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AbstrAct
Aging and cancer are the most important issues to research. The population in 

the world is growing older, and the incidence of cancer increases with age. There 
is no doubt about the linkage between aging and cancer. However, the molecular 
mechanisms underlying this association are still unknown. Several lines of evidence 
suggest that the oxidative stress as a cause and/or consequence of the mitochondrial 
dysfunction is one of the main drivers of these processes. Increasing ROS levels and 
products of the oxidative stress, which occur in aging and age-related disorders, 
were also found in cancer. This review focuses on the similarities between ageing-
associated and cancer-associated oxidative stress and mitochondrial dysfunction as 
their common phenotype.

INtrODUctION

Mitochondria are important ancient organelles 
present in nearly all eukaryotic cells. They play an 
essential role in energy metabolism [1] and other cellular 
processes such as the β-oxidation of fatty acids [2], 
maintaining proper concentration of mitochondrial matrix 
calcium [3], amino acids metabolism [4], heme- and iron-
sulfur (Fe-S) cluster biogenesis [5, 6], control of cell death 
including apoptosis [7-9], steroid synthesis [10], and 
hormonal signaling [11, 12].

Mitochondria consist of outer and inner membranes 
separated by an intermembrane space. The outer 
mitochondrial membrane (OMM) contains porins, which 
mediate the exchange of small molecules and information 
between mitochondria and the rest of the cell [13]. The 
inner mitochondrial membrane (IMM) encloses the matrix 
space and has numerous invaginations called cristae. 
The number of cristae per mitochondrion is related to 
the energy requirement for the vital functions of certain 
cell type as well as the number of mitochondria per cell. 

Cristae extend the available working space of the inner 
membrane surface area [14]. IMM is enriched in the 
proteins involved in mitochondrial fusion, transport of 
nuclear-encoded proteins, oxidative phosphorylation 
(OXPHOS), iron-sulfur cluster biogenesis, protein 
synthesis and transport of mtDNA-encoded proteins [15, 
16].

Mitochondrial genome is a small circular DNA 
molecule. There are multiple copies of mitochondrial 
DNA (mtDNA) in the matrix of each mitochondrion. 
Replication of mtDNA is not related to cell cycle and may 
be performed many times [17]. This leads to generation of 
mtDNA mutations by replication errors in addition to ones 
due to accumulated damage [18]. The point mutations 
or rearrangements of mtDNA are mainly related to the 
OXPHOS dysfunction and cause a variety of human 
mitochondrial diseases as well as mutations in nuclear 
genes involved in the maintenance of mitochondria [19-
25].

The mitochondrial dysfunction is known to be 
associated with aging, age-related diseases and cancer. 
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table 1: Major intracellular sources of reactive oxygen species (rOs)
reactive oxygen species Intracellular sources compartment

Singlet oxygen (O2)

Fenton reaction
Lipid peroxidation chain reactions
Haber-Weiss reaction
Superoxide Dismutase (SOD)-mediated reaction
Catalase-mediated reaction
Glutathione peroxidase-mediated reaction 
Xanthine oxidase (XO)-mediated reaction

Mitochondria 
Cytosol
Peroxisomes
Nucleus
Plasma membrane
Endoplasmic reticulum
Lysosome
All membranes

Hydroxyl radical (OH•)

Proton-catalyzed decomposition of peroxynitrite
Fenton reaction
Haber-Weiss reaction
Decomposition of ozone (O3)
Beckman-Radi-Freeman pathway

Mitochondria 
Cytosol
Endoplasmic reticulum
Lysosome

Hydrogen peroxide (H2O2)

Superoxide dismutase (SOD)-mediated reaction
NADPH oxidase-mediated reaction
Cytochrome P450-mediated reaction
Xanthine oxidase (XO)-mediated reaction
Monoamine oxidases (MAO)-mediated reaction
Peroxisomal fatty acid oxidation
Flavin adenine dinucleotide (FAD)-mediated reaction
Antibody-catalyzed water (H2O) oxidation
Electron-transfer flavoprotein pathway

Mitochondria 
Cytosol
Peroxisomes
Plasma membrane
Endosomes
Endoplasmic reticulum
Lysosome
Nucleus

Superoxide anion (O2•−)

Fenton reaction
NADH/NADPH oxidase (NOX)-mediated reaction
Xanthine oxidase (XO)-mediated reaction
Lipoxygenase pathway
Cyclooxygenase pathway
Cytochrome P450 monooxygenase reaction
Mitochondrial oxidative phosphorylation
Electron-transfer flavoprotein reaction 
Hemoglobin auto-oxidation (within erytrocyte)
Nitric oxide synthases (NOS)-mediated reaction

Mitochondria 
Cytosol
Plasma membrane
Peroxisomes
Nucleus
Endoplasmic reticulum

Hypochlorous acid (HOCL) 
and related species (HOBr, 
HOI, and HOSCN)

Eosinophil peroxidase (EPX)-mediated reaction (within eosinophil 
granulocytes)
Myeloperoxidase (MPO)-dependent oxidation (within neutrophil 
granulocytes)

Cytosol
Endoplasmic reticulum
Lysosome
Vacuole
Plasma membrane
Mitochondria
Nucleus

Hydroxyl ion (OH-)
Fenton reaction
Haber-Weiss reaction
Hydroperoxide (ROOH) decomposition

Mitochondria 
Cytosol
Endoplasmic reticulum
Lysosome

Peroxide (O2•2−) Peroxide is unstable molecule. Hydrogen peroxide is more stable one 
that is formed as described above.

Mitochondria 
Cytosol
Peroxisomes
Plasma membrane
Endosomes
Endoplasmic reticulum
Lysosome
Nucleus 

Ozone (O3) Ozone (O3) is unstable molecule generated during antibody catalyzed 
oxidation of H2O to H2O2 Cytosol

Nitric oxide radical (NO•) Nitric oxide synthases (NOS)-mediated nitrite (NO2-) reduction
Xanthine oxidase (XO) reducing nitrates and nitrites

Mitochondria 
Cytosol
Peroxisomes
Endoplasmic reticulum
Plasma membrane
Nucleus
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Herein, we review current studies in the area to show that 
oxidative stress, as the cause or  consequence of defect 
mitochondrial function, could be a common phenomenon 
in these pathologies.

MItOcHONDrIA AND rEActIVE 
OXYGEN sPEcIEs

The first paper on free radical theory was published 
by Denham Harman in 1956 [26]. This theory suggests 
that free radicals, produced by mitochondria as by-
products of their normal metabolism, later go on to attack 
cell constituents. A year after the publication of Harman’s 
paper, Mills described a factor that coacted with the 
glutathione to protect the hemoglobin in the erythrocyte 
from oxidative breakdown. It was termed glutathione 
peroxidase (GPX) and further was described as the main 
enzyme involved in hydrogen peroxide detoxification [27-
29]. In 1969 McCord and Fridovich discovered the anti-

free radical enzyme superoxide dismutase (SOD), which 
was widely distributed within mammalian organisms 
[30]. Following this discovery, a number of studies 
demonstrated that mitochondria isolated from different 
sources (e.g., cow and pigeon heart [31-33], rat liver, 
heart, and brain [34-38], and yeast [39]) could generate 
hydrogen peroxide. Finally, Harman proposed that the 
mammalian lifespan depends on the genetic regulation of 
oxygen utilization rate, and suggested the Mitochondrial 
Free Radical Theory of Aging (MFRTA) [40]. 

