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ABSTRACT
In the era of personalized medicine, high-throughput technologies have allowed 

the investigation of genetic variations underlying the inter-individual variability in drug 
pharmacokinetics/pharmacodynamics. Several studies have recently moved from a 
candidate gene-based pharmacogenetic approach to genome-wide pharmacogenomic 
analyses to identify biomarkers for selection of patient-tailored therapies. In this 
aim, the identification of genetic variants affecting the individual drug metabolism 
is relevant for the definition of more active and less toxic treatments. This review 
focuses on the potentiality, reliability and limitations of the DMETTM (Drug Metabolism 
Enzymes and Transporters) Plus as pharmacogenomic drug metabolism multi-gene 
panel platform for selecting biomarkers in the final aim to optimize drugs use and 
characterize the individual genetic background.

INTRODUCTION

The Human Genome [1, 2] and the International 
HapMap projects [3, 4] have provided a great opportunity 
for the understanding of the complex genomic architecture 
of disease susceptibility and inter-individual drug 
response variability. In clinical practice, the knowledge 
of genetic factors influencing drug efficacy and safety 
is of major relevance for a personalized therapy. In 
fact, it is well recognized that genetic polymorphisms 
can influence clinical outcome in response to drugs 
[5]. In a sizable percentage of cancer patients, together 
with tumor regression, often occur severe and life 
threatening toxicities, which are of major relevance at 
patient and health system levels. In the post-genomic 
era, Pharmacogenomics (PGx) has identified genetic 
variants that influence both Pharmacokinetics (PK) and 
Pharmacodinamics (PD) [6]: PK-PGx reveal differences 

in patient drug metabolism and bio-availability related to 
gene variants involved in drug metabolism or transport, 
while PD-PGx analyze differences in patient response 
due to genomic variants producing differences in drug 
molecular targets/pathways [7]. In fact, it is now common 
notion that polymorphic variants related to Adsorption, 
Distribution, Metabolism and Excretion (ADME) genes 
significantly contribute to individual patients’ drug 
sensitivity, resistance and toxicity. Single nucleotide 
polymorphisms (SNPs), genomic insertions and deletions, 
and genetic copy number variations (CNVs) represent the 
most common genetic alterations studied in PGx. SNPs are 
considered as common inherited variations (90%) among 
people, distributed throughout the genome. They represent 
a single nucleotide difference in the DNA sequence, 
which may play a functional role when occurs within a 
gene coding sequence or in a regulatory region. SNPs 
are stably inherited within haplotype blocks in linkage 
disequilibrium (LD) with a specific gene variant (LD; it 
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is the degree to which an allele of one SNP is inherited or 
correlated with an allele of another SNP or a gene variant, 
within a population) functioning as a marker of the gene 
variants coheredited within the haplotype. SNPs may be 
therefore used in genomic analyses as tags (tagSNPs) to 
identify an haplotype block which may contain few or 
many polymorphic variants associated with a disease or 
drug-response phenotype (Figure 1) [8]. The frequency 
of a SNP is expressed as minor allele frequency (MAF). 
The identification of relevant tagSNPs [9], has allowed 
the evolution from a candidate-gene based research 
approach to the genome-wide association study (GWAS), 
leading to the discovery of gene variants associated to 
the individual risk of Adverse Drug Reactions (ADRs) 
and to drug efficacy because in LD with SNPs acting as 
tags. Recently, technologic advances have led to more 
cost-effective and rapid genotyping microarray platforms. 
Among them, Affymetrix (Santa Clara, California, 
USA) developed the Drug Metabolizing Enzymes and 
Transporters (DMETTM) platform for the identification, 
in a single array, of all currently known polymorphisms 
in ADME-related enzymes, through genotyping of 
tagSNPs in LD [10]. The purpose of this review is to 
discuss the different approaches in PGx to identify 
predictive biomarkers on germline DNA SNPs associated 
to individual drug responses, with specific focus to the 
description of the characteristics and application of 
Affymetrix PGx microarray platform. We here describe 
the bioinformatic tools for the molecular analysis 
understanding and final translation into clinical practice 
of the information obtained by DMETTM genotyping. 
Moreover, we will underline advantages and weakness of 
statistics in PGx. Our goal is to make clear that DMETTM 
platform is a suitable and comprehensive PGx approach 
which addresses inter-individual variability in clinical 
response and leads to the discovery of biomarkers which, 
if validated, could help physician decision making for 
treatment personalization.

BIOMARKERS RELATED TO TUMOR 
OR DRUG METABOLISM

The chance to predict and avoid ADRs, especially 
in the case of drugs with a narrow therapeutic index, 
like antitumor agents, is of major relevance in the 
clinical practice. Although not-inherited acquired 
somatic mutations in tumor tissue can influence cancer 
progression and drug response, other genetic alterations 
in transcription factor activity, gene expression, gene 
silencing (epigenetics), and polymorphisms are the basis 
of individual genetic variability. So far, a variety of 
novel agents have been developed for targeting specific 
proteins and pathways, activated by somatic mutation, 
on the bases of genetic alterations identified in cancer 
cells, like mutations involving EGFR, RAS genes, B-RAF, 
and ALK [11]. Somatic mutations can define disease 
subtypes, influence the therapeutic strategies and the 
clinical outcome of different tumors [12]. In almost 60% 
metastatic colorectal cancer (mCRC) patients, K-RAS 
and N-RAS are mutated and mutations are considered a 
predictor of poor response to anti-EGFR monoclonal 
antibodies (mABs), such as cetuximab or panitumumab, 
while patients with wild-type RAS benefit from EGFR 
targeted treatment [13]. Also mutations in B-RAF and 
PIK3CA (exon 20) as well as PTEN deletions in mCRC 
patients with wild-type KRAS may predict anti-EGFR 
resistance, but are not validated for clinical decision 
[14]. Inherited germline DNA polymorphisms have 
been identified for many proteins implicated in clinical 
pharmacology, and may alter bio-availability, structure, 
binding, and/or function, with consequent impact on 
drug activity and disease outcome [15, 16]. Unlike other 
factors influencing drug response, germline determinants 
generally remain stable throughout lifetime and can confer 
high or moderate risk for cancer susceptibility controlling 
which somatic mutations will undergo positive and 
negative selection [11, 17]. For many drugs, including 

