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ABSTRACT
Dominant mutations in the FOXC2 gene cause a form of lymphedema primarily 

of the limbs that usually develops at or after puberty. In 90-95% of patients, 
lymphedema is accompanied by distichiasis. FOXC2 is a member of the forkhead/
winged-helix family of transcription factors and plays essential roles in different 
developmental pathways and physiological processes. We previously described six 
unrelated families with primary lymphedema-distichiasis in which patients showed 
different FOXC2 mutations located outside of the forkhead domain. Of those, four 
were missense mutations, one a frameshift mutation, and the last a stop mutation. To 
assess their pathogenic potential, we have now examined the subcellular localization 
and the transactivation activity of the mutated FOXC2 proteins. All six FOXC2 mutant 
proteins were able to localize into the nucleus; however, the frameshift truncated 
protein appeared to be sequestered into nuclear aggregates. A reduction in the ability 
to activate FOXC1/FOXC2 response elements was detected in 50% of mutations, while 
the remaining ones caused an increase of protein transactivation activity. Our data 
reveal that either a complete loss or a significant gain of FOXC2 function can cause a 
perturbation of lymphatic vessel formation leading to lymphedema.

INTRODUCTION

Lymphedema is a dysfunction of the lymphatic 
system, a disorder characterized by abnormal swelling 
of one or more extremities due to impaired transport of 
the lymph [1-3]. This common and debilitating condition 
affects millions of people worldwide. Lymphedema can 
be primary (congenital) or secondary (acquired). The 
prevalence of primary lymphedema has been estimated 
at 1-5 per 10000 persons (http://www.orpha.net). More 
than 10 Mendelian forms are known, of which three are 
considered the major forms: Milroy disease (MD) [MIM 
153100], lymphedema-distichiasis syndrome (LDS) [MIM 
153400] and Meige disease (MGD) [MIM 153200] [4, 5]. 

Dominant mutations in the FOXC2 gene (MIM 
602402), coding for the forkhead transcription factor 
FOXC2, cause a form of lymphedema with variable 
age of onset (range: 7-40 years), often associated with 
distichiasis [6-8]. FOXC2 plays a key role in regulation 
of lymphatic endothelial cells differentiation, in formation 
of smooth muscle cell layers and in morphogenesis of 
lymphatic valves. FOXC2 and VEGFR-3 act through a 
common genetic pathway to establish distinct properties 
of the lymphatic vascular architecture [9]. 

FOXC2 maps to 16q34.3 and it produces a 2.2 kb 
transcript with a 1.5 kb single exon coding region The 
FOXC2 protein contains 501 amino acids (Figure 1). The 
most characterized region in the gene is the forkhead DNA 
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binding domain (FHD, amino acids 71 to 162), containing 
also the nuclear signal 1 (NLS1, amino acids 78-93). At 
the N-terminal there is the transactivation domain 1 (AD-
1) starting from the first amino acid until the FHD (amino 
acid 71). In the central region of FOXC2 protein, after 
the NLS2 (amino acids 168-176), some phosphorylation 
and SUMOylation conserved sites have been recently 
identified, conferring to this sequence a negative regulative 
role [10, 11]. Finally, in the C-terminal sequence, a second 
transactivation domain has been described (AD-2, amino 
acids 395-494) and an inhibitory region (ID-2, amino 
acids 495-501) [10, 12]. 

In LD patients, almost 70 different FOXC2 
mutations have been reported to date, scattered all 
along the coding sequence (www.hgmd.cf.ac.uk). The 
majority of FOXC2 mutations are small insertions or 
deletions and nonsense mutations causing truncated 
proteins, which have been hypothesized to be responsible 
for a haplo-insufficiency condition [7, 8]. The FOXC2 
haplo-insufficient state is associated to hyperplasia and 
distichiasis in mice [13]. FOXC2-/- mice have been found 
to exhibit abnormal pericyte recruitment to the lymphatic 
capillaries and valve agenesis in the collecting vessels, 
indicating that FOXC2 is essential for the formation of 
a pericyte-free lymphatic network and lymphatic valve 
development [14]. Moreover, it was noted that the 
craniofacial, cardiovascular, and skeletal abnormalities 
sometimes associated with lymphedema-distichiasis 
syndrome in humans, had previously been shown to be 
fully penetrant in homozygous FOXC2-null mice [15, 16]. 