A product of mitochondrial oxidative metabolism is 
highly reactive and unstable oxygen, which can oxidize 
many molecules and form reactive oxygen species 
(ROS) [41]. ROS are generated intracellular in different 
compartments through multiple mechanisms (Table 1). 
Mitochondrial-derived reactive oxygen species (mtROS) 
include singlet oxygen (O2), superoxide anion (O2•−), 
hydrogen peroxide (H2O2), nitric oxide (NO•), hydroxyl 
radical (OH•), and hydroxyl ion (OH-). Initially, oxygen 
is converted to a superoxide anion with xanthine oxidase 

Peroxynitrite (ONOO-)
Fenton reaction
Rapid reaction of singlet oxygen (O2) and nitric oxide radical (NO•) 
The reaction of hydrogen peroxide (H2O2) with nitrite (NO2−)

Mitochondria 
Cytosol
Lysosome
Endoplasmic reticulum
Nucleus
Peroxisomes

Peroxyl radical (ROO•/
RCOO•) (also denoted 
Lypid peroxyl radical 
(LOO•))

Lipid peroxidation chain reactions
Synthesis of eicosanoids
Hydroperoxide (ROOH) decomposition induced by heat or radiation
ROOH reaction with transition metal ions and other oxidants capable 
of abstracting hydrogen

Cytosol
Plasma membrane
Peroxisomes
Endoplasmic reticulum
Mitochondria 
Nucleus
Lysosome
All membranes

Hydroperoxy radical 
(HOO•) Fenton reaction

Mitochondria 
Cytosol
Endoplasmic reticulum
Lysosome

Organic hydroperoxide 
(ROOH/RCOOH)

Lipoxygenase-mediated reaction
Oxidation of biomolecules, including lipids, proteins and DNA
Cyclooxygenase reaction
Cytochrome P450 monooxygenase reaction
Heme-peroxidase turnover

Cytosol
Plasma membrane
Nucleus
Endoplasmic reticulum
Mitochondria
Peroxisomes
Lysosome

Organic radicals (R•, RO•, 
R-S•)

Hydroperoxide (ROOH) decomposition induced by heat or radiation
ROOH reaction with transition metal ions and other oxidants capable 
of abstracting hydrogen
Lipid peroxidation chain reactions

Cytosol
Plasma membrane
Mitochondria
Lysosome
Peroxisomes
Endoplasmic reticulum
Nucleus
All membranes

Carbonate Radical (CO3●-)

The reaction between peroxynitrite and CO2
Superoxide Dismutase (SOD)-mediated reaction
Xanthine oxidase (XO)-mediated reaction
Metal-ion catalyzed decomposition of peroxymonocarbonate (HCO4-
)

Mitochondria 
Cytosol
Peroxisomes
Endoplasmic reticulum
Peroxisomes
Lysosome
Vacuole
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(XO) or mitochondrial respiratory chain complexes I 
(NADH dehydrogenase) and III (bc1 complex) [42-
45]. Complex III produces a superoxide anion in both 
the matrix and the intermembrane space [46]. The 
concentration of these complexes in IMM varies with 
organism, tissue, state, age or hormonal status. The 
superoxide anion is then converted to hydrogen peroxide 
by SOD. Hydrogen peroxide can be detoxified to water 
and oxygen with glutathione peroxidase, catalase (CAT) 
or thioredoxin peroxidase (TPx) [42, 47]. It can be also 
converted to hydroxyl radical and hydroxyl ion via the 
Fenton reaction (Figure 1) [48].

There is a hypothesis that the nitric oxide is 
produced by mitochondrial NO synthase (mtNOS). This 
was suggested after the detection of a high rate of NO 
production and functionally active mitochondrial nitric 
oxide synthase (NOS) in rat liver mitochondria [49-
51]. However, these data were not reproduced by other 
laboratories, implying that the NOS enzymes are not 
present at physiologically relevant levels in mitochondria 
[52, 53]. Today, NO production by mitochondria still 

remains an open question [54].

LIPID PErOXIDAtION

The oxidative stress leads to cell injury by three 
basic ways: lipid peroxidation of membranes, oxidative 
modification of proteins and DNA damage. Lipid 
peroxidation affects cell membranes and other lipid-
containing structures [55]. β-oxidation of lipids is usually 
followed by a release of oxygen, which is reduced to water 
through the mitochondrial respiratory chain. At the same 
time, lipids can be oxidized with efficient ROS initiators, 
particularly hydroxyl radical and perhydroxyl radical 
(HO2•), forming water and a lipid radical. This initiates 
the reaction of lipid peroxidation, which constantly takes 
place in the cells. The lipid radical reacts directly with 
molecular oxygen and produces a lipid peroxyl radical. 
The lipid peroxyl radical is not a very stable molecule and 
can combine with another adjacent fatty acid to form a 
lipid hydroperoxide and different lipid radicals, or it can 

Figure 1: Generation of mitochondrial reactive oxygen species (mtrOs). Complex I - NADH dehydrogenase, II - Succinate 
dehydrogenase, III - bc1 complex, IV - Cytochrome C oxidase, V - ATP synthase, Q - Ubiquinone, Cyt C - Cytochrome C, Cyclo D - 
Cyclophilin D, mPTP - Mitochondrial permeability transition pore, SOD - Superoxide dismutase, GPxs - Glutathione peroxidase, TPx 
- Thioredoxin peroxidase. See text for details.
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react with itself. Lipid hydroperoxide can be also broken 
down into a lipid alhoxyl radical and a hydroxyl radical. 
The lipid radicals formed at the previous stage can react 
with oxygen to produce another lipid peroxyl radical, and 
so on. Thus, this process is called “chain reaction of lipid 
peroxidation” (Figure 2). The main intermediate products 
of the reaction are lipid hydroperoxides (LOOHs). They 
can disturb membrane structure, an being dangerous for 
cells [56].

PODUcts OF LIPID PErOXIDAtION As 
cOMMON MArKErs OF OXIDAtIVE 
strEss IN AGING AND cANcEr

The major secondary products of lipid peroxidation 
are toxic and mutagenic aldehydes, malondialdehyde 
(MDA) and 4-hydroxynonenal/4-hydroxy-2-nonenal 
(HNE). They are considered markers of the oxidative 
stress [57-61]. These products have unique properties 
compared with ROS because the non-charged structure 
of aldehydes allows them to easily migrate through 
membranes and cytosol and, consequently, to cause far-
reaching damaging effects inside or outside the cells [62, 
63]. There is objective evidence that HNE and MDA can 
modify the amino acid residues and form stable adducts 
leading to protein damage [85, 86]. They can also form 

covalent adducts with nucleic acids, and membrane lipids. 
The MDA and HNE have been shown to be implicated 
in normal aging, age-related neurodegenerative diseases, 
and cancer [64-69]. Recent study showed that HNE-
modified proteins (HNE-MP) were accumulated during 
aging in vitro and could be supposed to measure aging 
parameters. The middle-aged human fibroblasts were 
cultured and maintained by serial passaging throughout 
their proliferative lifespan. Four age points of the cells 
were analyzed. Aging cells showed a considerable increase 
in HNE-MP levels compared with young and middle-aged 
ones [70].

