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AbstrAct
Recent studies have identified biomarkers of chronological age based on DNA 

methylation levels. Since active smoking contributes to a wide spectrum of aging-
related diseases in adults, this study intended to examine whether active smoking 
exposure could accelerate the DNA methylation age in forms of age acceleration (AA, 
residuals of the DNA methylation age estimate regressed on chronological age). We 
obtained the DNA methylation profiles in whole blood samples by Illumina Infinium 
Human Methylation450 Beadchip array in two independent subsamples of the ESTHER 
study and calculated their DNA methylation ages by two recently proposed algorithms. 
None of the self-reported smoking indicators (smoking status, cumulative exposure 
and smoking cessation time) or serum cotinine levels was significantly associated with 
AA. On the contrary, we successfully confirmed that 66 out of 150 smoking-related 
CpG sites were associated with AA, even after correction for multiple testing (FDR 
<0.05). We further built a smoking index (SI) based on these loci and demonstrated 
a monotonic dose-response relationship of this index with AA. In conclusion, DNA 
methylation-based biological indicators for current and past smoking exposure, but 
not self-reported smoking information or serum cotinine levels, were found to be 
related to DNA methylation defined AA. Further research should address potential 
mechanisms underlying the observed patterns, such as potential reflections of 
susceptibility to environmental hazards in both smoking related methylation changes 
and methylation defined AA.

IntroductIon

Tobacco smoking is a major public health problem, 
associated with substantial preventable morbidity globally 
[1]. In particular, active smoking in adults accounts for 
a large proportion of age-related diseases, including 
various forms of cancer, respiratory and cardiovascular 
diseases [2]. Recent studies have demonstrated a role of 
DNA methylation, one of the main forms of epigenetic 
modification, in the pathways of smoking and smoking-

induced diseases via regulating gene expression and 
genome stability [3]. An increasing number of smoking 
related CpG sites in various genes, such as AHRR, F2RL3 
and GPR15, have been discovered by epigenome-wide 
association studies (EWASs) based on whole blood 
samples, and have been shown to be useful as quantitive 
biomarkers of current and past smoking exposure and 
predictors of smoking-associated health risks [4, 5]. 
Recently, Teschendorff et al. constructed a smoking index 
based on 1501 smoking-related loci and showed that 
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table 1: study population characteristics in discovery and validation panels a

a: Mean values (SD) for continuous variables and n (%) for categorical variables; 
b: Former smokers only, data missing for 9 and 3 participants, respectively, in discovery and validation panels; cessation time 
equals age at recruitment minus age at cessation;
c: Only measured in the discovery panel, not applicable (NA) in validation panel;
d: Data missing for 3 participants in discovery panel;
e: Data missing for 66 and 40 participants, respectively, in discovery and validation panels. Categories defined as follows: 
abstainer, low [women: 0 -<20 g/d, men: 0 -<40 g/d], intermediate [20 -<40 g/d and 40 -<60 g/d, respectively], high [≥40 g/d 
and ≥60 g/d, respectively];
f: Categories defined as follows:  inactive [ < 1h of physical activity/week], medium or high [≥2 h of vigorous and ≥ 2 h of 
light physical activity/week], low [other]; 
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smoking-related methylation indices could be useful risk 
indicators of smoking-induced health disorders [6].

Recent studies have also disclosed age-related 
alterations of DNA methylation [7], and an “epigenetic 
clock” for DNA methylation age based on known 
age-related biomarkers has been shown to predict an 
individual’s chronological age with high accuracy [8]. 
Horvath and Hannum et al. developed two broadly 
accepted measurements for determining DNA methylation 
age in multiple tissues and blood samples, respectively 
[9, 10]. The discrepancy between methylation age and 
chronological age (defined as age acceleration, denoted 
AA) was found to be heritable and has been suggested 
to be applied as an index of disproportionate aging. A 
positive AA indicates that an individual is ahead of his 
or her chronological age, and a negative one suggests an 
individual is biologically “younger” than reflected by the 
chronological age [7, 9]. Follow-up investigations linked 
AA to lifestyle factors, environmental hazards, as well as 
stressful life events, and further revealed that AA was a 
biologically meaningful biomarker associated with aging-
related diseases [11-21]. 