The pathogenesis of LD was assumed to be 
associated with FOXC2 haplo-insufficiency also in 
humans, until some FOXC2 missense mutations, identified 
in LD patients, were found to cause a gain of protein 
function [17]. Approximately 24 % of FOXC2 variations 
are missense mutations of which very few have been 
functionally investigated. Two mutations located inside 
the forkhead domain impaired the DNA-binding and 
transcriptional activation ability of FOXC2 protein [18]; 
in contrast, four mutations located outside the forkhead 
domain caused a gain of function [17]. Moreover, no data 
are available on the transactivation properties-function of 
FOXC2 truncated proteins due to stop mutations or small 
insertions/deletions preserving at least half of the protein 
sequence, although together they represent almost 50% 
of FOXC2 variations. We therefore performed functional 
characterization of FOXC2 mutations located in different 
protein domains to provide novel information on structure-
function relationships of the FOXC2 transcription 
factor and to get further insight into the disease-causing 
mechanism of lymphedema.

RESULTS

Patient descriptions

Genetic evaluation of LD patients has been 
previously reported [19]. Molecular and clinical findings 
are shown in Table 1. All but two of the patients (P1 and 
P3) presented with distichiasis. No evidence of heart 
defects, cleft palate, extradural cysts or other distinctive 
characters have been reported, with the exception of P4. 
Finally, no superficial and deep venous insufficiency and 
recurrent erysipelas have been observed. A detailed clinical 
description of LD patients is reported in Supplementary 
material 1.

Functional characterization of FOXC2 mutations

The mutations analysed in this study were all 
localized outside the forkhead domain, in different 
regions of FOXC2 protein (Figure 1). The evaluation of 
missense mutations by bio-informatic prediction tools and 
the homology comparison between different species are 
reported in Supplementary Figure 1. To verify whether 
these mutations can affect FOXC2 function by reducing 
mRNA or protein stability, altering nuclear localization, 
or impairing transactivation activity, we subcloned wild-
type FOXC2 cDNA into the pcDNA3.1/NT-GFP-TOPO 
TA expression vector and then performed site-direct 
mutagenesis to generate the FOXC2-GFP plasmids with 
the disease causing mutations.

When transfected into HeLa cells, wild type and 
mutant plasmids showed similar and stable FOXC2 mRNA 
levels (Figure 2A). Exogenous FOXC2 expression was 
detected by RT-PCR analysis with primers that selectively 
amplify the cDNA obtained from the recombinant 
plasmids. Endogenous GAPDH RT-PCR products were 
detectable in similar amounts in all samples tested and 
were used to normalize FOXC2 RT-PCR values for each 
sample (Figure 2B). 

In agreement with RT-PCR results, western blotting 
analysis showed stable expression of all recombinant 
proteins (Figure 2C), that appeared to be phosphorylated 
with the only exception being p.M276DfsX186. There 
were no apparent differences in phosphorylation between 
wild type and FOXC2 proteins carrying missense 
mutations as detected in electrophoretic mobility assays. 
The Q420X FOXC2 protein was also phosphorylated, 
however it presented a different migration profile in 
comparison with wild type protein due to the mutation 
resulting in a truncated FOXC2 protein. Finally, the 
p.M276DfsX186 FOXC2 protein was detected as a 
single band on western blots, and thus appears not to be 
phosphorylated. The p.M276DfsX186 FOXC2 protein is 
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larger than the p.Q420X mutant protein, since the former 
consists of 462 amino acids (276 of FOXC2 protein plus 
186 due to the frameshift) while the latter of 420 amino 
acids.