The HNE-production in the brain is induced by the 
amyloid-β peptide (Aβ), which plays a primary role in 
Alzheimer’s disease (AD) pathogenesis [63]. Conversely, 
the preincubation of cells with HNE increased the uptake 
of Aβ and its intracellular accumulation. This indicates 
that HNE and Aβ may interact to provide potentiation of 
Aβ’s cytotoxicity effects on neuron-like cells in vitro [71, 
72]. HNE-crosslinking modifications accumulating in the 
lysosomal/proteasomal pathway and leading to protein 
inactivation and insolubility were detected in patients 
with Alzheimer’s disease [73]. Immunocytochemical 
studies have demonstrated that pyrrole adducts formed 
by reacting HNE with lysine amino groups were present 
in neurons of patients with AD cases [74]. An increase 
in MDA immunoreactivity was detected in the cytoplasm 

Figure 2: scheme of lipid peroxidation chain reaction. Lipid peroxidation chain reactions initiated by free radicals consists of 
three major steps (initiation, propagation, and termination), which are marked by green, blue, and red frames, respectively. LH - Lipid 
molecule, L• - Lipid radical, LOOH - Lipid hydroperoxide, LOO• - Lipid peroxyl radical, LO• - Lipid alhoxyl radical, LOOL - Peroxide 
bridged dimer, L-L - Fatty acid dimer, OH• - hydroxyl radical, HO2• - perhydroxyl radical. See text for details.
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of neurons and astrocytes in both normal aged and AD 
brains, but not in brains of young subjects [75]. Moreover, 
increased plasmatic levels of MDA and its correlation with 
age were also observed in AD patients [76-80].

Parkinson’s disease (PD) is pathologically 
characterized by progressive destruction and death of 
neurons, that produce dopamine. HNE may alter dopamine 
uptake in rat striatal synaptosomes through binding to 
SH groups of the dopamine transporter and to Na+/K+ 
ATPase [81]. In rat striatal membranes, HNE have been 
registered as an effector of signaling pathway mediated by 
D1/D5 dopamine receptors [82]. In addition, it has been 
shown that HNE could modulate the activity of regulator 
G-protein signaling 4 (RGS4) involved in PD [83]. The 
concentration of HNE was increased in the cerebrospinal 
fluid and plasma of Parkinson’s patients [84]. Furthermore, 
HNE-modified proteins were positively stained in more 
than half the nigral neurons of PD patients, and the levels 
of MDA were also increased. The data indicate that, in 
Parkinson disease, oxidative stress can contribute to nigral 
cell death [85, 86].

Recently, it was found that the by-products of lipid 
peroxidation can induce carcinogenesis. Cell membranes 

contain a high concentration of polyunsaturated fatty 
acids, which are frequently subjected to peroxidation. 
This leads to an inhibition of growth and death of cells. 
The oxidation of phospholipids in the IMM can trigger 
the mitochondria-mediated pathway of apoptosis (Figure 
3). ROS or lipid peroxidation by-products primarily 
react to cardiolipin molecules, the IMM phospholipids, 
which are bound to cytochrome c [87-89]. This induces 
disturbances of cytochrome c-cardiolipin interaction and 
dissociation of cytochrome c from the IMM [90-92]. 
The release of cytochrome c into the cytoplasm induces 
a series of biochemical reactions, resulting in caspase 
activation and subsequent cell death [9]. At this point, a 
major regulator of mitochondrion-dependent apoptosis 
is Bcl-2 family of proteins, which show both pro- and 
anti-apoptotic activities. The proteins belonging to the 
Bcl-2 family are bound to the OMM and can modulate 
its permeabilization [93]. Bax and Bak are anti-apoptotic 
proteins of the Bcl-2 family, which can be activated in 
two ways: through disturbance of their bond with anti-
apoptotic proteins (e.g., Bcl-2, Bcl-xL and Mcl-1) 
[94], or interaction with activator proteins (e.g., BH3/
tBid, Puma, BIM, NOXA, and p53), which induce their 

Figure 3: Oxidative stress in aging and cancer: signaling pathways. See text for details.
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conformational changes [95-98]. Inactivated Bax proteins 
can be localized as monomers in the cytosol or closely 
associated with the OMM. Then, during the process of its 
activation, Bax forms homo-oligomers and inserts itself 
into the OMM as well as into Bak. This leads to membrane 
pore formation and permeabilization, which promotes the 
release of cytochrome c in cytosol [99]. Anti-apoptotic 
proteins prevent mitochondria-mediated apoptosis through 
their interaction with pro-apoptotic ones. The studies 
show that overexpression of Bcl-2 inhibits the release 
of cytochrome c from mitochondria and the subsequent 
apoptotic response is blocked. For example, HNE-induced 
caspase activation is suppressed in Bcl-2 transfected 
colorectal carcinoma cells [100]. The cytosol cytochrome 
c binds to the adapter protein apoptotic protease activating 

factor 1 (Apaf-1), and induces an apoptosome assembly in 
the presence of ATP/dATP. This activates pro-caspase-9 
directly within the apoptosome complex [101]. Then the 
pro-caspase-9 is cleaved to the active caspase-9, which, in 
turn, activates the caspases-3, -6 and -7, leading to DNA 
fragmentation and cell death [101, 102]. If the cellular 
ATP/dATP level is depleted, the caspase activation is 
blocked and the cell death is re-directed from apoptosis 
to necrosis. The release of cytochrome c and apoptosome 
formation can be also triggered though the extrinsic 
pathway of apoptosis [103, 104]. Additionally, the 
accumulation of damage directly in mitochondria may 
also cause enhanced oxidant production and a cascade of 
degenerative events. It should be noted that HNE could be 
generated directly through the oxidation of mitochondrial 

Figure 4: schematic diagram illustrating the harmful effects of rOs on the cellular processes and subsequent outcomes.
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phospholipid cardiolipin as well as other oxidation 
products. In this case, HNE reacts with surrounding 
molecules near the site of its formation, thereby promoting 
chain-reactions of the mitochondria-derived apoptosis 
again [105]. This process appears to be involved in 
atherosclerosis and cancer [106, 107]. Thus, it has been 
shown that HNE could induce mitochondria-mediated 
apoptosis in the pheochromocytoma (PC12) cell line 
and colorectal carcinoma cells [100, 108]. A statistically 
significant increase in MDA and HNE levels was detected 
in primary colorectal cancer, implying the association of 
colorectal carcinogenesis with serious oxidative stress 
[109]. Immunohistochemical staining of HNE adducts 
was demonstrated in animal models of liver cancer [110]. 
HNE treatment of MG63 human osteosarcoma cells could 
activate caspase-3 and altered the Bax/Bcl-2 ratio, thereby 
inducing cell death [111]. A recent research showed that 
HNE increased the growth of breast cancer cells and 
promoted their angiogenesis and invasion [112]. Elevated 
levels of MDA were observed in plasma and blood serum 
of patients with breast, lung, ovarian, thyroid, and oral 
cancer, and precancer states [113-122]. The MDA levels in 
patients with lung cancer correlated with the cancer stage 
[123]. In addition, significantly higher levels of salivary 
MDA were determined in squamous cell carcinoma and 
pre-cancer patients [124].