Figure 1: TagSNPs and recombination hotspots. Single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) are 
coheredited in haplotype blocks. TagSNPs are used to identify gene variants potentially correlated to phenotypes, withouth the need to 
genotpype all SNPs included in each haplotype block.
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anticonvulsant, anti-infective, anti-tumor, cardiovascular, 
opioid, proton-pump inhibitor and psychotropic drugs, a 
correlation has been identified between genetic variants in 
ADME genes and drug associations at level of cytochrome 
P450 (CYP) enzymes, receptors, transporters, targets 
and, more recently, human-leukocytes antigens (HLAs) 
[5]. For example, genetic polymorphism in genes coding 
for membrane transporters (ABCG2) and metabolism 
enzymes (CYP3A4, and CYP3A5, CYP1A1, CYP27B1) 
were correlated with the occurrence of erlotinib toxicity 
[18-20]. Recently, in a whole-genome sequencing of 
high-grade serous ovarian cancer (HGSC) tissue and 
germline DNA samples from 92 patients in different 
platinum-sensitivity status, the acquired drug resistance 
was associated to up-regulation of the ABCB1/MDR1 
gene. The possibility to prior identify patients carriers 
of this drug resistant factor may allow a tailored 
treatment with anticancer drugs that are not a substrate 
of MDR1[21]. In cancer treatment, the onset of drug 
resistance represents an unsolved problem [22-25]. Thus, 
the identification of SNPs correlated to individual drug 
response has implemented PGx studies [26] and will offer 
the opportunity to select new predictive biomarkers not 
only for targeted therapies but also to avoid side effects 
associated to multi-drug regimens. Important examples 
of tagging SNPs in genes influencing the metabolism of 
antineoplastic drugs are the thiopurine methyltransferase 
(TPMT), involved in 6-mercaptopurine metabolism and 
the dihydropyrimidine dehydrogenase (DPD), involved in 
5-fluorouracil (5-FU) therapy. The functional deficiency 
of TPMT (rs1800462 (G>C), rs1142345 (A>G) and 
rs1800460 (G>A)) increases the serum levels of 
6-mercaptopurine with consequent serious side effects, 
as myelosuppression [27], while reduced DPD activity 
leads to prolonged 5-FU half-life and increased risk 
of toxicity [28]. On these bases, DMETTM Affymetrix 
platform allows to investigate germline polymorphisms 
in a panel of ADME genes, approved by the Food and 
Drug Administration (FDA, USA) for their involvement 
in drugs metabolism and elimination, in order to shed light 
on the complex relationships between human genetics and 
drug response and identify new predictive biomarkers to 
enhance treatment efficacy and safety.

DIFFERENT PHARMACOGENETIC 
APPROACHES TO DISCOVER NEW 
BIOMARKERS

During the past decade the candidate gene approach 
has been the most widely used in the experimental design 
of PGx. This strategy has focused to identify genetic 
association between inherited variants in a single gene 
or a set of pathway-related genes with a clinical trait of 
interest, such as a drug response phenotype. Its hypothesis-
driven nature implicates the knowledge of the drug 
pathway, metabolism or disease pathogenesis. Putative 

candidate genes can be drug-metabolism genes, or genes 
encoding drug receptors, drug transporters or proteins with 
important functions in pathway targeted by drugs.

Studies using this approach have led to the discovery 
of clinically relevant phenotype-genotype correlations, 
such as CYP2D6 polymorphisms and tamoxifen activity 
on important clinical endpoints [29], polymorphisms 
in SLCO1B1 and irinotecan pharmacokinetics and 
toxicity correlation [30], DPD variants and fluorouracil 
toxicity correlation [31], or CYP27B1 and CYP24A1 
polymorphisms and non small cell lung cancer risk [32]. 
Although candidate gene studies can be performed with 
a small sample sizes to achieve the required statistical 
power, many associations have failed independent 
validation, with a high rate of false-positive, especially in 
cases where allelic variants are not highly penetrant [33]. 
Moreover, if we consider a complex disease phenotype, 
variations in outcome may not always be explained by one 
single genetic trait or one single pharmacological pathway. 
Thus, it is possible that multiple variants in genes involved 
in different processes may lead to similar phenotypic 
outcomes.

The development of new molecular genotyping 
technologies in addition to the technology advances in 
high-throughput analysis, have made GWAS a useful 
tool to simultaneously interrogate hundred to thousand 
of genetic variants, both SNPs and CNVs, across the 
entire human genome in a large number of samples. 
Unlike candidate gene approaches, GWAS are free of 
a priori assumption and demonstrated able not only to 
confirm previously-discovered PGx associations [34], but 
also to identify new unexpected biomarkers, associated 
with common disease or complex traits, for which the 
biological pathway was unknown [35]. Lee et al, recently, 
have identified by a GWAS study the correlation between 
a genomic variant in SLC15A2 and responsiveness to 
sorafenib in patients with unresectable hepatocellular 
carcinoma (HCC) [36]. The output produced by GWAS 
studies are too large to be analyzed by using common 
analytic packages and advanced software tools such as 
PLINK [37], GAINQC1, MERLIN and Mach 1.0 are 
required to analyze genotype-phenotype GWAS data. 
However, in addition to statistical association, GWAS 
results need further investigation to understand the 
mechanisms of functional effects and must be replicated 
in independent sample set in order to establish a causality 
link between a discovered gene variant and a specific trait 
of interest. 

There are other considerations on GWAS. 
Common GWAS platforms are designed on LD and use 
a set of tagSNPs to capture all the genetic variants of 
the genome. However, SNPs that are in low strength of 
association with a tagSNP would not be detectable even 
if an association may indeed be found, though at lower 
power. In addition, GWAS can identify only common 
variants, with a population prevalence >5%, excluding 
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rare alleles that, however, may have important effects on 
drug response. The identification of rare variants that are 
poorly tagged by existing genotyping platforms requires 
deep re-sequencing approaches for the genomic regions 
showing strong associations with complex traits [38]. 
Others important issues in GWAS are the effect size and 
the statistical correction for multiple testing. In discovery 
GWAS the expected effect sizes are unknown, and thus 
large study population are required to detect common 
variants with small effect. The sample sizes that are often 
used in PGx are inadequate, thus the effect sizes are often 
overestimated owing to the winner’s curse phenomenon. 
As GWAS test large number of SNP markers, the 
statistical threshold used to establish a significant genetic 
association is typically stringent in order to avoid false 
positives, reducing the study’s power to detect variants 
with small but potentially true effect. 

An intermediate approach between the candidate 
gene studies and the GWAS is the use of pre-defined SNP 
list panels including thousand of genetic variants in a set 
of pharmacogenes. These tools combine the advantage to 

interrogate variants in genes selected on the basis of their 
known relevance in drug PK and PD with the power of 
simultaneous genotyping analysis, limiting the statistical 
correction for multiple comparisons. Alternatively, it is 
possible to create custom panels including only candidate 
genes related to specific drug-phenotype associations.

SNPS RELATED TO DRUG METABOLISM

Many of the most relevant allelic variants involved 
in drug metabolism have been identified in the ADME 
genes encoding phase I-II enzymes and transporters. 
Phase I enzymes catalyze hydrolysis, reduction and 
oxidation reactions, and phase II enzymes catalyze 
conjugation reactions such as sulfation, acetylation and 
glucuronidation. The majority of phase I reactions are 
catalyzed by the CYP450 enzymes highly expressed in 
liver. There are 18 families of CYPs that can be further 
splitted into 44 subfamilies consisting of 57 total genes. 
However, only 3 of those families, CYP1, CYP2 and 
CYP3, catalyze most phase I reactions of drugs with 

Figure 2: DMET gene list. Genes included in DMET™ plus platform (231 total genes)  are: 76 phase I enzymes, 62 phase II enzymes, 
51 transporters and 41 other genes. * = translated to predicted phenotype/metabolizer status .
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close to 400 different unique alleles characterized 
to date (www.cypalleles.ki.se) [39]; over 75% of 
prescribed drugs are metabolized at least in part by 3 
subfamilies, CYP3A, CYP2D6 and CYP2C. Otherwise, 
phase II drug metabolizing enzymes typically enable 
the biotransformation of endogenous compounds and 
xenobiotics and their excretion by considerably increasing 
the hydrophilicity of the substrate or deactivate highly 
reactive species as well as inactivate pharmacologically 
active compounds. Polymorphic variants of phase II 
enzymes are responsible of a reduced metabolizing 
capacity, which account for drug toxic effects. Also 
xenobiotics and pro-carcinogens are converted by phase 
II enzymes into highly reactive intermediates with 
potential activity as chemical carcinogens and mutagens 
by covalent binding to DNA. Specific SNPs in phase I 
and II enzymes are linked to phenotypes characterized 
by a metabolic state of “ultra” (UM), “intermediate” 
(IM) and “poor” (PM) metabolizers as referenced to 
wild-type individuals identified as “extensive” (EM) 
metabolizers. The PM phenotype is associated with the 
presence of null genotypes, IM phenotype is associated 
with reduced metabolism genotypes, while UM phenotype 
relies on gene duplications [40]. Key phase II enzymes 
are mostly transferases and include N-acetyltransferases 
1 and 2 (NAT1 and NAT2), uridine disphosphate 
glucoronosyltransferase (UGTs), sulfotransferases 
(SULTs), glutathione S-transferases (GSTs), thiopurine 
S-methyltransferase (TPMT) and catechol O-methyl 
transferase (COMT). Also transporters are involved in 
the efflux and/or influx of drugs by active transport or 
facilitated diffusion and perform a critical role in ADME, 
affecting drug uptake, bioavailability, targeting, efficacy, 
toxicity and clearance. ATP-binding cassette (ABC) and 
solute-linked carrier (SLC) proteins are involved in the 
majority of drug and endogenous substrates transport. 
They act as efflux pumps and as typically influx 
transporters, respectively [41]. Figure 2 shows the list of 
231 genes analyzed by DMETTM platform. 