Given the association of smoking with multiple 
age-related diseases [2], it would appear plausible that 
smoking may have an impact on AA. However, the 
few studies assessing this relationship have reported 
conflicting findings. Horvath et al. and Marioni et al. did 
not find significant associations of self-reported smoking 
with DNA methylation age determined in peripheral blood 
samples [11, 14], while Beach et al. recently reported such 
an association for the most robust smoking-related locus, 
cg05575921 (AHRR), as a biomarker of smoking exposure 
[15]. To further explore a possible role of smoking in AA, 
we conducted a comprehensive analysis of the associations 
of self-reported smoking, serum cotinine levels (an 
established biomarker of current smoking exposure) and 
smoking-associated methylation signatures with AA in a 
large population-based study.

results

Participant characteristics

Characteristics of the study population in the 
discovery and validation panels were comparable with 
respect to chronological age, DNA methylation ages, 
smoking behaviors, as well as lifestyle factors, and are 
summarized in Table 1. Average age in the two subsets 
was about 62 years, and chronological ages were highly 
correlated with corresponding methylation ages (r ≥0.75, 
Figure S1). Hannum et al.’s methylation ages of both 
panels were higher than chronological ages and ages 
computed by Horvath’s approach. More than half of the 
participants in each subset were ever smokers (current /

former smokers), and around 18% still smoked at the time 
of recruitment. In both subsets, the proportion of men 
was much higher in current smokers than that in never 
smokers: 60.8% vs. 29.4% in the discovery panel and 
48.0% vs. 21.1% in the validation panel (data not included 
in the table). Average cumulative smoking exposure in 
current smokers was considerably higher than that of 
former smokers in both panels. Average cessation time 
for former smokers in the two subsets was also similar, 
approximately 17 years. Cotinine levels of current 
smokers (64.1 ng/ml) were much higher than levels of 
never (4.1 ng/ml) and former (7.3 ng/ml) smokers in the 
discovery panel.

Associations between smoking indicators and age 
accelerations

In the analyses of associations of self-reported 
measures of smoking and serum cotinine levels with AA, 
two linear regression models were employed (details 
are presented in Methods), controlling for potential 
confounding factors. None of the self-reported smoking 
indicators (smoking status, cumulative exposure and 
smoking cessation time) or serum cotinine levels was 
significantly associated with AA in the discovery panel 
(Table 2, Figure S2). Furthermore, we selected a total of 
150 loci related to active smoking, which were identified 
≥2 times in previous smoking EWASs, as biomarkers of 
smoking exposure [4], excluding one locus (cg11314684) 
which was part of Horvath’s predictor of methylation age 
[9]. Associations between AA according to Horvath’s 
and Hannum et al.’s algorithms (dependent variable) 
and methylation levels of these candidates (independent 
variable) were assessed by two mixed linear regression 
models (Models 1, 2) with methylation assay batch as 
random effect and increasing adjustment for potential 
confounders (details are presented in Methods). However, 
even after fully controlling for confounding factors 
(Model 2), 103 and 94 of the 150 CpG candidates passed 
the threshold of FDR < 0.05 and thus demonstrated 
significant associations with AA according to the 
Horvath’s and Hannum et al.’s algorithms in the discovery 
phase, respectively (Figure S3). Subsequently, we selected 
83 AA-related loci based on both algorithms and then 
verified them in the validation samples (Table S1, Figure 
S3, FDR < 0.05). 74 and 70 of these loci were confirmed 
as significantly related loci for AA derived according 
to Horvath’s and Hannum et al.’s algorithms by the 
fully-adjusted model, respectively. Eventually, a total 
of 66 smoking-related CpG sites that were statistically 
significant in both algorithms (Table S1, Figure S3, FDR 
< 0.05). We additionally conducted a sensitivity analysis 
in the validation panel adjusting for covariates of Model 
2 plus the prevalence of cardiovascular diseases (yes/no), 
diabetes (yes/no) and cancer (yes/no). In this sensitivity 
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analysis, associations remained statistically significant for 
all of the 66 loci with similar results (data not shown). 
The 66 CpG sites were eventually designated as the loci 
associated with DNA methylation aging in whole blood 
samples. Four hypermethylated smoking-related loci in 
smokers also showed positive correlations with AA (Table 
S1). Among the remaining negatively correlated CpG sites, 
12 loci had Spearman’s coefficients less than or equal to 
-0.20 for both AA algorithms (Table 3). They are located 
at seven genes: 2q37.1 (n = 1), AHRR (n = 3), AVPR1B (n 
= 1), HUS1 (n = 1), KCNQ1 (n = 2), NCRNA00114 (n = 1), 
NFE2 (n = 1) and two unnamed genomic regions. Among 
these, methylation differentials in the locus cg07123182 
(KCNQ1) were associated with the largest alterations in 
AA in regression analyses for both AA algorithms. 