LIPID PErOXIDAtION PrODUcts AND 
sIGNALING PAtHWAYs

Several studies suggest an interesting mechanism 
protecting tumor cells against superoxide anion-mediated 
apoptosis by the expression of membrane-associated 
catalase. Tumor cells, as known, generate extracellular 
superoxide anions with the participation of NADPH 
Oxidase 1 (NOX1). NOX1 are multi-subunit enzyme 
complexes localized in cell membrane and required 
for the reduction of molecular oxygen. On the one 
hand, extracellular superoxide anions are needed for 
the regulation of cancer cell proliferation and for the 
maintenance of their transformed state. On the other hand, 
extracellular superoxide anions can induce intercellular 
apoptosis in transformed cells [125, 126]. As a result, 
they are selectively eliminated. The ROS signaling by 
the HOCl and NO/peroxynitrite pathways are involved 
directly in this apoptosis-derived cell death [127-
129]. In the transformed cell, extracellular superoxide 
anions spontaneously react with hydroxyl ions (H-). 
They could be also driven by SOD forming an unstable 
hydrogen peroxide. It is used as a substrate to generate 
exogenous HOCl by the dual oxidase (DUOX)-coded 
peroxidase (POD) domain. Then HOCl can interact with 
superoxide anions, generating a hydroxyl radical, which 
penetrates intracellular space, induces lipid peroxidation, 
and consequently promotes the mitochondrial-derived 
apoptosis. However, tumor cells express the membrane-

associated catalase, which can efficiently decompose 
H2O2 directly after its generation. Moreover, SOD can 
play a co-modulatory protective role through partial 
inhibition of HOCl/superoxide anion interactions. SOD-
derived generation of H2O2 could be also compensated by 
interrelation of SOD with a catalase-mediated protective 
effect. Additionally, in the presence of high concentrations 
of H2O2, compared with POD, HOCl can react with 
H2O2 to block the HOCl signaling [130]. 

NO/peroxynitrite signaling pathway modulating 
tumor cell death consists of the following: (1) within 
cells, NO synthase promotes arginine-derived NO 
synthesis, (2) NO passes through the cell membrane, (3) 
the formation of peroxynitrite extracellular interaction of 
NO with superoxide anion and the subsequent reactions 
lead to the generation of nitrogen dioxide (NO2) and 
hydroxyl radical, (4) these reactions initiate the lipid 
peroxidation and apoptosis [131]. Nevertheless, the 
membrane-associated catalase can protect the tumor cell 
by preventing peroxynitrite generation and NO oxidation 
[126]. Moreover, the inhibition of NO/superoxide anion 
interactions by SOD, as in the previous case, modulates 
the negative effect on apoptosis pathway. Interestingly, 
it has been shown that high concentrations of HNE may 
inactivate membrane-associated catalase, leading to tumor 
cell death through mitochondria-derived apoptosis and 
consequently bestowing anti-cancer effects (Figure 3) 
[126, 132]. 

In a multitude of studies, it has been shown that 
HNE and its protein adducts can regulate Nuclear factor-
kB (NF-κB) and activator protien 1 transcription factor 
(AP-1) transcription factors, thereby being responsible for 
the expression of many genes (Figure 3). It is well known 
that NF-kB signaling pathway is involved in normal aging, 
age-related diseases, and cancer [133-138]. NF-κB is a 
family of proteins, which play a key role in regulating the 
expression of genes which are responsible for immunity, 
apoptosis, and cell cycle. NF-κB family consists of five 
proteins: p65 (RelA), RelB, c-Rel, p105/p50 (NF-κB1), 
and p100/52 (NF-κB2), which associate with each other 
to form distinct active NF-κB dimers. In the cytosol, NF-
κB dimers in inactive form anchored by IκB are found. 
There are two ways to activate the NF-kB-induced gene 
transcription. These are triggered by cytokines TNFα and 
IL-1 (canonical signaling) or antigen receptors CD40 and 
BAFF (non-canonical/alternative signaling). There are 
the activation of IKK complex (IKKα, IKKβ, and IKKγ) 
and the phosphorylation of IκB proteins, which are in 
interaction with p50-RelA subunit, with cytokines in the 
course of canonical signaling pathway. This reaction leads 
to degradation of IkB proteins, and a release of the active 
p50-RelA NF-κB dimer. NF-kB non-canonical signaling 
consists of the following: NIK (NF-κB-inducing kinase) 
induces the activation of IKKα, which phosphorylates 
p100 NF-κB subunit of p100-RelB NF-κB dimer directly 
in cytosol. This leads to the generation of an active p52-
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RelB NF-κB dimer. In both cases, the active NF-κB dimer 
can translocate to the nucleus and induce the transcription 
of target genes. NF-κB target genes include regulators 
of apoptosis (Bcl-XL and IAPs), cytokines (TNFa, IL-1, 
IL-6, and IL-12), cyclins and growth factors (G-CSF and 
M-CSF), immunregulatory proteins (VCAM, ICAM, and 
MHC I), and others [139, 140]. Many different kinases 
can phosphorylate and activate the IKKα and IKKβ 
subunits of the IKK complex: glycogen synthase kinase 
3β (GSK3β), protein kinases B, R and C (PKB, PKR, 
and PKC), mitogen-activated type 3-protein kinase 7 
(MAP3K7), p38 MAP kinases or c-Jun N-terminal kinases 
(JNKs) [141]. Thus, it has been shown that HNE could 
differently regulate PKC isozymes, MAPK (mitogen-
activated protein kinase), and JNK in a dose-dependent 
manner and be involved in NF-kB activation (Figure 3) 
[142-145].

AP-1 is a heterodimeric/homodimeric complex 
composed of members of the JUN, FOS, ATF, and 
MAF families. The combination of protein in the AP-1 
complex determines its target genes that play a major role 
in differentiation, proliferation, and apoptosis. Important 
examples are Bcl2 family of proteins, EGFR, p53, 
CD44, and proliferin. AP-1 complex has been shown to 
be involved in tumorigenesis. Two components of AP-
1, c-JUN, and c-FOS, are well known as oncoproteins, 
but in some cases they can suppress tumor formation 
[146]. The regulation of AP-1 activity occurs by many 
ways: differential expression of single AP-1 components, 
interactions with ancillary proteins, and transcriptional 
and post-translational regulation. The last way consists 
in MAPK pathways activation (ERK1/ERK2, JNK/
SAPK, and p38) by several external stimuli. This leads 
to induction of FOS and JUN gene transcription and the 
formation of further AP-1 complexes. It has been shown 
that HNE can regulate AP-1 complex generation through 
induction of FOS and JUN gene expression or activation/
inhibition of MAPK pathways [108, 147-150].