GENOTYPING PLATFORMS

Platforms to analyze SNPs located in various 
ADME genes for pharmacological research and clinical 
applications have been developed [42]. Most of them are 
genotyping tools for the detection of polymorphisms in 
ADME genes of interest.

They include: i) UGT1A1, developed by Third Wave 
Technologies, Inc., which is involved in the elimination 
of irinotecan, ii) CYP2C9 and VKORC1 developed by 
Nanosphere, Inc., Pharagon Dx, LLC (AutoGenomics, 
Inc. and Luminex Corporation), which mediate warfarin 
metabolism and PD. The AmpliChip® P450 platform, 
developed by Roche Diagnostics Corporation, was 
approved for clinical use by the FDA in 2005 to test 
patients for polymorphisms in the genes encoding two 

enzymes - CYP2D6 and CYP2C19 - that may impact 
on drug treatment for psychiatric illnesses [43]. The 
AmpliChip detects 23 SNP variants within these 2 
genes, but does not identify the 39 less common SNP 
variants, and has already been used in the clinic and in 
PGx epidemiology applications and genetic research [44-
46]. GE Healthcare (formerly Amersham Biosciences) 
produces the CodeLinkTM Human P450 SNP Bioarray, 
which identifies 110 SNPs in nine CYP genes (Amersham 
Biosciences Corporation, Piscataway, NJ, USA). 
Recently, in 2010, Illumina, Inc. developed a platform 
suitable to investigate PGx variations associated with 
drug metabolism combining Golden Gate genotyping 
with VeraCode technology, that use beads probe arrays 
covering >95% of the PharmaADME Core list, with 184 
biomarkers in 34 genes in a high throughput assay format, 
for many samples processing each time.

Moreover, various life science companies, including 
Clingenix, Inc., Epidauros Biotechnologie AG, Clinical 
Data, Inc. (formerly Genaissance Pharmaceuticals), 
Gentris Clinical Genetics, Inc. and LGC Ltd, have begun 
to offer genotyping services in which customers determine 
the genes of interest in a patient or population cohort and 
the company generates the SNP profiles, typically using 
direct gene sequencing or similar approaches. In addition, 
companies, including Illumina, Inc., Applied Biosystems 
and Sequenom, Inc., can custom design whole or targeted 
genome SNP platforms [42, 47] (Table 1).

DMETTM PLATFORM

The number of known drug-metabolizing enzyme 
and transporter gene variants exceeds the capacity to 
assess comprehensively multiple polymorphisms by a 
single multiplexed assay based on current technologies 
such as real time-polymerase chain reaction (RT-PCR). In 
the last decade Affymentrix Inc. (Santa Clara, California, 
USA) developed the Targeted Genotyping System, 
which combines molecular inversion probe (MIP). This 
technology is an oligonucleotide-based method that can 
be used to analyze several thousand SNPs in a single 
assay developed by Hardenbol et al [48], and extensively 
used for the International HapMap project, that offers 
several advantages for multiplex genotyping [49]. It is 
based on ‘padlock probes’, which are oligonucleotide 
probes (connected by a linkage segment) that recognize 
two complementary genomic sequences [49]. Based on 
the MIP technology, Affymetrix developed a multiplex 
within the PharmaADME consortium. The consortium 
ranked over 9000 SNPs and many complex mutations 
within these genes (i.e., triallelic markers, small in/
del mutations, gene conversion and/or whole deletion 
alleles) according to clinical research utility. Currently, 
PharmaADME genes represent 95% (45/47) of the phase 
I enzymes, 93% (74/80) of the phase II enzymes, 98% 
(51/52) of the transporters, and 52% (24/46) of ‘other 
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genes’ on the DMETTM array. The DMETTM panel was 
modified to include 37 additional genes (i.e., 231 genes 
total), mostly comprising genes that regulate intracellular 
processes that facilitate ADME (i.e., scaffolding proteins, 
nuclear receptors, serum binding proteins etc). The genes 
presented in the DMETTM platform were selected by their 
‘VIP’ status on PharmGKB. Recently, Affymetrix has 
added additional content relevant to drug ADME, and a 
tool to identify haplotypes among 779 polymorphisms 
in a core set of 61 genes identified by the PharmaADME 
consortium of high-relevance in drug metabolism. 
Moreover, the platform identifies additional haplotypes 
that were not previously observed in populations, 
explored by the HapMap project. The DMETTM platform 
has been designed to capture several markers, including 
copy-number variations, insertions/deletions, biallelic 
and triallelic SNPs, but until now its use is intended for 
research only because it doesn’t hold FDA approval for in 
vitro diagnostic devices (IVD) marked assay. 

Analytical procedure

The DMETTM assay uses 1μg of genomic DNA 
samples diluted in Tris-EDTA buffer, extracted from 
peripheral blood or saliva [50]. The protocol start with 
an initial PCR amplification step to amplify 32 loci that 
either has a pseudo gene or do not generate sufficient 
signal using the routine “Targeted Genotyping” protocol. 
These pre-amplified products are then combined with 
genomic DNA then incubated with a multiplex anneal 
cocktail PCR included in the “Targeted Human DMETTM” 
assay probe panel. The remaining steps are carried out 
according to Affymetrix protocol, then arrays are scanned 
with 4-color detection using the Affymetrix GeneChip 
Scanner. Raw signal values are background subtracted 
and normalized, and genotypes are reported using the 
Affymetrix DMET® Console software as single-sample 

genotyping by comparing each individual marker’s data 
to the specific, predefined cluster boundaries (Figure 3). 
For a given marker in a particular sample, the collection 
of summary values is reduced to only two values, one for 
each allele for simple bi-allelic variants. Genotypes are 
determined for each SNP site and reported as homozygous 
wild-type, heterozygous, homozygous variant or ‘no call’. 
The DMETTM Plus Assay Panel has been evaluated across 
a minimum of 1200 individuals from multiple populations 
including 597 DNA samples from Caucasian, African, 
and Asian populations from the International HapMap 
Consortium to assess accuracy, imprecision, and dynamic 
range. Genotyping accuracy varies across the core set 
probes. Specifically, the reproducibility of genotyping 
results for the core set probes rates of approximately 98% 
for within- and between-day runs, globally about 98%, 
with the majority of failures resulting from lack of a call, 
defined as no-call (NC) or possible rare allele (PRA). This 
imprecision of the assay is acceptable for this complex 
assay. Moreover, the use of the PRA designation is helpful 
in this regard because, despite introduce a high false-
positive rate, is useful as a screening test to be confirmed 
as a definitive genotype call by alternative methods. This 
could be a conservative approach, since all discrepancies 
with direct sequencing data are counted as errors. 
Moreover, the most frequent assay failure is the lack of a 
genotype call defined as NC/PRA, rather than a miscalled 
genotype, that is a critical point to make a distinction for 
clinics. In fact, an absence of data is less problematic than 
assignment of an incorrect genotype to a patient. 