To assess whether mutations affected the ability 
of FOXC2 proteins to localize properly into the nucleus, 

HeLa cells were transfected with wild type and mutant 
plasmids. We included also the FOXC2(R121H) mutation-
containing plasmid as a control in order to allow an 
accurate comparison of intracellular distribution, since the 
FOXC2(R121H) protein has been previously demonstrated 
to display a defect in nuclear localization, with partial 

Table 1: Summary of patients’ molecular and clinical data

Patient Mutation Protein 
domain

Transcriptional.   
activity of 
mutated 
protein* 

Age of 
onset Lymphedema

Lymphatic 
hypoplasia or 
hyperplasia**

Distichiasis***

Cardiac 
defects/
other 
clinical 
findings 

1 M
(69 y) A3G AD-1 10% 50 y

bilateral, 
greater on 
right

hyperplasia no no

2 M
(46 y) M276fs Central 

region 16% 12 y
bilateral, 
greater on 
right

hyperplasia yes no

3 F
(19 y) S370T Central 

region 73% 14 y bilateral uncertain 
evaluation no no

4 M
(28 y) G420X AD-2 257% 19 y

bilateral, 
greater on 
right

hypoplasia yes

Bicuspid 
aortic 
valve/ 
extradural 
cyst

5 F
(34 y) L487P AD-2  172% 26 y bilateral, 

greater on left hypoplasia yes no

6 M
(30 y) A492V AD-2 182% 26 y  left unilateral hypoplasia yes no

* The percentage of transcriptional activity of FOXC2 mutated proteins was calculated considering FOXC2 wild type signal 
as 100% of activity (Luciferase Reporter assay) 
** Lymphatic hypoplasia or hyperplasia was defined by lymphoscintigraphy evaluation performed by two clinicians 
independently, referring on lymph nodes up take of radiocolloid and on the presence or absence of dermal backflow
*** Patients were examined by an ophthalmologist using a slit lamp for evidence of distichiasis
M: Male; F: Female

Figure 1: Structural domains of FOXC2 protein. In the schematic representation of FOXC2 (amino acids 1-501), the Activation 
Domain 1 (AD-1) is located between amino acid 1 and 71. The Forkhead Domain (FHD, amino acids 71-162) is the DNA-binding region 
and contains also the first Nuclear Signal (NLS, amino acid 78-93). The second NLS is located between amino acid 168 and 176. In the 
C-terminal region, there are the Activation Domain 2 (AD-2, amino acids 395-494) and the Inhibitory Domain 2 (ID-2, amino acids 494-
501). Furthermore, the localization of mutations analyzed by functional studies are reported in the scheme [Red: activating mutations; 
Green: inactivating mutations; Bold, mutations described by Michelini et al. (2012); Regular, mutations described by Berry et al. (2005) 
and van Steensel et al (2009)]. 
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cytoplasmic signal [18]. As expected, immunofluorescence 
analysis revealed that wild type FOXC2 was localized 
exclusively into the nucleus and displayed a homogeneous 
distribution (Figure 3A). All disease mutations did 
not affect FOXC2 nuclear localization; moreover, no 
cytoplasmic signal could be detected for any of them 
(Figure 3A; Table 2). However, the transfection of 
FOXC2(M276DfsX186) recombinant plasmid caused the 
production of nuclear aggregates (Figure 3B). A similar 
effect was observed utilizing COS7 cells (Supplementary 
Figure 2). Also the FOXC2(R121H) plasmid, in our 

system, induced intranuclear protein aggregation (Figure 
3B). In contrast, the FOXC2(M276X) truncated protein 
revealed a homogeneous fluorescence signal, very similar 
to that of wild type (Figure 3B). 

FOXC2 is known to act as a transcription factor; 
therefore, the ability of FOXC2 mutant proteins to 
stimulate the expression of a reporter gene was tested 
in HeLa and COS7 cells. GFP-FOXC2 fusion proteins 
recapitulated the transcriptional activity of FOXC2 mutant 
proteins expressed without an exogenous tag, in both 
HeLa and COS7 cells (Figure 4A and 4B). The Q420X 