smoking index (sI) and cg05575921 (AHRR)

We constructed a SI based on the 66 selected 
smoking-related loci and compared this indicator to one of 
the most robust smoking-related biomarkers cg05575921 
(AHRR), which is known to be hypomethylated under 
smoking exposure, and the SI estimated based on 
1501 loci identified in the study by Teschendorff et al. 
(Teschendorff SI) [6]. First, as shown in Figure 1, both 
cg05575921 and SI based on 66 loci were strongly 

associated with smoking status: levels in current smokers 
were lower (for cg05575921)/ higher (for SI) than those in 
never smokers and levels of former smokers were in the 
intermediate position. Furthermore, the results of mixed 
linear regression models showed that both methylation 
markers were significantly associated with both AA 
algorithms (Table 4). However, the Teschendorff SI was 
associated with AA according to Horvath’s algorithm, 
but not with AA according to Hannum et al.’s algorithm 
(Table 4). Its correlations with both AA algorithms were 
much weaker than that of SI based on 66 loci (Table S2). 
In addition, the positive correlations of SI with the AA 
algorithms were stronger than the negative correlations 
between cg05575921 and the AA algorithms (Table S2). 
Another index based on 58 CpG sites without the eight 
AHRR loci further demonstrated similar correlations with 
AA and cg05575921 as SI (Table S2). The SI was also 
associated with the prevalence of cardiovascular diseases 
(p = 0.014, OR = 1.7 (95CI: 1.2 - 2.6, per unit of SI)), but 
not with the prevalence of diabetes (p = 0.19) or cancer 
(p = 0.39) in logistic regression models in the validation 
panel. Lastly, we explored the dose-response relationships 
of both smoking indicators with the AA algorithms. For 
both smoking indicators (Figures 2 and S4), monotonic 
associations with the AA algorithms were observed 
(monotonic decrease for cg05575921, monotonic increase 
for SI). An increase in the SI by one standard deviation 

table 2:  Associations of self-reported smoking indicators and cotinine levels with age acceleration in the discovery 
panel

a: Model 1: Adjusted for age (years) and sex; Model 2: Adjusted for age (years), sex, alcohol consumption (abstainer/ low/ 
intermediate/ high), body mass index (BMI, underweight or normal weight/ overweight/ obese), physical activity (inactive/ 
low/ medium or high), the prevalence of cardiovascular diseases (yes/no), diabetes (yes/no) and cancer (yes/no).; 
b: A pack-year was defined as having smoked 20 cigarettes per day for 1 year, including current and former smokers from 
discovery panel; 
c: Cessation time defined as age at the time of recruitment minus age at cessation, only including former smokers from 
discovery panel;
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was roughly associated an one-year increase in AA derived 
according to the Horvath’s algorithm, and with a 0.5 -1 
year increase in AA derived according to the Hannum et 
al.’s algorithm. 