Another weak point of genotyping done by this 
assay is that allele quantification is not possible in the 
current format: thus large-scale deletions or duplications 
like CYP2D6*5 [51] or *1XN [52] cannot be readily 
detected. Of course, homozygous deletions can be 
inferred if low signals across multiple probes for a gene 
are detected. As well as, particularize small tandem repeats 

Figure 3: DMET data analysis workflow.
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like TA repeats in UGT1A1*28 [53] is difficult with the 
current format of the assay. 

It must be taken into account that the multiplex 
nature of this assay maintains low the cost considering that 
it does not scale up by increasing the number of tested 
variants, allowing large-scale genotyping at a acceptable 
cost. Therefore, this approach may be useful to aid the 
comprehension of complex multigenic interactions that 
impact PK beyond the more simple monogenic models. 
In fact, it uses a single-microarray assay that allows for 
the comprehensive genetic analysis of genes involved in 
drug metabolism, transport, and excretion. Considering 
that a microarray-based approach permits that rare variants 
can be included in the assay with no appreciable increase 
in its complexity or cost, this assay results strongly 
powerful. The Affymetrix DMETTM platform includes an 
extensive list of genes involved in drug disposition, and 
may become an important tool for future PGx research. 
Nevertheless, certain limitations and caveats warrant 
attention. First and foremost, the DMETTM platform has 
not undergone, to our knowledge, evaluation to FDA as 
IVD, and cannot, therefore be used to inform clinical 
decisions. Thus DMETTM cannot, for example, be used 
to test patients prospectively to determine warfarin or 
irinotecan dose requirements, or for decision making 
on antiplatelet therapy. Whether Affymetrix intends to 
undergo FDA review for this device is not publicly known 
at the time of the current report. The implementation of 
this tool in the early stage of drug development may be of 
major relevance for the identification of patients at risk for 
ADRs providing a method to investigate better tailoring 
of drug regimens for individual patients. The platform 
could conceivably be applied to the study of other 
complex genetic interactions as the correlation between 
a PK/PD biomarker and the tumor phenotype. In fact, 
the understanding of the underlying relationship between 
drug exposure, biomarker and drug effect is crucial for 
the identification of clinically relevant outcome predictors 
and to assess their optimal evaluation timing. We believe 
that this tool will be critical for understanding the complex 
multigene interactions underlying drug metabolism and 
the integration with PK/PD tools can allow to analyze 
simultaneously both longitudinal biomarker and survival 
data, as in the current vision of precision medicine.

PGx analysis and interpretation: DMET® Console 

In order to extract biological relevant information 
embodied in the raw data produced using microarray, and 
stored as CEL files, it is necessary to translate CEL files 
in a format suitable to conduct statistical or data mining 
analysis. A typical workflow for analyzing microarray 
data involves four steps: i) preprocessing, that comprises 
background correction, summarization and normalization; 
ii) annotation and translation; iii) statistical/data mining 
analysis; and iv) biological interpretation. Three 

different tools: DMET® Console, apt-DMET-genotype, 
DMET Analyzer (see below) can be used to convert 
intensity value in actionable knowledge (Figure 4). 
Background correction adjusts probe intensities ensuring 
that background corrected signal is always positive. 
Summarization aims to recognize the position of different 
genes in raw images, associating different regions of pixels 
to the unique gene that generated them. Normalization 
corrects the variation of gene expression in the same array 
due to experimental bias, making results from different 
microarray experiments comparable. The summarization/
normalization of CEL files can be done only using DMET® 
Console and apt-DMET-genotype, because DMET-
Analyzer is not designed to treat directly CEL file format. 
Files produced into the summarization/normalization step 
can be annotated only using DMET® Console and apt-
DMET-genotype. Using DMET® Console, it is possible 
get tabular data, by means a step known as translation, 
where CHP file and ARR sample files are merged 
together, to translate intensity value using standardized 
nomenclature. The annotation process associates to each 
gene a set of functional information, for example the 
biological function related with the gene. Translation 
converts the genotype calls (reported in CHP files) of 
an important subset of marker, to functional allele calls 
using standardized nomenclature wherever possible. In 
terms of biological research it is very important to identify 
the small set of variation into the genes called SNP, 
comparing two experimental conditions (e.g. healthy cell 
vs cancer cell, wild type vs mutant). After the pre-process 
layer, tabular data provided by DMET® Console can be 
automatically analyzed by DMET-Analyzer. There are 
several univariate statistical methods used later to pinpoint 
mutated genes that may contribute to the development of a 
certain disease from normalized microarray data, including 
T-tests, Chi-Square, Fisher’s Test, and Bayesian models. 
DMET-Analyzer by Fisher’s exact Test extract knowledge 
hidden into the data in a format easily readable from the 
user. Data mining methodologies are very useful as well 
as statistical analysis, helping to discover interesting 
unknown relationships hidden into the data then converted 
in a understandable way to the user. Furthermore, to 
perform analysis in an efficient way, tabular data need 
further preprocessing. In the preprocess layer, DMET-
Analyzer arranges data in a format compatible for the 
statistical assay. In the annotation layer, preprocessed data 
are annotated with information provided by Affymetrix 
or using information coming from external databases 
i.e. dbSNP or Pharmacogenomics Knowledge Base 
(PharmGKB.) Finally, biological interpretation allows for 
each analyzed SNP, to obtain additional information stored 
in the Pharma-GKB [54] (Figure 4).
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Figure 4: Statistical analysis and interpretation. The picture describes necessary steps to convert intensity value in actionable 
knowledge. Each column represents the flow of information when using respectively DMET® Console, apt-DMET-genotype and DMET-
Analyzer.
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PHARMACOGENOMIC STUDIES USING 
THE DMETTM PLATFORM

Since the first DMETTM platform became available 
in the late 2007, several researchers have used the platform 
to conduct correlative PGx studies. The pioneeristic study 
was conducted by Caldwell et al. that investigated whether 
the consequences of genetic variants in addition to the 
previously identified effects of CYP2C9 and VKORC1 
may explain inter-patient variability in response to the 

anticoagulant drug warfarin (Coumadin) [55]. Warfarin 
is the oral anticoagulant, approved by the US FDA, 
commonly used in atrial fibrillation and thromboembolic 
disease. Even it has been introduced more than 50 years 
ago, the treatment can still be complicated by wide inter-
individual variations in the dose required to achieve the 
biological effect. Polymorphisms in the cytochrome 
P450 (CYP) 2C9 and in vitamin K 2,3 epoxide reductase 
complex 1 (VKORC1) genes were associated with the 
inter-individual variability in the dose-anticoagulant effect 

Figure 5: Biomarkers validation workflow.
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of warfarin [56-61]. Caldwell et al. using the DMET panel 
genotyped an initial discovery cohort of patients (n = 497) 
from the Marshfield Clinic and identified a single variant 
in the CYP4F2 gene (rs2108622) that correlated with 
warfarin dose requirements. Cohorts of patients from 2 
additional institutions were used to confirm these results 
using different genotyping methodologies. Aside from 
100% concordance rate with the DMET panel results, the 
authors evidenced again that the rs2108622 SNP correlated 
with warfarin dose requirements [55].