Figure 2: Exogenous FOXC2 expression of mutant recombinant plasmids. A. RT-PCR detection of exogenous FOXC2 (741-bp 
product) and B. GAPDH (457-bp product) in HeLa transfected cells with pFOXC2-GFP, pFOXC2(A3G)-GFP,pFOXC2(M276DfsX186)-
GFP, pFOXC2(S370T)-GFP, pFOXC2(Q420X)-GFP, pFOXC2(L487P)-GFP and pFOXC2(A492V)-GFP (lanes 3-9); lane 1 refers to DNA 
molecular weight marker and lane 2 refers to non-transfected HeLa cells. C. Western blotting analysis of exogenous FOXC2 protein 
expression in HeLa cells transfected with plasmids reported in (A) and in (B).
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Figure 3: Transient transfection of FOXC2 mutant proteins in HeLa cells. HeLa cells were transiently transfected with one of 
the following plasmids: pFOXC2-GFP, pFOXC2(A3G)-GFP, pFOXC2(S370T)-GFP, pFOXC2(M276DfsX186)-GFP, pFOXC2(Q420X)-
GFP, pFOXC2(L487P)-GFP, pFOXC2(A492V)-GFP and pFOXC2(M276X)-GFP. After 24 h, cells were fixed and stained with DAPI. 
Fluorescence of FOXC2-GFP fusion proteins is in green. A. The nuclear localization of all FOXC2 mutant proteins was detected by direct 
immunofluorescence analysis of plasmids tagged with GFP; images were at 40X magnification. B. Immunofluorescence evaluation of HeLa 
cells transiently transfected with the following recombinant plasmids: pFOXC2(M276DfsX186), pFOXC2(M276X) and pFOXC2(R121H). 
The M276DfsX186 mutation causes FOXC2 protein aggregates, as well the R121H mutation. In green, FOXC2 proteins tagged with 
GFP and in blue, cellular nuclei stained with DAPI. More than 200 cells were counted to detect nuclear versus cytoplasmatic localization. 
Magnification:100X. 
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Figure 4: Transactivation activity of wt and mutant FOXC2 proteins. Luciferase assays were used to measure protein 
transactivation abilities. A. Transactivation activity of wt and mutant FOXC2-GFP fusion proteins compared with that of empty vector in 
HeLa (black squares) and COS7 (white squares) cells indicated as fluorescence units (vertical axis). B. Transactivation activity of wt and 
mutant FOXC2 proteins (proteins without any tag) compared with that of empty vector in HeLa or COS7 cells. Thick bar: mean value, error 
bar: SD. Significant differences were detected by using Student’s t-test. P-values of <0.05 and of <0.01 were considered to be significant 
and indicated with “*”and “**”, respectively.
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and A492V mutations displayed significantly increased 
FOXC2 transcriptional activity in comparison with wild 
type protein in all the experimental conditions tested 
(Figure 4). The L487P mutation showed significance 
significant gain of protein function in 3 out 4 of luciferase 
assays. In contrast, the A3G and M276DfsX186 mutations 
were not able to activate the luciferase reporter vector 
above background levels (Figure 4). These mutations 
appeared to be similar to R121H variation, as they 
rendered the FOXC2 transcription factor totally inactive. 
Finally, the S370T mutation also decreased transcriptional 
activity but only to almost 30% of that of FOXC2 wild 
type protein (Figure 4). Again, mutation R121H served as 
methodological negative control in our experiment, since 
it had previously found to be transcriptionally inactive in 
luciferase assays [17].

DISCUSSION

Despite the great importance of the FOXC2 
transcription factor in human pathophysiology and the 
increasing number of different mutations identified in 
patients with lymphedema, the molecular consequences 
caused by FOXC2 gene variations are almost entirely 
unknown [20-22]. Only a small percentage of FOXC2 
mutations have been functionally investigated so far (7/67, 
~ 10%); all of which are missense mutations [17, 18]. In 
this report, we have analyzed the functional consequences 
of six FOXC2 disease mutations identified in LD patients. 
The A3G mutation is the FOXC2 mutation closest to the 
ATG starting codon identified to date. The p.A3G variation 
was considered “probably damaging” by Polyphen-2 and 
“deleterious” by Sift. This mutation is localized in the 
highly conserved AD-1 region of the FOXC2 protein. 
Although the A3G mutation does not change the amino 
acid charge, both bioinformatics prediction and our 
functional data reveal that it is a pathogenic mutation, 
drastically reducing FOXC2’s capability to activate 
expression of target genes. It is difficult to explain the 
biological dysfunction caused by single site amino acid 
replacement that does not result in charge-changing, 
unless it is assumed that this mutation decreases the 
ability to adopt the FOXC2 wild type conformation. As 
the complete 3D structure of FOXC2 protein is currently 
not available, it is not currently possible to exam the 
3D structure of the A3G mutant protein. Interestingly, a 
significant increase of function was previously reported in 
FOXC2 protein carrying the p.Y41F mutation, also located 
within the AD-1 domain [17]. Taken together, these results 
indicate that missense mutations within the FOXC2 AD-1 
can result in either the loss or gain of function. 