Moreover, HNE has been shown to regulate the 
Fas/Fadd-dependent pathway of apoptosis (Figure 3). Fas 
is a protein belonging to the TNF-receptor superfamily. 
The Fas receptor (FasR) contains a death domain, which 
is a protein interaction module. FADD is an adaptor 
molecule, which contains a death domain and a death 
effector domain. FADD can interact with members of the 
TNF-receptor superfamily and mediates cell apoptotic 
signals. Binding of FasR with Fas ligand (FasL) induces 
its trimerization. This leads to interaction with adaptor 
molecule FADD, which has already been recruited by 
the receptor-associated death proteases (pro-caspases-8 
and -10) through the death effector domain. Thereby, the 
death-inducing signaling complex I (DISC complex I) is 
formed. Activated caspase-8 can stimulate the caspase-3 
signaling in two ways: (1) caspase-8 cleaves the Bcl-2 
interacting protein (Bid), which alters the mitochondrial 
membrane permeabilization or induces activation of 

Bak. It triggers cytochrome c release, thereby activating 
the mitochondrion-dependent pathway of apoptosis; (2) 
caspase-8 directly activates caspase-3, -7 or -6, leading 
to the apoptotic DNA fragmentation and cell death [151]. 
In another case, FasR can recruit death-associated protein 
(DAXX), which further binds with apoptosis signal-
regulating kinase 1 (ASK1) and activates it [152, 153]. 
Then ASK1 induces JNK/SAPK and p38 MAPK pathways 
[154-156]. The interaction of FasR with receptor-
interacting protein kinase 1 (RIP1) was supposed to be a 
component of DISC complex II [157]. DISC complex II, 
depending on the combination of signaling proteins, can 
promote apoptosis, necrosis, NF-kB, JNK/SAPK and p38 
MAPK pathways. A study by Chaudhary and colleagues 
has demonstrated that HNE could induce a Fas-mediated 
apoptosis in HepG2 cells. They demonstrate that an 
exposure of HepG2 cells to sublethal concentrations of 
HNE promoted the export of DAXX from the nucleus to 
cytoplasm and facilitated Fas-DAXX binding. In its turn, it 
activated ASK1, JNK and caspase-3, leading to cell death 
[158]. The same data were obtained in Jurkat and HLE 
B-3 cells [159, 160]. Generally, it has been shown that 
the expression and functions of Fas can be modulated by 
HNE in a time- and concentration-dependent manner and 
binding of HNE with Fas was essential for the execution 
of apoptosis. The involvement of HNE in p53 apoptosis 
pathway in HepG2 cells was also determined. Treatment 
of HepG2 cells with HNE resulted in the induction of 
p53 expression, its phosphorylation, and activation of 
downstream targets Bax and p21 [158]. Actually, it was 
shown that HNE treatment increased the expression of 
p53 family proteins and their targets in the SK-N-BE 
neuroblastoma cell line [161]. A recent study demonstrated 
that HNE treatment of SH-SY5Y cell culture induced the 
abnormal expression of apoptotic markers (p53, Bax and 
caspase-3) and led to neuronal cell death [162].

As previously mentioned, AD pathogenesis 
is triggered by the progressive accumulation of the 
amyloid-β peptide in the form of extracellular amyloid 
plaques in human brain. Aβ results from a cell surface 
receptor and transmembrane precursor amyloid protein 
(APP). Within lipid rafts, APP cleaved by β-secretase 
leads to a generation of a membrane bound carboxyl (C)-
terminal fragment (CTF-β). CTF-β needs to be cleaved by 
γ-secretase to form Aβ and the amyloid precursor protein 
intracellular domain (AICD). Then Aβ molecules self-
aggregate into soluble oligomers. It was discovered that 
the levels of this soluble fibrillar oligomers were increased 
in the brains of AD patients and correlated with the disease 
[163]. Moreover, Aβ oligomers were found in both 
intracellular and extracellular species [164-166]. Thus, 
Aβ oligomers can contribute to AD pathology via different 
mechanisms, including the induction of neurotoxicity, the 
formation of insoluble fibrillar amyloid-β aggregates, and 
the facilitation of tau pathology [167, 168]. Tau is the 
microtubule-associated protein (MAP), which stabilizes 
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neuronal microtubules and is located, mainly, in the 
axons of neurons in central nervous system. An abnormal 
hyperphosphorylation of tau protein in brain leads to the 
generation of neurofibrillary tangles (NFTs) known as a 
hallmark of Alzheimer’s disease [169, 170]. It has been 
shown that HNE bound directly to normal tau and induced 
the tau Alz50 epitope involved in hyperphosphorylation 
of tau protein and neurofibrillary tangle formation in 
Alzheimer’s disease [171, 172]. A study by Liu and co-
authors confirmed these findings to show that an antibody 
against neurofibrillary tangles recognized tau in brains 
of AD patients more effectively after HNE-treatment, 
but only when tau was in the phosphorylated state [173]. 
The immunocytochemical study previously showed that 
HNE treatment of cultured rat hippocampal neurons 
caused a moderate increase in the basal levels of tau 
phosphorylation, and prevented tau dephosphorylation 
[174].

OXIDAtION PrOtEIN-ADDUcts

Many studies have reported that HNE- and MDA-
protein adducts were associated with Alzheimer’s disease 
progression. They show that Aβ oligomers can insert into 
the cell membranes and promote lipid peroxidation. This 
led to generation of by-products of lipid peroxidation 
such as MDA and HNE. Moreover, in brain tissue, lipid 
peroxidation-derived aldehydes can be also formed in 
many ways mentioned above. Then MDA and HNE can 
react and covalently modify many critical proteins such as 
amyloid-β peptide, collapsing response mediator protein 
2 (CRMP2), neuronal glucose transporter 3 (GLUT3), 
neuropolypeptide h3, carbonyl reductase (NADPH), 
lactate dehydrogenase B (LDHB), heat shock protein 70 
(HSP70), elongation factor Tu (EF-Tu), elongation factor 
1 alpha (eIF-α), and manganese superoxide dismutase 
(MnSOD). It promotes neuronal cell impairment and 
Alzheimer’s disease pathogenesis [175-178]. For example, 
the immediate reaction of HNE with the Aβ peptide leads 
to the formation of more toxic diffusible Aβ-oligomers and 
insoluble aggregates [179]. The HNE-amyloid-β peptide 
adducts have an increased affinity for lipid membranes and 
tendency to form amyloid fibrils. Thus, the stimulation of 
lipid peroxidation by Aβ results in its own modification 
and accelerates amyloidogenesis [180, 181]. 

Elevated levels of several HNE-modified proteins 
of energy metabolism, including alpha-enolase (ENO1), 
phosphoglycerate kinase 1 (PGK1), pyruvate kinase (PK), 
mitochondrial ATP synthase α chain (ATP5A), malate 
dehydrogenase (MDH) and triosephosphate isomerase 
(TPI), were detected in mild cognitive impairment (MCI) 
patients associated with a risk for Alzheimer’s disease. 
Some of these oxidatively modified proteins are enzymes 
involved in glycolysis. These are  ENO1, PGK1, TPI, and 
PK. 

It is well known that brain is one of the greatest 

consumers of glucose, and glycolysis is required for 
normal functions of one. Alpha-enolase is a housekeeping 
enzyme, which catalyzes the hydrolysis dehydration of 
2-phospho-D-glycerate (2-PGA) to phosphoenolpyruvate 
(PEP) in the penultimate step of glycolysis in cytoplasm. 
Many studies demonstrate that  ENO1 is subjected to 
oxidative modification, which can be accompanied by 
decreasing its activity in different pathological conditions 
such as aging [182], Alzheimer’s and Parkinson’s diseases 
[183-186], Huntington’s disease [187], and cancer [188, 
189]. However, ENO1 does not directly affect ATP 
production in spite of its glycolytic function. Actually, 
recent studies reported that ENO1 has also a lot of non-
glycolytic functions [190-194] and might be involved in 
more than just metabolic processing of glucose [195].