dIscussIon

To our knowledge, this is the first systematic 
investigation exploring the association between active 
smoking exposure and its biological correlates with DNA 
methylation age in whole blood samples, based on two 
independent subgroups of a population-based cohort of 
older adults from Germany. None of the self-reported 
smoking indicators, including smoking status, cumulative 
exposure and time since smoking cessation, or serum 
cotinine levels was significantly associated with AA. 
However, we found 66 previously confirmed smoking-
related CpG sites to be also associated with AA. A 
smoking index (SI) based on these loci and methylation at 
a robust mono-biomarker of active smoking cg05575921 
(AHRR) showed monotonic associations with AA. An 
association with Horvath’s algorithm of AA was also 
found for the Teschendorff SI.

Smoking has been considered as a critical factor in 
the risk of a number of age-related adverse health outcomes 
[2, 22, 23]. However, none of the genomic regions that 
become either hypermethylated or hypomethylated with 
aging has been identified in smoking EWASs [4, 7], even 
though the AA derived according to Hannum et al.’s 
algorithm is linked closely to one CpG site, cg05575921, 
which had been identified as an epigenetic indicator of 
smoking exposure in previous EWASs [15, 24, 25]. Our 
study confirmed this locus and additionally identified 
65 loci that were associated with both smoking and AA 
as well. It appears plausible that these smoking-related 
loci might contribute to some of the aging-related health 
outcomes. In particular, eight out of the 66 loci were 
located at AHRR, a well-known tumor suppressor gene, 
which was suggested to be involved in or is involved in 
the metabolism of endogenous toxins from smoking [26]. 
We also identified another three smoking-related genomic 
regions with more than two AA-related sites that were 
associated with aging-related diseases: AVPR1B (Arginine 
Vasopressin Receptor 1B) contributes to overweight and 
might related with diabetes development [27], CNTNAP2 
(Contactin Associated Protein-Like 2) is demonstrated to 
be associated with several mental diseases (e.g. autism, 

Table 3: Top 12 significantly age acceleration related CpG sites in validation panel a

a: 12 loci with correlation coefficients ≤ -0.20;
b: Data of never smokers;
c: Spearman’s Rank-Order Correlation coefficients;
d: Adjusted for age (years), sex, random batch effects, leukocyte distribution (Houseman algorithm [41]), alcohol consumption 
(abstainer/ low/ intermediate/ high), body mass index (BMI, underweight or normal weight/ overweight/ obese) and physical 
activity (inactive/ low/ medium or high); The beta coefficients from regression models were reported as effect sizes;
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Figure 1: distributions of cg05575921 and smoking index according to self-reported smoking status.

a: Adjusted for age (years), sex and random batch effects;
b: Adjusted for age (years), sex, random batch effects, leukocyte distribution (Houseman algorithm [41]), alcohol consumption 
(abstainer/ low/ intermediate/ high), body mass index (BMI, underweight or normal weight/ overweight/ obese) and physical 
activity (inactive/ low/ medium or high);
c: The beta coefficients from regression models were reported as effect sizes;

table 4: Associations of age accelerations with epigenetic smoking indicators 
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schizophrenia, epilepsy and depression) [28-30], and 
KCNQ1 (Voltage Gated KQT-Like Subfamily Q, Member 
1) is another well-known gene for type 2 diabetes [31]. 
Additionally, the identified AA-related locus cg19713429 
was located at CAPZB (Capping Protein Actin Filament 
Muscle Z-Line, Beta), which contains a locus cg13319175 
that was used as an indicator in Horvath’s algorithm [9]. 
No associations were found with other well-established 
smoking-related loci, like cg03636183 (F2RL3) and 
cg19859270 (GPR15) [4]. The strongest association 
with AA, in particular a strong monotonic dose-response 
relationship based on restrict cubic spline regression, was 
found for a smoking index encompassing all 66 smoking-
related CpG sites. 