Thereafter, the DMETTM platform was used to 
evaluate pharmacological variation in prostate cancer 
patients randomized to phase II clinical study with 
docetaxel and thalidomide versus docetaxel alone. Both 
anticancer agents showed inter-individual pharmacological 
variation and toxicity profile [62]. Past PGx studies 
explored factors mediating docetaxel PK and thalidomide 
toxicity have no led to consistent results due to the large 
variability observed. By the use of a more comprehensive 
analysis of genetic polymorphisms in multiple drug 
enzymes and transporters, improved the understanding of 
the PK of docetaxel and thalidomide. DMET genotyping, 
identified statistically significant correlations between 
SNP variants and drug response or toxicity highlighting 
a role of non-CYP450 enzymes in the pharmacology of 
docetaxel and thalidomide [62]. By DMETTM platform, 
Uchiyama T et al. identified one SNP in CYP39A1 
gene (rs7761731) significantly associated with grade 
4 neutropenia in Japanese patients with gynecological 
cancers that may be a useful biomarker for predicting the 
risk of docetaxel-induced neutropenia [63].

Mega et al. used the DMETTM platform to explore 

the PK and PD of clopidogrel, an anti-platelet agent used 
to treat patients with coronary disease [64]. Clopidogrel 
is a prodrug that requires activation by CYP enzymes, 
and has demonstrated significant inter-individual PD 
variability in inhibiting platelet aggregation [65]. Among 
patients who had experienced myocardial infarction and 
had been treated with clopidogrel in the TRITON-TIMI 
clinical trial (ClinicalTrials.gov identifier: NCT00357968), 
the authors identified individuals carrier of CYP2C19 
allele that produces a reduced-function of the enzyme, 
who had significantly lower levels of the active metabolite 
of clopidogrel, diminished platelet inhibition, and a higher 
rate of major adverse cardiovascular events, including 
stent thrombosis [64]. In a successive study, among acute 
coronary syndrome patients treated with clopidogrel, 
Mega et al. identified that ABCB1 C3435T genotype 
was significantly associated with risk for the primary 
endpoint of cardiovascular death, myocardial infarction 
or stroke. The authors described that ABCB1 C3435T 
and CYP2C19 genotypes were significant, independent 
predictors of the primary endpoint, and that the 47% 
of the population, who were either CYP2C19 reduced-
function allele carriers, ABCB1 3435 TT homozygotes, or 
both were at significantly increased risk of cardiovascular 
death, myocardial infarction, or stroke. Moreover, in 
healthy subjects, the presence of ABCB1 C3435T TT 
homozygotes had a reduction in platelet aggregation with 
clopidogrel respect to CT/CC individuals disclosing less 
platelet inhibition and were at significantly increased risk 
of recurrent ischemic events in the setting of clopidogrel 
treatment. Considering both ABCB1 and CYP2C19 genetic 
polymorphisms, nearly half of the population are carries 

Table 1: Genotyping platform

Manufacturer Product Genes 
investigated

Total number
of variants

Registration 
status Technology

Roche Molecular 
Diagnostics

AmpliChip 
CYP450 Test

CYP2C19 and 
CYP2D6

33 CYP2D6 alleles 
and 3 CYP2C19 
alleles; 
CYP2D6 gene 
duplication and 
deletions

CE-IVD 
Japan-IVD 
US-IVD

GeneChip 
microarray

GE Healthcare,
Amersham 
Biosciences

CodeLink
Human P450

CYP1A1, 
CYP1A2, 
CYP3A4, 
CYP3A5, 
CYP1B1, 
CYP2D6, 
CYP2C9, 
CYP2C19, 
CYP2E1

110 SNPs and small 
deletions/insertion

Patent 
US6986992 B2

Bioarray platform,
Multiplex PCR

Affymetrix, Inc DMETTM Plus
231 ADME genes 
FDA approved 
(see Fig. 1)

1936 SNPs and 5 
CNVs

For Research 
Use Only. 
Not for use 
in diagnostic 
procedures

GeneChip
Microarray

Illumina VeraCode® ADME Core Panel 184 biomarkers in 34 
genes

For Research 
Use Only Beads microarray
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Table 2: Pharmacogenomics studies by Affymetrix DMETTM Plus 

Drug Disease Phenotype Sample 
size Gene SNP(s) Reference

Warfarin Cardiovascular 
disease Clinical response 497 CYP4F2 rs2108622 [50]

Docetaxel
and/or 
Thalidomide
Docetaxel

Prostate cancer
Gynecological 
cancer

Clinical response
Toxicity
Neutropenia

47
42

PPAR-γ
SULT1C2
CHST3
SPG7 
CYP2D6 
NAT2 ABCC6
ATP7
CYP4B1 
SLC10A2
CYP39A1

rs2016520a, rs1883322a

rs3734254a, rs7769719a

rs6922548
rs1402467
rs4148943, rs4148947,
rs12418, rs730720
rs2292954, rs12960
rs72549353
rs1799931
rs2238472
rs2227291
rs4646487
rs2301159
rs7761731

[57]
[58]

Clopidogrel Cardiovascular 
disease

Clinical response
Clinical outcome

162
2932

CYP2C19
ABCB1

rs4244285
rs1045642

[59]
[61]

Irinotecan Colorectal
cancer

Gastrointestinal 
toxicity 26

ABCC5 
ABCG1 
SCLO1B1

rs562
rs425215
rs2306283

[66]

Zoledronic 
acid

Multiple 
Myeloma

Osteonecrosis of 
the jaw 19

PPARG ABP1 
CHST11 
CROT

rs1152003
rs10983, rs4725373, 
rs1049793
rs2463437, rs903247, 
rs2468110
rs2097937

[68]

Erlotinib
Advanced Non 
Small Lung 
cancer

Skin rush 34

CYP27B1 
MAT1A 
CHST11 
ADH6 
CYP4B1

rs8176345
rs9285726
rs903247, rs2468110
rs6830685
rs2297809

[84]

5-Fluorouracil Colorectal cancer  Toxicity 24 CHST1 
GSTM3

rs9787901 
rs1799735 [85]

Telmisartan Hypertension Pharmacokinetics 33 UGT1A1 
UTG1A3

rs4148323, rs8175347
rs3806596, rs45625338 [86]
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of genotype and then associated with an increased risk for 
major adverse cardiovascular events while on standard 
doses of clopidogrel [66]. These results lead FDA’s 
approval of drug label for clopidogrel that contains a 
boxed warning, stating that clopidogrel has diminished 
effectiveness among CYP2C19 poor metabolizers. It 
advises that tests are available to identify a patient’s 
CYP2C19 genotype, which may be of help for determining 
therapeutic use, and that alternative treatment strategies 

should be considered in patients identified as CYP2C19 
poor metabolizers [67]. The Clinical Pharmacogenetics 
Implementation Consortium has released anti-platelet 
therapy recommendations based on CYP2C19 genotype 
for patients affected by acute coronary syndrome and 
undergoing percutaneous coronary interventions, such 
as the placement of a stent. Given the reduced efficacy 
reported for both CYP2C19 intermediate and poor 
metabolizers, recommends using an alternative antiplatelet 