We examined three FOXC2 mutations located 
within the AD-2 region: two missense (p.L487P and 
p.A492V) and one nonsense (p.Q420X) mutations. All 
three AD-2 mutations significantly increased FOXC2 
transcriptional ability. Surprisingly, the p.Q420X 

displayed the highest level of activation, despite the 
truncated protein lacked more than half of AD-2 sequence 
and the entire ID-2 region. Consistent with these findings, 
Van Steensel et al. also reported a gain of function for 
FOXC2 missense variations localized inside AD-2 
domain. We did not detect any evidence of mRNA or 
protein stability alterations resulting from FOXC2 AD-2 
mutations. Thus, it is possible that AD-2 mutations 
exert their influence by modifying the tridimensional 
structure of the C-terminal domain of the FOXC2 protein 
and/or changing the ability of FOXC2 to interact with 
regulatory proteins. In the central region of FOXC2, we 
have identified the p.M276DfsX186 mutation (in Patient 
2) which leads to the formation of a truncated protein 
lacking of 235 amino acids in the C-terminal region, and 
with the addition of 186 nonsense amino acids due to the 
frameshift (Figure 1). This mutated protein did not have an 
impaired ability to localize into the cell nucleus, however, 
the FOXC2 p.M276DfsX186 mutant protein condensed 
into protein aggregates. In contrast, the p.M276X FOXC2 
mutation localized to the nucleus without aggregating. We 
hypothesize that the presence of the extra 186 nonsense 
amino acids due the frameshift mutation resulted in the 
protein aggregation. Never the less, both p.M276DfsX186 
and p.M276X FOXC2 mutations caused the complete loss 
of protein function, as might be expected for mutations 
that result in mutant proteins lacking about one half of the 
FOXC2 protein. 

Finally, the S370T missense mutation, located in the 
terminal sequence of central region (Figure 1), resulted in 
a slight decrease of the ability of FOXC2 to trans-activate 
genes. Interestingly, S367 has been recently identified as 
a phosphorylation site for FOXC2 [11]. It thus cannot be 
excluded that S370T mutation partially influences the 
phosphorylation process of S367, triggering changes in 
the FOXC2 transcriptional program.

To date, it is not possible to extrapolate general 
conclusions about the relationship between FOXC2 
activity and the protein variation position, because of 
the very limited number of different types of mutations 
(missense, nonsense and frameshift) that have been 
functionally tested. However, data obtained so far indicate 
that missense mutations in FHD and AD-2 domain might 
represent an exception, causing always a loss and a gain 
of FOXC2 function, respectively. More data are needed to 
highlight possible correlation between mutation position 
and function in other FOXC2 protein domains. 

Nowadays, it is possible to estimate the theoretical 
pathogenic effects of missense mutations utilizing 
bioinformatics tools. However, the usefulness of these 
programs in predicting the real contribution of a mutation 
becomes limited when they provide conflicting data 
(see Supplementary Figure 1B, for p.A492V mutation) 
[23]. Moreover, current bioinformatics tools are not 
able to predict whether a mutation causes a gain or a 
loss of function. Only functional studies indicate how 
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mutations impair protein ability, providing data that could 
be clinically relevant. This is true for genes encoding 
metabolic enzymes critically important for human 
pathologies [24-27] and, even more, for transcription 
factors, like FOXC2, that are responsible for regulating 
the expression of a broad range of genes both during 
development and in adult tissues [12, 17, 28]. 

From our data it appears that no easy relationships 
can be established between the level of transcriptional 
activity of FOXC2 mutated proteins and the degree 
of pathology. Never the less, some clinically relevant 
information appears to be revealed by our analyses. After 
comparing the lymphoscintigraphy of the two patients 
harboring a considerable loss of function mutations 
(P1 and P2) with the others carrying a gain of function 
mutations (P4, P5 and P6), we noted some differences 
in the uptake of the radiopharmacon by inguinal lymph 
glands and its reflux back down into the lower leg. In 
particular, P1 and P2 patients showed a lymphoscintigram 
profile/images compatible with a hyperplasia of lymphatic 
vessels (with dermal backflow), while P4, P5 and P6 
patients reports resembled more a hypoplastic condition 
(Supplementary Fig 3). While, lymphangiography is the 
best method to distinguish between hyper and hypoplasia 
[8, 17], our investigation indicate that lymphoscintigraphy 
may provide additional indication in those cases in which 
a considerable difference of gain or loss of function can be 
detected. In patient P3, where, a mild hyperplasia might be 
predicted since the S370T mutation causes a slight loss of 
transcriptional activity, it was not possible to highlight the 
modest increase of new lymphatic vessel formation using 
lymphoscintigraphy. 