Phosphoglycerate kinase 1 is an enzyme of the 
glycolytic pathway regulated by hypoxia-inducible 
factor-1α (HIF-1α). It catalyzes the conversion of 
1,3-biphosphoglycerate (1,3-BPG) to 3-phosphoglycerate 
(3PG) in glycolysis. HNE can both react directly with 
PGK1 to form HNE-PGK1-adducts and promote 
a decrease in PGK1 expression [196]. The altered 
expression and conformation of PGK1 is correlated with 
cellular senescence and cancer [197-200]. Furthermore, a 
recent study has revealed that oxidative damage of PGK1 
was markedly increased in aged human frontal cortex in 
progressive supranuclear palsy [201]. Decreased levels of 
PGK1 were detected even in the hippocampus of aged rats 
under beneficial effects of caloric restriction [202]. 

Pyruvate kinase catalyzes the last step of glycolysis 
leading to the generation of ATP and pyruvate. PK has a 
key role for energy homeostasis in brain tissues [203]. It 
has been revealed that the increasing activity of pyruvate 
kinase was followed by enhancement of glucose-
dependence of brains in aged rats [204]. At the same time, 
reduction of pyruvate kinase activity, mediated by free 
radicals, was found in rat cerebrum [205]. Pyruvate kinase 
could also submit Aβ-induced oxidative modifications in 
the process of AD pathology [206]. In tumor cells, PK is 
converted to a less active dimer form PKM2, which is a 
major regulator of cancer metabolism. Moreover, PKM2 
is associated with caspase-independent cell death [207]. 
This is confirmed by the fact that, in cancer cells, caspases 
can downregulate primary regulators of pyruvate kinase 
activity, particularly, phosphoserine [208].

Triosephosphate isomerase is an essential enzyme 
for glycolysis and gluconeogenesis, which catalyzes 
the interconvertible isomerization of glyceraldehyde 
3-phosphate (GAP) and dihydroxyacetone phosphate 
(DHAP) [209]. TPI deficiency is a severe glycolytic 
defect that contributes to progressive neurological 
dysfunction [210]. Actually, it was demonstrated that 
the inhibition of TPI might lead to neurodegeneration 
[211]. Lower TPI activity is detected in aged senescence-
accelerated mice brain models, which show early 
cognitive impairment [212]. Also, modified TPI 
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interacts with tau protein, inducing an intraneuronal 
aggregation, thereby contributing to the acceleration of 
AD progression [213]. Conversely, tau can have an effect 
on TPI, triggering its functional loss and subsequently 
facilitating neurodegenerative disease development [214]. 
Many studies elucidated that TPI was also involved in 
tumorigenesis and anti-drug resistance of cancer cells 
[215-217].

There are two isoenzymes of malate dehydrogenase: 
mitochondrial and cytoplasmic ones. Mitochondrial MDH 
catalyzes the reaction of reversible malate oxidation to 
oxaloacetate using the reduction of NAD+ to NADH. 
Conversely, cytoplasmic MDA reduces oxaloacetate to 
malate, oxidizing NADH to NAD+. Then malate enters 
into mitochondria from cytoplasm where it can be utilized 
by mitochondrial MDH. These reactions are components 
of the TCA cycle and gluconeogenesis from pyruvate. It 
is known that a large part of glucose molecules utilized 
by the brain is produced via gluconeogenesis. The altered 
activity of MDA is associated with Parkinson’s disease 
[218], Alzheimer’s disease [219], schizophrenia [220], and 
cancer [221, 222].

Mitochondrial ATP synthase α chain plays a crucial 
role in the activity of the entire electron transport chain and 
subsequently in ATP production. Thus, a failure of ATP5A 
leads to the loss of the whole ATP synthase (complex V) 
activity. This event, coupled with the changes in complex 
I, III, and IV, may result in impairment of mitochondrial 
ATP production, the leakage of electrons from their carrier 
molecules, and further ROS generation. Schägger and 
Ohm previously reported ATP-synthase deficiencies in 
Alzheimer’s disease [223]. In addition, decreased activity 
of ATP-synthase was detected in brains of patients with 
late-stage AD [224]. 

These results confirm the contribution of 
mitochondrial dysfunction to AD progression [176]. 
Moreover, the altered activity of energy metabolism 
enzymes on the whole is one of general stages in the 
progression of age-related diseases and cancer.

OXIDAtIVE DNA DAMAGE

Oxidative DNA damage appears to be critical for 
aging, age-related diseases and cancer [225]. ROS and 
products of lipid peroxidation can have an effect on both 
genomic and mitochondrial DNA, leading to various types 
of DNA damage: double- and single-strand breaks, intra- 
and interstrand DNA crosslinks, DNA-adduct formation, 
DNA base and deoxyribose modifications. Subsequently, 
replication of damaged DNA before repairing results in 
DNA mutations and genomic instability [226]. The DNA 
double-strand breaks (DSBs) are the most dangerous 
impairment. They cause severe genetic mutations leading 
to various disorders and tumor progression [227-229]. 
The single-strand breaks (SSBs) are less harmful for 
cells if they are repaired in time. If they are not repaired 

rapidly, chromosomal SSBs also result in serious lesions 
and may contribute to many human diseases [230]. 
Moreover, DNA replication of SSBs can potentially lead 
to DSBs formation. It has been shown that a transient 
increase in DSBs may induce Aβ-derived DNA damage 
caused by a synaptic dysfunction and being involved in 
the pathogenesis of Alzheimer’s disease [231-233]. In 
addition, larger numbers of SSBs and DSBs were observed 
in the brains of PD patients [234]. 

8-oxoGuanine (8-OHG) is one from the multiple 
oxidation products generated in DNA through dG 
oxidation. 8-OHG can join erroneously to adenine to make 
G-T and C-A replacements in genome. The nucleoside 
form of 8-OHG is 8-oxo-2’-deoxyguanosine (8-OHdG), 
which has been proposed as an indicator of oxidative DNA 
damage in vivo and in vitro [235, 236]. 8-OHdG further 
can be subjected to keto-enol tautomerism to favor the 
oxidized product 8-oxo-7,8-dihydro-2-deoxyguanosine 
(8-oxodG), which is also commonly used as a marker 
of oxidative DNA damage [237, 238]. Many studies 
reported a direct correlation between 8-OHG formation 
and carcinogenesis [239]. Altered levels of 8-OHG/8-
OHdG demonstrated an association with pathogenesis 
of Alzheimer’s disease, amyotrophic lateral sclerosis, 
Down’s syndrome, Parkinson’s disease, normal aging, and 
cancer [237, 240-248]. For example, Ames and colleagues 
have shown the age-dependent accumulation of 8-OHdG 
in DNA from various rat organs [249]. Increased levels 
of 8-OHdG and OH8Gua, one more marker of oxidative 
DNA damage, in senescent human diploid fibroblast were 
shown [250]. DNA adducts derived from dC oxidation, 
2’-deoxycytidine (dC)-5-hydroxy-2’-deoxycytidine 
(OH5dC), 5-hydroxy-2’-deoxyuridine (OH5dU), and 
5,6-dihydroxy-5,6-dihydro-2’-deoxyuridine (dUg), were 
also detected in organs of different aged rats at levels 
similar to those of 8-OHdG [251]. It may contribute 
to spontaneous mutagenesis, leading to cancer and 
aging. A study of 5,6-hydroxy-5,6-dihydrothymine/
dihydrothymidine (dTg), a product of dT oxidation, in 
mouse and monkey urine revealed a correlation between 
the specific metabolic rate of a species and the urinary 
outputs of dTg. The urinary dTg levels from mice 
were higher than those from monkey [252]. These data 
demonstrated that increased metabolic rate and oxidative 
DNA damage were associated with the shorter life span 
typical for smaller mammals. Thus, the presence of DNA 
oxidation products may be related to a higher oxidative 
stress and lower level of some antioxidants. In this case, 
there is a higher level of DNA lesions, which are not 
completely repaired.