Paclitaxel Breast cancer
Solid tumors

Peripheral 
neuropathy
Clearance

209
412
270

CYP2C8 
CYP2C8
ABCG1 
SLC22A11 
GSTZ1 
SLC28A2 
VKORC1 
PGAP3 CDA 
EPHX1 
CYP20A1 
SLC6A6 
CRIP3
GSTA4 
AKAP9 
CYP51A1 
CYP2D7P1

rs10509681 
rs10509681
rs492338
rs1783811
rs7975 
rs1060896 
rs9923231 
rs2952151 
rs1048977 
rs1051740 
rs1048013 
rs2341970 
rs2242416 
rs13197674
rs7785971 
rs7797834 
rs28360521 

[87]
[88]
[89]

Fludarabine-
Cytarabine-
Idarubicin

Acute Myeloid 
Leukemia

Clinical response
Toxicity 94

ADH1A
SULT2B1
SLC22A12
CYP2E1
SLCO1B1

rs6811453, rs1826909
rs2302948
rs11231825
rs2070673, rs2515641
rs4149056

[92]

Ara-C-
daunorobucin-
etoposide-
mitoxantrone

Acute Myeloid 
Leukemia Overall survival 164 SLCO1B1 rs2291075 [93]

Daunorubicin Hematological 
cancers Clearance 107 FMO3 GSTP1 rs2266782

rs1695 [94]

Aspirin Cerebrovascular 
disease

Small bowel 
bleeding 25 CYP2D6 

CYP4F11
rs28360521
rs1060463 [95]

Aspirin Cardiovascular 
disease

Peptic ulcer
Ulcer bleeding 593 SLCO1B1 

CHST2
rs4149056
rs6664 [97]

Busulfan Hematological 
cancers Clearance 65 GSTA5 rs4715354, rs7746993 [98]

aResults are from analyses restricted to docetaxel and thalidomide trial arm
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agent. Recently, Erlige et al. compared results obtained 
with the Nanosphere Verigene® System, a novel genetic 
test capable of analyzing 11 CYP2C19 variants within 3 
hours, to the established and validated DMET genotyping 
method for identifying extensive and reduced metabolizers 
of clopidogrel. Based on genotyping, statement from the 
Clinical Pharmacogenetics Implementation Consortium, 
patients with stable coronary artery disease on clopidogrel 
75 mg daily are defined as extensive metabolizers (*1/*1, 
*1/*17, *17/*17), reduced metabolizers (*1/*2, *1/*8, 
*2/*2, *2/*3), or of indeterminate metabolizer status 
(*2/*17). The Nanosphere Verigene® System identified 11 
CYP2C19 alleles in less than 3 hours with a high degree 
of accuracy when compared to conventional method, and 
was further validated against PK and PD phenotypes [68].

The role of UDP-glucuronosyltransferase 
(UGT)1A1 (UGT1A1*28) in determining the toxicity 
induced by irinotecan is well known [69, 70]. Recently, 
by DMET TM platform, Di Martino et al. identified 3 SNPs 
mapping in ABCG1, ABCC5 and OATP1B1/SLCO1B1 
transporter genes associated with gastrointestinal 
toxicity grade ≥3, induced by irinotecan in metastatic 
colorectal cancer in a case control study. The SNP rs562 
in ABCC5, the rs425215 in ABCG1 and the rs2306283 in 
OATP1B1/SLCO1B1 polymorphisms expand the available 
knowledge of irinogenomics [71]. Moreover, DMET 
polymorphisms have been associated with toxicity to a 
new nanopharmaceutical formulation of camptothecin, 
specifically designed for slowly release of the drug in 
tumors over an extended time [72]. Specifically, the 
authors performed genotyping of a small number of 
patients experiencing toxicity (15) and compared the 
allele frequencies with Affymetrix HapMap population 
(713). The study appears however unbalanced and 
the heterogeneous population did not allow sound 
comparisons. In a different case-control study, Di Martino 
et al. [73] identified a peroxisome proliferator-activated 
receptor gamma (PPARG) polymorphism (rs1152003) 
associated with zoledronic acid-related osteonecrosis of 
the jaw in multiple myeloma (MM) patients. This finding 
is of potential relevance in the treatment of MM-related 
bone disease. Osteolytic bone disease represents in fact 
a major hallmark of a paradigmatic evolving disease 
that represents a challenging field for novel therapeutics 
development [74-82]. In this context, bisphosphonates, 
which have deep biological effects within the bone 

microenvironment, remain the cornerstone of skeletal 
events management in this disease [83-88]. Identifying 
patients with increased susceptibility to osteonecrosis of 
the jaw might significantly impact in supporting strategies 
for this important malignancy. More recently, the same 
authors, with similar approach identified 7 SNPs in 6 
genes (CYP27B1, MAT1A1, CHST1, CYP4B1, ADH6, 
and SLC22A1) associated with the occurrence of skin 
rash in advanced non-small cell lung cancer treated 
with erlotinib [20]. In this study, the toxicity-associated 
gene set underwent to Ingenuity Pathway Analysis® 
highlighting the involvement of 1,25-dihydroxyvitamin 
D3 biosynthesis, S-adenosyl-L-methionine biosynthesis, 
and methionine degradation I (to homocysteine) canonical 
pathways in skin rush development. Although exploratory, 
this study suggests new mechanism mediated by vitamin 
D3 and inflammation at skin level, which appears highly 
relevant to shed new light in the erlotinib-related skin 
toxicity. 

5-FU is commonly used in the treatment of solid 
tumors. However, 5-FU activity and toxicity can be 
influenced by dihydropyrimidine dehydrogenase (DPYD) 
and thymidylate synthase (TYMS) gene polymorphisms. 
In colorectal cancer samples, Rumiato et al. found 
polymorphisms with the strongest association with 5-FU-
induced gastrointestinal toxicity, such as the rs9787901 in 
CHST1 and rs1799735 in GSTM3 genes that have not been 
previously related to 5-FU PK and PD [89].

More recently, different studies using an updated 
DMETTM platform led to the identification of new 
polymorphisms in various ADME genes, previously not 
investigated. For example, the contribution of SLCO1B3 
and UGT1A polymorphisms to the PK of telmisartan, 
commonly used to treat hypertension, was investigated 
at microdose (MD,100 μg) and at therapeutic dose (TD, 
80 mg). Authors observed strong LD between UGT1A1*6 
and UGT1A3*4a, and between UGT1A1*28 and 
UGT1A3*2a in terms of effect on the PK of telmisartan, 
while no obvious effect was observed for SLCO1B3 
polymorphisms. Specifically, following MD or TD 
injection, the mean area under the curve 0-24 (±standard 
deviation) of telmisartan was significantly higher in 
individuals with the UGT1A3*2a and *4a variants 
compared to those in individuals with UGT1A3*1/*1, and 
quantitatively correlated with population PK analysis. 
These findings led the authors to the conclusion that 

Table 3: Comparison of DMETTM and GWAS Data
DMETTM GWAS

Study design Studies are usually tailored to 
the study of small populations.

Studies aim to discover hidden 
associations among allelic variants and 
phenotypic effect in a large population.

Dimension of data Around Kilo-bytes Up to 1Giga-byte

Data analysis
Data analysis mainly relies on 
the use of Fisher’s exact Test 
or association rules.

Data analysis is a broader field that 
involves both statistical and data-mining 
approaches.
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UGT1A3 haplotypes significantly influence PK of 
telmisartan, results that are potentially important for 
pharmacological and toxicological evaluation [90]..