Based upon clinical and molecular data, therefore, 
we can hypothesize that an increased activity of FOXC2 
results in disregulated expression of proteins essential 
for normal development of lymphatic system, causing 
hypoplasia. In contrast, decreased FOXC2 transcriptional 
activity appears to be associated with a hyperplastic 
condition. Our hypothesis on hypo or hyperplasia and 
activating versus inactivating mutations is consistent 
with previously reported results [17, 18] and with the 
hyperplastic condition of haplo-insufficienct FOXC2+/- 
mice who present with abnormal lymphatic drainage, 
increased number of lymph nodes and lymph backflow 
[13, 14]. Should transgenic mice carrying FOXC2 
activating mutations become available, it would be 
interesting to discover if they develop a hypoplastic 
lymphatic system as predicted by our model. 

The association of FOXC2 mutation function 
and distichiasis is less clear however. Our patients with 
activating mutations presented with distichiasis, in 
contrast, 2 out of 3 patients with inactivating mutation did 
not. From these clinical findings, it might be tempting to 
speculate that distichiasis is associated with hypoplasia 
rather than hyperplasia. However, additional larger clinical 
studies are required to definitely elucidate correlations 

between FOXC2 different mutations and the morphologic 
changes of lymphatic system, and with distichiasis. 

In conclusion, we have analyzed the molecular 
consequence of FOXC2 mutations identified in six 
Italian families with lymphedema-distichiasis, providing 
evidences of patients with inactivating versus activating 
mutations of the FOXC2 transcription factor. During 
development, transcriptional programs of lymphatic 
endothelial cells are established by networks of 
transcriptional factors, among which FOXC2 is one of the 
most important. FOXC2 acts downstream of VEGFR-3 
signaling pathway and is essential for the formation of 
pericyte-free lymphatic network. Moreover FOXC2 
regulates the expression of genes essential for all steps 
of lymphatic valve morphogenesis and maintenance, 
such as connexins CX43 and CX47 [4, 5, 29, 30]. Our 
data indicate that either loss or gain of FOXC2 function is 
deleterious, causing hyperplasia or hypoplasia respectively 
in patients with primary lymphedema-distichiasis. We 
predict that any change in the activity level of FOXC2 
causes an unbalanced expression of molecular regulators 
of lymphangiogenesis, a highly orchestrated process not 
yet fully understood.

Finally, recent studies show that FOXC2 
overexpression is involved in cancer progression, inducing 
epithelial mensenchymal transition (EMT) [31, 32]. LDS 
patients carrying FOXC2 gain of function mutations 
should be carefully monitored in order to verify whether 
they present an higher cancer susceptibility and to ensure 
the earliest identification of possible lesions.

MATERIALS AND METHODS

Cloning the FOXC2 cDNA and generation of site-
directed mutagenesis plasmids

FOXC2 cDNA was amplified by PCR using 
DNA clone ID 32938 (Thermo Scientific) as 
template and the following primers: FOXC2-F 
5’-ATGCAGGCGCGCTACTCC-3’ and FOXC2-R 
5’-TCAGTATTTCGTGCAGTCGTAGGAG-3’. The PCR 
product was subcloned into pcDNA3.1/NT-GFP-TOPO 
from Invitrogen to produce NT-GFP-FOXC2, expressing 
FOXC2 with GFP at the N-terminus. Point mutations were 
performed using the Phusion Site-Directed Mutagenesis 
Kit (Thermo Scientific). Mutations in FOXC2 cDNA 
were introduced using the following primers: A3G 
forward 5’-ATGCAGGGGCGCTACTCCGTGT-3’ and 
reverse 5’-ACACGGAGTAGCGCCCCTGCAT-3’; 
R121H forward 5’- 
GCAGAACAGCATCCACCACAACCTCTCGC 
-3’ and reverse 5’- 
GCGAGAGGTTGTGGTGGATGCTGTTCTGC 
-3’; S370T forward 
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5’-GTCGCCCCTGACCGCTCTCAACC-3’ and reverse 
5’-GGTTGAGAGCGGTCAGGGGCGAC -3’; Q420X 
forward 5’- GCCGCGGCGTAGGCGGCCT-3’ and 
reverse 5’- AGGCCGCCTACGCCGCGGC -3’; L487P 
forward 5’-ACGCCGCCTCCCTATCGCCAC-3’ and 
reverse 5’-GTGGCGATAGGGAGGCGGCGT-3’; A492V 
forward 5’-TCGCCACGCAGTCCCCTACTCCT-3’ and 
reverse 5’-AGGAGTAGGGGACTGCGTGGCGA-3’. 