Mitochondria generate large amounts of ROS 
directly exposing mtDNA to oxidative stress. The levels of 
oxidative mtDNA damage are more than a half higher and 
more extensive compared to nuclear DNA [235]. mtDNA 
lacks “protective” histones and has a limited repertoire 
of available DNA repair pathways, therefore it is very 
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sensitive to oxidative damage. There is a “vicious cycle 
theory of mitochondrial ROS production”. It consists in 
the following: mtDNA damage results in mitochondrial 
dysfunction leading to an increase in ROS production, 
which subsequently elevates the accumulation rate of 
mtDNA mutations, which will further impair respiratory 
chain function [253]. However, this theory is still being 
discussed in the field of research on aging, cancer, and 
oxidative stress [254-259]. 

There is an evidence that the accumulation of 
oxidative mitochondrial DNA damage during normal 
aging is a risk factor for the development of age-associated 
neurodegenerative disorders [260]. It has been shown 
that the frequency of point mtDNA mutations increased 
approximately 5-fold during an 80-year lifespan [261]. 
The accumulation of somatic mtDNA mutations was 
demonstrated to be a feature of accelerated aging in 
knock-in mice, expressing a proofreading-deficient 
version of the mitochondrial DNA polymerase G (POLG) 
and to promote apoptosis [262]. Another similar study 
confirmed these data and showed a causative link between 
mtDNA mutations and aging phenotypes [263]. The 
mtDNA damage, correlated with elevated mitochondrial 
ROS formation, was demonstrated to significantly 
contribute to age-dependent endothelial dysfunction 
in vessels [264]. Aliev and co-authors showed that 
mtDNA deletions were accompanied by increased levels 
of APP, 8-OHG and cytochrome c oxidase (COX), and 
correlated with endothelial lesions in vessels [265]. These 
findings explain the fact that aging-related impairment of 
cerebral perfusion results in brain hypoperfusion, which 
contributes to the development of AD and consequently 
to neurodegeneration [266]. Increased of mtDNA damage 
and 8-OHG levels, associated with reduced mtDNA 
content, were observed in AD brains [267-270]. The 
age-related increase in mtDNA damage was shown in 
patients with sporadic Parkinson’s disease [271]. Greater 
accumulation of mtDNA deletions was detected in the 
dopaminergic neurons of substantia nigra in old rats 
compared to young ones [272].

In recemt years, several mutations and depletions 
of mtDNA were identified in different types of cancers. 
Mutations associated with the development of tumors were 
found to be present in both the non-coding and coding 
regions of mtDNA in patients with leukemia and various 
types of carcinoma [273, 274]. However, it is unclear 
whether the mitochondrial dysfunction is a cause or a 
consequence of cancer. A recent study of a cohort including 
311 individuals with mitochondrial dysfunction (90% 
maternally inherited mtDNA mutation) has not shown 
an increased risk of cancer compared with the general 
population. However, these results do not contradict the 
hypothesis that secondary mtDNA alterations are formed 
during tumorigenesis, which can play an essential role in 
the further malignant transformation [275-277].

MItOcHONDrIAL HOrMEsIs

The MFRTA suggests that oxidative damage is 
accumulated with age and drives the aging process. 
There is a linear dose-response relationship between 
the increasing amounts of ROS and the oxidative stress. 
However, several lines of research demonstrated the 
potential beneficial role of ROS as redox signaling 
molecules. Mitochondria are fully integrated into the cell, 
and any significant deficiency in mitochondrial function 
may trigger an adaptive nuclear response, thereby altering 
nuclear gene expression [278]. Thus, it has been reported 
that low doses of ROS exposure decreased mortality and 
increased stress resistance, while higher doses exerted 
opposite effects [279]. Moreover, the effect of antioxidants 
on the mitochondrial ROS signal impairs the general 
health and prevents the extension of lifespan [280, 281]. 
ROS is termed mitochondrial hormesis or mitohormesis 
[282]. It has been detected that mitohormesis extended 
the lifespan in many model organisms, including 
Saccharomyces cerevisiae, Drosophila melanogaster, 
Caenorhabditis elegans and mice [278, 280]. The concept 
of mitohormesis bases on the physiological effects of 
calorie  and glucose restriction, reduction of specific 
macronutrients, and physical exercises, which are required 
to promote health and longevity, and the role of ROS as 
essential signaling molecules in these processes.

It was found that ROS influenced stress resistance 
and lifespan through several transcription factors, such 
as FOXO/DAF-16, NRF2/SKN1, and HSF-1 [279]. 
For instance, NF-E2-Related Factor 2 (NRF2), which 
is activated by ROS, can bind with the antioxidants 
responsive elements (AREs) and mediate mitohormesis 
[283, 284]. Other transcription factors, such as Forkhead 
transcription factors (FOXOs) and heat shock factor 1 
(HSF-1), activate many genes involved in cellular stress 
response. HSF-1 is a major repressor of heat shock genes, 
which encode proteins rapidly induced after temperature 
stress. FOXOs regulate the transcription of superoxide 
dismutase and catalase genes, which encode the enzymes 
involved in detoxification of ROS [285, 286]. Several 
studies show that the mechanisms underlying extended 
lifespan are dependent on the AMP-activated protein 
kinase (AMPK) [281, 287-290]. AMPK is a cellular 
energy sensor, which is activated by metabolic stress. 
AMPK upregulates the activities of many key metabolic 
enzymes, thereby, compensates for the energy deficit 
and increases the oxidative stress resistance and survival 
rates [287]. It is suggested that the extension of lifespan 
requires activation of p38 MAP kinase, which can 
induce ROS formation [291, 292]. The impairment of 
the mTOR pathway is shown to extend the lifespan in 
various organisms [293-295]. The impairment of insulin/
IGF-1 signaling prolongs the lifespan of mice [296]. HIF-
1 responds to hypoxia by activating the transcription of 
many genes. It is shown that HIF-1 can down-regulate 



Oncotarget44891www.impactjournals.com/oncotarget

the mitochondrial activity and be responsible for lifespan 
extending through RNAi-mediated knockdown of several 
mitochondrial proteins [279, 297, 298].