Paclitaxel is a cytotoxic drug frequently used 
in the treatment of a variety of cancers associated with 
different severe adverse events. The development of 
paclitaxel-induced peripheral neuropathy has been 
described from several groups to be primarily influenced 
by drug exposure and patient polymorphisms in CYP2C8 
gene [91]. Specifically the CYP2C8*3 polymorphism 
has been associated to peripheral neuropathy risk due 
to decreased metabolism and elimination, which leads 
to increased toxicity and efficacy mainly in African-
Americans. By DMET genotyping analysis, Hertz et al. 
described breast cancer patients with higher paclitaxel-
related neuropathy risk in the CYP2C8 low-metabolizer 
group, that carried the CYP2C8*2, *3, or *4 variant. 
However, the influences of the *2 and *4 SNPs were not 
independently significant in this study. In addition one 
intronic SNP, the rs492338 in ABCG1, showed strong 
association with neuropathy in the Caucasian cohort (p 
= 0.0008), but not in the non-Caucasian validation group 
(p = 0.54). Even if the PGx heterogeneity is present in 
the cohort of breast cancer patients, it does not directly 
influence the risk of neuropathy beyond the contribution 
of CYP2C8*3 [92]. Moreover, based on the DMETTM 
platform, by the application of the nonlinear mixed-
effect modeling software ( NONMEM ,version 7, Icon 
Development Solutions) for placlitaxel PK evaluation, it 
has been developed a genetic prediction model including 

14 SNPs with high sensitivity to identify patients with 
low paclitaxel clearance but which is not able to explain 
differences in paclitaxel clearance [93]. A similar 10-
SNP model was not able to reach statistical significance 
in order to predict paclitaxel-induced neutropenia 
[94]. Therapeutic activity of standard platinum-based 
neoadjuvant therapy in esophageal cancer patients 
is variable and unpredictable. At present, no reliable 
response predictors could discriminate between responder 
and non-responder patients. By DMETTM array platform 
Rumiato et al, identified 16 SNPs significantly associated 
with good or poor response while no association was 
found for 4 variants mapping in DNA repair machinery. 
The predictive power of ABCC2, ABCC3, CYP2A6, 
PPARG, and SLC7A8 gene variants was demonstrated 
and a predictive model for sentitivity to platinum-based 
neo-adjuvant chemotherapy was built combining clinical 
variables and the genetic signature [95]. The corrrelation 
of genetic variation analyzed by DMETTM Plus platform 
and response to treatment in acute myeloid leukemia 
(AML) has been investigated in CD33-positive AML 
patients enrolled in a phase III multicenter clinical 
trial combining Gemtuzumab-Ozogamicin (GO) with 
Fludarabine-Cytarabine-Idarubicin (FLAI) regimen, 
[96]. In this study authors showed significant differences 
in allele frequencies of two ADH1A variants between 
patients with therapeutic benefit and not responders. Two 
substitutions on CYP2E1 and one on SLCO1B1 were 
found to differentially influence hepatic toxicity, and two 
nucleotide changes on SULTB1 and SLC22A12 genes 

Figure 6: Genotyping platform for personalized therapy: genetic variants in pharmacodynamics and pharmacokinetics 
related genes determine inter-individual variability and therapeutical outcome. Patients predicted as non responder should 
undergo treatment with alternative drugs; patients predicted at risk of drug toxicity should undergo dose reduction.
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correlated with GO treatment benefit. All these variants 
are associated with differential response and toxicity in 
AML patients treated with a combination of GO-FLAI 
regimen [96]. A genetic variant in SLCO1B1 (rs2291075; 
c.597C>T), encoding the transporter OATP1B1, has been 
recently associated with event free and overall survival 
in children with de novo AML [97]. The results of this 
study lead the authors to argue that the lack of SLCO1B1 
expression in leukemic blasts might be due to inherited 
rather than somatic effect. In addition, the authors 
demonstrated by in vitro functional studies that 4 AML-
directed drugs (cytarabine, daunorubicin, etoposide, and 
mitoxantrone) are substrates for OATP1B1, underlining 
its important role in the PK of multiple anti-AML drugs 
and suggesting that inherited variability in host transporter 
function influences the efficacy of therapy [97].

Thompson et al. investigated the impact of obesity, 
body composition, and genetic polymorphisms on the 
PK of daunorubicin in children with cancer. Performing 
PGx profiling by DMETTM platform the authors identified 
association of FMO3 and GSTP1 haplotypes with 
daunorubicin PK, suggesting a potential role in the 
efficacy and toxicity of the drug [98].

The mechanisms of small intestine damage induced 
by aspirin is not well understood but is increasingly 
recognized as risk factor for bleeding. Shiotani et al by 
DMET analysis identified an association of GG genotype 
in CYP2D6 gene (rs28360521) with small bowel bleeding 
and SNPs in CYP4F11 and CYP2D6 were proposed as risk 
markers for aspirin toxicity [99]. Different studies have 
previously shown the association of the SLCO1B1 521TT 
genotype and the SLCO1B1*1b haplotype with the risk 
of aspirin induced peptic ulcer [100]. More recently, they 
performed PGx profile by DMETTM platform in a series 
of patients taking 100 mg of aspirin. They found that the 
frequencies of the SLCO1B1*1b haplotype and CHST2 
2082 T allele were higher in peptic ulcer patients [101].

DMETTM platform was also used in an exploratory 
PGx approach to investigate the inter-individual PK 
variability in busulfan, a drug used in conditioning 
regimens before stem cell transplantation. In this study 
SNPs in GSTA5 gene (rs4715354 and rs7746993) 
were significantly associated with busulfan clearance 
confirming a role of the glutathione-S-transferases and 
its relation to outcome in adult hematopoietic stem cell 
recipients [102].

All together, these studies indicate DMETTM 
microarray platform as highly efficient approach 
to discover new genetic determinants influencing 
chemotherapy-induced toxicity as well as to identify 
different metabolizing phenotypes. Moreover, the high 
concordance of DMET genotyping results with orthogonal 
technologies like real-time PCR and direct sequencing is 
of major relevance. These findings indicate that DMETTM 
platform is an excellent tool to incorporate PGx tests into 
prospective clinical research. We summarize the results 

obtained by DMETTM platform in the Table 2. 

DMETTM VERSUS GWAS

In a PGx study design, sample size is crucial 
in conditioning strength and statistical validation of 
biomarker discovery. As previously discussed, while 
GWAS has been the cornerstone of gene variant 
identification, several pitfalls have been identified in the 
last years if GWAS might be used as the unique approach 
for gene association PGx studies. 

It has to be underlined that GWAS studies are 
generally aimed to the discovery of hidden associations 
among allelic variants and phenotypic effect in a large 
population, while DMET studies are usually tailored 
to smaller populations. GWAS studies allow the 
identification of a haplotype by a tagSNP but do not allow 
to fully assess the contributions of a gene relevant to drugs 
due to a non-uniform coverage of all the chromosomes 
or chromosomal regions. DMETTM platform allows the 
haplotype association and in addition, is able to identify 
the single SNP diplotype validated for its involvement 
in drug metabolism and rarer variations increasing the 
power to identify association in PGx studies [103]. A 
further consideration regards the quality of DMET data 
and how they are reliable. As noted by Fernandez et al. 
[104], DMET genotypes are accurate and results are 
high reliable. Conversely, due to the high dimensionality 
of genome-wide arrays, GWAS studies have difficult 
application in the clinical context, while tailored arrays 
for PGx purposes, such as DMETTM, may achieve better 
results in clinical context as reported by Gamazon et al 
[103].