Although our findings of a lack of association 
between self-reported measures of smoking and AA, 
along with robust associations between smoking-related 
methylation markers and AA appear to be inconsistent 
and hard to reconcile at first sight, there are multiple 
mechanisms that might explain the observed patterns. 
First, it is well known that susceptibility of individuals to 

adverse health effects of environmental hazards strongly 
varies between individuals [32, 33]. For example, despite 
the fact that smoking strongly increases the risk of 
multiple age-related diseases, some proportion of smokers 
(especially light smokers) stays relatively healthy up to 
old age [34], and the health risks associated with smoking 
may depend on a number of factors such as genetic 
polymorphisms in detoxifying enzymes or co-prevalence 
of other risk factors [35, 36]. It appears well conceivable 
that both smoking-related methylation markers as well 
as methylation defined AA might to some extent reflect 
increased susceptibility to environmental hazards such as 
smoking. Along the same lines, the possibility has to be 
kept in mind that smoking-related methylation changes 
may not only reflect smoking exposure, but also that 
similar methylation changes might be induced by other 
environmental hazards, such as alcohol consumption, 
nutritional or lifestyle factors [37, 38], or by potentially 
interactive or addictive effects between those factors and 
smoking, which may likewise be associated with increased 
risk of age-related diseases and age acceleration [7, 23]. 

Figure 2: Graphs of the best-fitting models for the associations of cg05575921 and the smoking index with age 
accelerations in validation panel. Red lines: Estimation; Dashed lines: Confidence limits; Red dots: Knots (25th, 50th and 75th quartiles); 
Green lines: reference lines.
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Finally, self-reported smoking exposure is known to 
be subject to inaccuracies, e.g. by recall bias or willful 
underreporting [39]. Smoking-related methylation markers 
may more accurately reflect true smoking exposure and 
thereby facilitate disclosure of smoking-related adverse 
health effects. While our results of strong associations 
between smoking-related methylation markers and AA 
are intriguing, further research is needed to unravel the 
underlying mechanisms, such as those discussed above.

Major strengths of the present study include the 
relatively large sample size with detailed information 
on a broad range of covariates in a large population-
based cohort and the comprehensive validation in an 
independent group, as well as the estimation of DNA 
methylation ages by two widely accepted methods. There 
are also several limitations that have to be considered in 
the interpretation of our study. Associations of smoking 
with DNA methylation in whole blood might be influenced 
by smoking-induced shifts in leukocyte distribution [40]. 
In order to remove potential confounding by this factor, 
our analyses adjusted for leukocyte distribution by the 
Houseman algorithm [41]. Stressful life events, another 
potential determinant of epigenetic aging [17, 18], could 
not be controlled for as information on this potential 
confounder was not collected in our study. In addition, our 
study was undertaken in an almost exclusively Caucasian 
population and results may not be generalized to other 
populations. For instance, different smoking associated 
CpG sites have been identified in Asian and African 
populations [42-44]. Hence, additional studies in other 
ethnic groups are required to get a more comprehensive 
picture of the potential role of smoking and smoking-
related DNA methylation in age acceleration. Finally, due 
to the lack of potential genetic predictors of SI or mQTLs 
for smoking-related loci, we were not able to disentangle 
causal pathways via Mendelian Randomisation-type 
approaches which should be followed in further research 
[45, 46]. 

Along with the modernization of human society, 
expanding environmental hazards, beyond conventional 
factors like smoking and alcohol consumption, i.e. 
emerging factors like novel chemicals, biohazards and 
diseases, may be accelerating our biological aging in 
silence [7]. As the reliability of self-reported or externally 
measured exposure to such hazards remains limited, 
measurement of biologically relevant internal doses in 
epigenetic assays might be a promising approach for 
establishing related health hazards [47], and monitoring 
DNA methylation age may provide a window to target 
early interventions in high-risk individuals. Beyond 
advancing the understanding of AA and its association 
with active smoking, our study highlights the potential 
of surrogate epigenetic indicators, such as the smoking 
index and DNA methylation age, to quantify biologically 
relevant exposures and health outcomes. Further research 
should explore whether and to what extent such epigenetic 

signatures can be of value in clinical practice to enhance 
risk stratification and evaluation of preventive and 
therapeutic interventions.