In order to obtain the c.826-827delAT FOXC2 
mutation (M276DfsX186) were used the following 
two couple of primers and two rounds of mutagenesis 
(see supplementary materials): forward(1) 5’- 
CAGCGTGGAGAACATCTGACCCTGCGAACGTC-3’ 
and reverse(1) 5’- 
GACGTTCGCAGGGTCAGATGTTCTCCACGCTG-3’ 
and forward(2) 5’- 
CAGCGTGGAGAACATCGACCCTGCGAACGTC-3’ 
and reverse(2) 5’- 
GACGTTCGCAGGGTCGATGTTCTCCACGCTG-3’.

NT-GFP-FOXC2 (wild type) and NT-GFP-FOXC2 
mutant plasmids were used as template to amplify 
FOXC2 control and mutants cDNA sequences with 
FOXC2-F and FOXC2-R primers (reported above). The 
PCR products were subcloned into pcDNA3.3-TOPO 
(Life Technologies) to produce control or mutant FOXC2 
proteins without any tag. All final expression constructs 
were sequenced to verify that no additional mutations 
were introduced.

RT-PCR analysis of FOXC2 recombinant mRNAs 
in HeLa cells

HeLa cells were transiently transfected with NT-
GFP-FOXC2 recombinant plasmids using the TurboFect 
transfection reagent, according to the manufacturer’s 
protocol (Thermo Scientific). After 48 h, cells were 
carefully washed with PBS, total RNA was isolated with 
TRIzol (Invitrogen) and 1 μg was converted to cDNA 
by RT-PCR using random hexamers (0.5 µg), 400 units 
of MMLV-RT, 1.6 mM total dNTPs, 20 units of Rnasin 
and 0.4 mM dithiothreitol, in a 50 ml reaction solution 
containing 10× RT Buffer. Before reverse transcription, 
RNA was treated with DNase in order to eliminate DNA 
contamination [33]. RT-PCR reactions were optimized for 
FOXC2 and GAPDH gene, in order to avoid saturation: 
regression curves assaying different amounts of cDNAs 
(corresponding to different mRNA concentrations) 
and different number of cycles of amplification were 
performed (Supplementary Figure 4). Thirty nanograms 
of cDNA were used to perform PCR amplification using 
GFP-F (5’-CGACACAATCTGCCCTTTCG-3’) and 
FOXC2-intR (5’- CCGGGGGCGGCTCCTTG -3’) 
primers designed to produce a 741 bp fragment of the 
GFP-FOXC2 transcript. PCR conditions were as follows: 
denaturation at 94 °C for 10 min, annealing at 59 °C for 

30 sec and extension at 72 °C for 30 sec for the first round, 
denaturation at 94 °C for 30 sec, annealing at 59 °C for 
30 sec and extension at 72 °C for 30 sec for 26 cycles; 
denaturation at 94 °C for 30 sec, annealing at 59 °C for 
30 sec and terminal extension at 72 °C for 10 min for 
the last cycle. The PCR products were electrophoresed 
on a 2% agarose gel containing ethidium bromide. The 
concentration value of FOXC2 gene was normalized 
versus the constant level of GAPDH in each sample. 
Images of gels were acquired (Bio-Rad Gel Doc 2000, 
Bio-Rad, Hercules,CA, USA) and scanned using Quantity 
One Analysis software (Bio-Rad). This software allows 
the detection of the mean value of each band (i.e. the 
mean intensity of the pixels inside the volume of band) 
and the concentration of PCR products, calculated from 
the standards included in each gel [34]. 