It should be noted that the longevity is closely related 
to an increased risk of cancer and neurodegenerative 
disorder incidences. Thus, it is not surprising that the 
molecular mechanism underlying mitohormesis can 
be associated with age-related diseases and cancer. In 
support of this, many studies showed the critical role 
of Nrf2, HIF-1, and p38 MAP kinase in progression of 
neurodegenerative disease and cancer, in which oxidative 
stress is closely implicated [299-312].

cELLULAr sENEscENcE AND tUMOr 
sUPPrEssION

The cellular senescence has been first described 
by Hayflick and colleagues more than 40 years ago 
[313, 314]. They demonstrated that normal diploid 
cells had a limited replicative potential. In contrast to 
cancer cells, normal cells at the end of their replicative 
life span are in a process known as cellular senescence 
which is characterized by irreversible cell cycle arrest, 
morphological changes, epigenetic modifications, lack 
of response to growth factors, telomere shortening and 
dysfunction, sustained metabolic activity and elevated 
DNA damage [315]. Further, cellular senescence has been 
supposed to be a tumor-suppressor mechanism [316]. 
Many studies showed the activation of the negative growth 
regulatory genes and proteins, which inhibit the initiation 
of DNA synthesis, during senescence. For example, p53 
and Rb, the tumor suppressors, were shown to play a role 
in the regulation of cellular senescence [317]. Inactivation 
of p53 and Rb genes contributed to extend the proliferative 
lifespan of normal fibroblasts [318-320]. However, it is not 
sufficient for malignant transformation. Studies by Cairns 
revealed that at least four or five mutations were required 
for the transformation from normal to cancer cells [321, 
322]. Using a genetic model of colorectal tumorigenesis, 
Vogelstein and collaborators also proposed at least four 
genetic alterations that could underlie tumor development 
[323]. The other growth inhibitory genes such as p21, p16, 
p33, p19, and p27 were also regarded as key effectors of 
cellular senescence [317, 324]. 

Ras and Myc oncogenes have been shown to 
be involved in the regulation of senescence-inducing 
pathways. Serrano and colleagues in 1997 demonstrated 
that oncogenic transformation of human diploid and mouse 
embryo fibroblasts by RAS resulted in a permanent cell-
cycle arrest, simultaneous induction of the p53 and p16 
tumor suppressor proteins, and cellular senescence. They 
found that oncogenic transformation of the cells by RAS 
required either a cooperating oncogene or the inactivation 
of tumor suppressors. However, escape from RAS-induced 
arrest by disruption of p53 or p16/Rb pathways may lead 
to cell transformation [325]. In contrast to RAS, Myc 

overexpression resulted in apoptosis in primary cells. 
This effect could be mediated by activation of p19ARF/p53 
and p14ARF/E2F-1 pathways [326, 327]. The expression of 
other oncoproteins, such as Raf and MEK, also induces 
cell cycle arrest and activates mediators of senescence 
(p53, p21Cip1, and p16Ink4a) in human fibroblasts [328-
330]. Jacobs and co-authors showed that overexpression 
of Bmi-1 oncogene induced primary mouse fibroblast 
immortalization and downregulated expression of the 
tumor suppressors p16 and p19Arf. Bmi-1-deficient mouse 
fibroblasts, in turn, showed an increased expression of p16 
and p19Arf and premature senescence phenotype [331].

Telomere shortening is one of the major mechanisms 
inducing cellular senescence and inhibiting tumorigenesis 
[332, 333]. However, it can trigger not only senescence 
response but telomere crisis as well. Progressive telomere 
shortening and a loss of tumor suppressor function result 
in a massive chromosomal instability, secondary genetic 
alterations and facilitate carcinogenesis [334, 335]. 
For example, a study of a telomerase-knockout mouse, 
heterozygous for mutant p53, revealed that a loss of 
telomere function and the consequent genomic instability 
could cooperate with p53 deficiency and promote 
tumorigenic initiation [336]. In addition, a series of studies 
revealed the relative roles of senescence and apoptosis 
induced by telomere dysfunction and p53 activation in 
tumor suppression [337].

mTOR pathway is involved in both senescent 
phenotype and cancer, which have been extensively 
studied by Blagosklonny and colleagues. mTOR pathway 
drives the process of conversion from proliferative arrest 
to irreversible senescence and is involved in longevity 
[338, 339]. On the other hand, it is activated by mutations 
in oncogenes such as Raf, Ras, and PI3K and inhibition of 
many tumor suppressor genes, including p53. However, 
cells with TOR-activating oncogenes are required in 
deactivation of cell cycle checkpoints to proliferate [340]. 

Senescing cells are characterized by persistent 
DNA-damage response (DDR) signaling, which could 
be induced by mitochondrial dysfunction and oxidative 
stress. It detects DNA lesions, signals the presence of 
genomic DNA damage, and promotes their repair [341]. 
Indeed, DDR was recognized as an anticancer mechanism 
leading to cell cycle arrest followed by cellular senescence 
or apoptosis [342, 343]. Markers of DDR, such as 
overexpression of p21, the activation of checkpoint 
kinases ATM and Chk2, the phosphorylation of histone 
H2AX, p53 accumulation or phosphorylation, commonly 
occur at the early stages of human tumors and precursor 
lesions [344-346]. These data indicate that, at an early 
stage of tumorigenesis, cells activate DDR to delay or 
prevent cancer. Thus, DDR can be considered yet another 
mechanism of tumor suppression that could be triggered 
by oxidative stress and in which senescence is involved.

Data from several sources show that the progression 
of cancer is also slower in aged individuals, and metastases 
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are often less frequent [347, 348]. The loss in genome 
“plasticity” during the development and aging is a possible 
explanation for this decline [349]. The deregulation of 
chromosome recombination potential predisposes to 
malignant transformation, but there is a decline in it with 
aging. Thus, during senescence, the loss in “plasticity” 
protects from deviations in cell proliferation, slowing 
down tumor growth and metastasis in the old. Moreover, 
cellular senescence is also mentioned as a mechanism of 
reversion of tumor cells to normality [350]. In tumor cell 
population, there are nondividing cells with growth arrest 
also termed senescence [351].

Normal cells have a genetically programmed time 
limit for cell replication and aim to avoid excessive 
proliferation. There is no doubt that senescence is one 
of the major defense mechanisms against malignant 
transformation. However, it was shown that under 
some conditions, normal cells can “escape senescence”. 
The treatment of primary cells with viral oncogenes 
results in either death of the cells or apoptosis. At a 
certain frequency, cells can become immortal [352]. In 
vivo, during senescence, a lot of alterations, including 
oncogenic ones, can be accumulated. Moreover, senescent 
cells secrete factors that can promote other cell growth 
and tumorigenesis [353]. Thus, despite senescence is 
recognized as a potent tumor-suppressor mechanism it 
remains a risk factor for cancer. 

cONcLUsIONs

There is much evidence that the normal aging and 
carcinogenesis are multistep processes, which can be 
induced by ROS (Figure 4). Mitochondria generate ROS 
during normal metabolism. ROS, in turn, may have an 
effect on many important intracellular components. For 
example, they attack the mitochondrial membranes and 
mtDNA directly near the place of their formation. This 
leads to mitochondrial dysfunctions and more ROS 
production. Furthermore, ROS interacts extensively with 
nuclear DNA and proteins, leading to DNA damage and 
protein-adduct formation. ROS also interacts with lipids 
of cell membranes to disturb their functions. Actually, 
large amounts of DNA mutations or arrangements, 
genomic instability, impairment of protein functions 
and altered metabolic and signal pathways, induced 
by oxidative stress, have been found in cells subjected 
to pathological conditions, such as aging or malignant 
transformation. It has been demonstrated that age-related 
neurodegenerative disorders, such as Alzheimer’s and 
Parkinson’s diseases and different types of cancers, have 
similar disturbances. The energy metabolism is altered in 
both neurodegenerative disorders and tumors. However, in 
the former case, this leads to nerve cell death. In the latter 
case, such alteration results in tumorigenesis.

Thus, we suggest that mitochondrial dysfunction 
and oxidative damage inevitably occur in normal aging 

and can lead to age-related neurodegenerative disorders. 
Under various conditions, these processes may be a risk 
factor for cancer.
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