMyc For GAGGCTATTC 
TGCCCATTTG

120 60

Rev GCTGCTGGTT 
TTCCACTACC

Elk1 For CCACCTTCAC 
CATCCAGTCT

220 60

Rev TCTTCCGAT 
TTCAGGTTTGG

Sp1 For GAGAAAAC 
AGCCCAGATGCC

245 60

Rev GCGTTTCCCA
CAGTATGACC

Rpl19 For ATGAGTATGC 
TCAGGCTTCAGA

376 60

Rev TCAGGTACAGG 
CTGTGATACA

Gene 5’-3’ Sequence bp 
lenght

Tm

p63 For ACGAAGATC 
CCCAGATGATG

141 60

Rev TGCTGTTGCCT 
GTACGTTTC

p73 For GCGTGGAAGGC 
AATAATCTC

185 60

Rev CAGGGTGAT 
GATGATGAGGA

(Continued )

Muta tion Frag ment Primer 5’-3’

Mut 1 Frag ment 1 For TGAACAATGTG 
CGCGCC

Rev 
HindIII

ATGCCAAGCTTA 
CTTAGATCGC

Frag ment 2 For XhoI CCGGGCTC 
GAGATCCC

Rev GGCGCGCACA 
TTGTTCA

Mut 2 Frag ment 1 For ATTTTGAACA 
CGGTTCG 
CGCCTCTTTG 
GCGCA

Rev 
HindIII

ATGCCAAGCTTAC 
TTAGATCGC

Frag ment 2 For XhoI CCGGGCTCG
AGATCCC

Rev AAGAGGCGCG 
AACCGTG 
TTCAAAATATG 
TAGGAGCAGTG
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The obtained PCR fragments have been digested 
with XhoI and HindIII and cloned into the PGL3 luciferase 
plasmid. The mutated plasmids have been transformed in 
DH5α Escherichia coli and then sequenced.

Transient transfections

The indicated plasmids were transfected into 
subconfluent Hela cells using Metafectene Pro (Biontex), 
according to the protocol provided by the manufacturer. 
Following 24 hours, cells were collected and lysed with 
transfection lysis buffer (1% TritonX 100, 25 mM GlyGly 
pH 7.8, 15 mM MgSO4, 4 mM EGTA pH 8). Proteins 
quantification was performed with Bradford reagent 
(Sigma Aldrich) and luciferase activity was measured [41].

Analysis of gene expression profiles

Affymetrix gene expression profilings were 
performed in Hela cells before and after 72 hours from 
shCTR and shNF-YA infection (GeneChip® Human 
Genome U133 Plus 2.0). Raw data were retrieved from 
Geo Dataset GSE40215, published by Fleming et al. 
[25]. Biological replicates (triplicates) were grouped and 
processed: normalization (rma), quality controls, probe 
set filtering, finding differentially expressed probe sets and 
annotating those probe sets to gene symbols were performed 
using Bioconductor packages (Affy and Limma). Genes 
were defined as upregulated or downregulated when the 
fold change of shNF-YA versus shCTR profile was above 
1.3 and FDR <0.05. KEGG analysis was performed using 
DAVID software with default settings.

Statystical analysis

At least three independent biological experiments 
have been performed. The values represented in the 
histograms are the average of the biological replicates and 
the bars indicate the Standard Error of the Mean (SEM). 
Statistical significance was calculated using independent, 
two tailed Student t-test between the indicated samples.
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