Therefore, about the different goals and data 
analysis approaches by DMETTM and GWAS, some points 
must be made clear: (i) the specific aim of the analysis, 
(ii) the data dimensionality, and (iii) the statistical (or 
data mining) models. The second point is preponderant, 
from a computer science point of view, since it has direct 
relations with the choice of the analytical model for the 
study aim. For the first point, the goal of study design 
should be considered and consequently the sample size 
suitable: GWAS studies investigate associations among 
genetic variants and phenotypes on broad aspects, while 
DMET studies are tailored to the investigation of PGx. 
About the data dimensionality, it should be noted that 
DMET experiments consider 1936 allelic variants while a 
typical GWAS study may consider up to 906,600 variants 
(e.g. in Affymetrix SNP 6.0 array). Consequently, the 
analysis of GWAS data poses relevant challenges of data 
dimension. A single file containing data of a SNP 6.0 array 
has a typical dimension of some Giga Bytes, while a file 
containing DMET data has a size of some Kilo Bytes. This 
feature requires the introduction of ad hoc solutions (e.g. 
high performance data management) for the analysis of 
GWAS data. Considering the statistical models, it should 
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be noted that the analysis of GWAS data is a broader field 
that involves both statistical and data-mining approaches 
[104], while DMET data analysis mainly relies on the use 
of Fisher’s Test or association rules [105, 106]. We here 
summarize some main approaches (Table 3) and readers 
may refer to Fernandez et al. for a broader coverage of 
this relevant topic [104]. Association studies made by 
GWAS are usually performed using logistic regression 
for dichotomous studies or Fisher’s exact tests for simpler 
studies. For continuous traits, linear regression has been 
used for GWAS. Data mining has also been used to 
perform discriminant analysis among cases and controls 
using decision trees. Finally, statistical models of analysis 
present some common point and differ for dimension and 
aim of the analysis. It is important to note that for a GWAS 
study it is mandatory to evaluate the statistical power of 
the study before performing the experiments. In fact, the 
high number of variables may cause the poor statistical 
significance of the found associations [107]. There exist 
some statistical tools that evaluate the power of the studies 
and are able to predict the needed number of patients (or 
samples) to be enrolled in a study. The minimum number 
of samples is, in general, very high, limiting the use of 
GWAS in clinical context or in PGx context, since often 
meta analysis should be performed in order to have a 
significant number of samples.

BIOMARKER VALIDATION PROCESS

In a living organism, a biomarker is a characteristic 
hallmark precisely measured and objectively validated 
that describes a normal or abnormal biological state, 
pathogenic processes or predict pharmacologic responses 
to a therapeutic treatment [108]. The process for 
biomarker validation, after the discovery in basic studies 
implies multiple processes including the validation in an 
independent clinically relevant cohort of patients.

In the discovery studies, a set of patients is enrolled 
to identify a biomarker according to the study design and 
the primary endpoint (training set). Biomarker validation 
is usually carried out by testing the same set of samples by 
both the assay used in the discovery study and the clinical 
deployment platform, in order to assess the robustness 
and reproducibility of the measurements. According to 
study design, for determining the reliability and quality 
of biomarkers and in the aim to reduce the sources of bias 
the guidelines to be followed are REMARK for prognostic 
studies [109], STROBE for observational studies [110] 
and STARD for diagnostic studies [111]. The independent 
patient validation cohort enrollment is a crucial step to 
demonstrate that the biomarker are generalizable outside 
the learning cohort. Following validation the next step 
is candidate biomarker qualification achieved by the 
development and optimization of an assay platform for 
its measurement including sensitivity, specificity and 

reproducibility. This step is subjected to two types of 
validation: analytical and clinical validation. Analytical 
validity of an assay is the ability to detect accurately and 
reliably the selected biomarker in the laboratory and in 
samples representative of the clinical population under 
investigation while the clinical validation is the correlation 
of the candidate biomarker to a clinical endpoint [112]. 
The analytical validation is performed by testing the assay 
used in the initial discovery and the clinical deployment 
platform on the same set of samples to verify robustness 
and reproducibility of the measurements. According 
to FDA in this phase are identified as ‘probable’ valid 
biomarker process that don’t have the necessary scientific 
control, and ‘known’ valid biomarker process that 
achieved widespread agreement [113]. The final step will 
be the clinical implementation that must be compliant with 
different regulatory processes in the European Community 
(CE) and United States (US) and proceed from regulatory 
approval to incorporation in clinical practice guidelines 
[112] as FDA-cleared or CE-IVD marked clinical 
diagnostic tests. Commonly to other predictive biomarker 
assays their validation is intended for a specific use 
(specific tissue type, specific patient population, and 
specific collection method).

FUTURE APPLICATIONS

Genetically determined variations in ADME 
genes can affect inter-individual heterogeneity in 
drug response. The availability in clinical practice of 
predictive biomarkers for response to commonly used 
drugs could help physicians in daily practice and improve 
patient care with relevant benefits to health systems. At 
present, the chance to empower clinical practice by the 
application of PGx findings is not immediately feasible 
in the real world practice, and strong efforts are still 
required to translate scientific discoveries into therapeutic 
options. So far, several SNPs are potential predictive 
PK/PD biomarkers. Some of them are already included 
in the drug sheet as for the UGT1A1*28 in the case of 
irinotecan. In our vision, this innovative approach should 
be included in personalized medicine algorithm for cancer 
management. A similar approach in CRC might include 
mutation analysis of NRAS, KRAS, BRAF and immune 
microenvironment typing, which might allow treatment 
selection on the basis of an integrated view [114, 115]. 
In our opinion, the future goal for personalized cancer 
therapy will be in fact the knowledge of patient’s specific 
genetic background to pre-select patients not fit for a given 
treatment, at risk of severe and life-threatening toxicities. 
In this scenario, DMETTM platform may allow selection 
of candidate biomarkers to translate, after validation, on 
custom platform for different diseases requiring specific 
treatments in order to set up the companion diagnostic for 
clinical practice and to increase the safety and the efficacy 
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of the drug (Figure 5). Until now, clinically predictive 
biomarkers are included only in the last phases of drug 
validation process: the hope is that diagnostic tools and 
drug development might integrate their paths for a co-
development to allow an improvement of their clinical 
utility in terms of patients health outcomes. In this way, 
it will be possible to withheld treatment of patients 
genetically at risk for ADRs. The routine application 
of DMET driven genotyping should be included in 
prospective clinical trials (Figure 6). The identification of 
novel molecular targeted compounds, should include PK/
PD prevision by DMET analysis, in order to produce a 
development path in the era of precision medicine. In this 
view, algorithms will be required to integrate molecular 
data with drug mechanisms and/or disease knowledge 
[116, 117].

An additional emerging point is the impact of 
environmental factors such as lifestyle, diet and co-
medications on drugs PK/PD, and the profiling of CYP450 
enzymes involved in metabolic activation of several pro-
carcinogens [118]. PGx investigations on genome-disease, 
genome-drug interactions and drug disease interactions 
will allow to evaluate their potential role as biomarkers 
related to cancer risk and susceptibility in clinical studies 
designed to find novel ways to prevent cancer. Analysis 
of DMET data would allow the study of the molecular 
mechanisms underlying interaction between polymorphic 
variants in ADME genes and xenobiotics metabolism, 
improving PGx information on cancer susceptibility. 
The identification of the disease molecular basis and the 
understanding that germline DNA mutations can influence 
drugs response [119-121] and disease outcome have 
given a great impulse to PGx studies, and DMETTM PGx 
approach has the potential to improve the identification 
phase of new biomarkers for personalized medicine. The 
integration of DMET-driven biomarkers with the novel 
genetic information provided by high-throughput “omics” 
technologies might represent an innovative approach 
to open new scenarios towards precision medicine in 
oncology and for the design of new clinical investigations.
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