Localization assay of FOXC2 mutant proteins in 
HeLa and COS cells

For transient transfections, HeLa and COS 
cells were cultured on glass coverslips in Dulbecco’s 
modified Eagle’s medium supplemented with 10% fetal 
bovine serum (FBS) and allowed to adhere overnight. 
The next day, the cells were transiently transfected 
with recombinant NT-GFP-FOXC2 plasmids using the 
TurboFect transfection reagent. After 24 h, cells were fixed 
stained with DAPI, and examined with a Leica MB5000B 
microscope equipped with 40X and 100X Fluorart oil 
immersion objectives. 

Western blot analysis of FOXC2 proteins 
expression in transfected HeLa cells

HeLa cells were transiently transfected with 
recombinant NT-GFP-FOXC2 plasmids as described 
above. Four flasks for each type of recombinant plasmids 
was transfected. After 48 h, all flasks were evaluated 
for transfection efficiency. Only samples reaching 80% 
of transfection efficiency were used to prepare protein 
cell extracts. Cell extracts were prepared from confluent 
cultures grown in serum-containing medium. After 
extensive washing with Dulbecco’s phosphate-buffered 
saline (DPBS), cells were recovered by scraping with a 
rubber policeman in 300 μl of 0.05% (wt/vol) SDS. The 
total protein concentration of cell extracts was quantified 
using a Coomassie (Bradford) Protein Assay Kit (Pierce). 
Proteins (10 µg/well) were separated by electrophoresis on 
8% SDS-polyacrylamide gel (Bio-Rad), transferred to a 
nitrocellulose membrane (Pierce) and then immunoblotted 
using a rabbit monoclonal antibody (dil. 1:5000) raised 
against green fluorescent protein (Invitrogen) and a mouse 
monoclonal antibody (dil: 1:5000) to GAPDH (Abnova). 
Specifically bound immunoglobulins were detected 
using the SuperSignal West Pico Complete Detection Kit 
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(Pierce) containing ImmunoPure Peroxidase Conjugated 
Goat anti-Mouse and anti-Rabbit IgG (dil 1:20.000). 
Experiments were repeated three times.

Luciferase assays

HeLa and COS cells were co-transfected with 
20 ng FOXC1 luciferase reporter [35] and 100 ng wild 
type or GFP-FOXC2 recombinant plasmids using 
TurboFect reagent (Thermo Scientific), according to the 
manufacturer’s recommendations in a 96 well format. 
Each transfection was performed in triplicate. To measure 
FOXC2 activity, all transfected cell lines were incubated 
for 40 h, prior to lysis of the culture and addition of 
substrate from the Britelight plus kit (PerkinElemer). For 
each clone, the average expression level in Fluorescent 
Units (FU) (from Photinus pyralis, reporter) was 
calculated after correction for transfection efficiency. This 
was obtained as measure of GFP fluorescence in the cells 
transfected with NT-GFP-FOXC2 recombinant plasmids 
[36].

The same experimental conditions were used for 
transient transfection of wild type or FOXC2 mutant 
plasmids subcloned into pcDNA3.3, a mammalian 
expression without tag. The dual-luciferase assays were 
used to obtain sequential quantification of both Photinus 
pyralis luciferase (reporter vector) and Renilla reniformis 
luciferase (control vector), as previously described (35). 
Luminescence detection for all transfected plasmids was 
performed using the Glomax luminometer (Promega). 
Reactions were replicated three times, using the Promega 
Dual Luciferase Assay kit (Promega).

Statistical and bio-informatic analysis

The statistical analysis of quantitative data of RT-
PCR and of Luciferase assays was made using SPSS v.19 
package (SPSS, Chicago, IL, USA). The values were 
compared using Student’s t-test. A P-value of ≤0.05 was 
considered to be statistically significant.

The effect of amino acid substitutions on protein 
function was predicted using ClustalW, SIFT and 
PolyPhen software. A multiple sequence alignment of 
mammalian FOXC2 proteins was used as imput for 
ClustalW. The NCBI reference sequence (FOXC2 protein 
NCBI accession number: NP_005242.1.) of the human 
FOXC2 protein was used as the input for SIFT and 
PolyPhen, with default query options.
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