mAterIAls And methods

study population

Study subjects were selected from the ESTHER 
study, an ongoing statewide population-based cohort 
study conducted in Saarland, a state located in southwest 
Germany. Details of the study design have been reported 
previously [48]. Briefly, 9949 older adults (aged 50-75 
years) were enrolled by their general practitioners during a 
routine health check-up between July 2000 and December 
2002, and followed up thereafter. Two independent 
subgroups were selected as discovery panel and validation 
panel, respectively, for epigenetic analyses. The discovery 
panel included 1000 participants recruited consecutively 
at the start of ESTHER study between July and October 
2000. The validation panel included 548 participants 
randomly selected from participants recruited between 
October 2000 and March 2001. The study was approved 
by the ethics committees of the University of Heidelberg 
and the state medical board of Saarland, Germany. Written 
informed consent was obtained from all participants. 

data collection

Information on socio-demographic characteristics, 
lifestyle factors and health status at baseline was obtained 
by standardized self-administered questionnaires. 
Participants were asked about past and present cigarette, 
cigar and pipe smoking behaviors and were then 
categorized into current, former and never smokers. 
Detailed information on smoking history was also 
obtained from questionnaires, including age at initiation 
and smoking intensities at various ages, as well as age 
of quitting smoking for former smokers. 22 and 17 
participants were excluded from the discovery and the 
validation panel, respectively, due to missing information 
on smoking status. Additional information on body mass 
index (BMI) was extracted from a standardized form filled 
by the general practitioners during the health check-ups. 
Blood samples were taken during the health check-up and 
stored at -80°C until further processing. DNA from whole 
blood samples was extracted using a salting out procedure 
[49].

laboratory data

DNA methylation profiles were assessed by the 
Illumina Infinium Human Methylation 450 Beadchip array 
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(Illumina, San Diego, CA, USA). As previously described 
[50], samples were analyzed following the manufacturer’s 
instruction at the Genomics and Proteomics Core Facility 
of the German Cancer Research Center, Heidelberg, 
Germany. Illumina’sGenomeStudio® (version 2011.1; 
Illumina.Inc.) was employed to extract DNA methylation 
signals from the scanned arrays (Module version 1.9.0; 
Illumina.Inc.). The methylation status of a specific 
CpG site was quantified as a β value ranging from 0 
(no methylation) to 1 (full methylation). According to 
the manufacturer’s protocol, no background correction 
was done and data were normalized to internal controls 
provided by the manufacturer. All controls were checked 
for inconsistencies in each measured plate. Signals of 
probes with a detection p-value > 0.05 were excluded 
from analysis. We used the Illumina normalization 
and preprocessing method implemented in Illumina’s 
Genomestudio (“Illumina normalization”). In addition, 
as previously described [51], we measured the cotinine 
levels in serum samples of the discovery panel, using the 
customized version of an enzyme-linked immunosorbent 
assay (Inspec II-Cotinine-EIA; Mahsan Diagnostika). 

dnA methylation age

DNA methylation age of each participant was 
calculated by two algorithms proposed by Horvath [9] 
and Hannum et al. [10]. Horvath’s algorithm, which was 
derived from a range of tissues and cell types, uses 353 
probes targeted in the Illumina 27k and 450k methylation 
arrays. Methylation ages of study participants according to 
Horvath’s algorithm were estimated by online calculator 
(http:// labs.genetics.ucla.edu /horvath/dnamage/), where 
background-corrected beta values were pre-processed 
using the calculator’s internal normalization method [9]. 
Hannum’s algorithm is based on 71 methylation probes 
from the Illumina 450k methylation array which were 
derived as the best age predictors with data generated 
from whole blood DNA [10]. Hannum’s methylation age 
was determined as the sum of the methylation beta values 
multiplied by the reported effect sizes of the predictors. 
Age accelerations (AAs) were determined as discrepancies 
between methylation and chronological age in the form 
of residuals, which have a mean of 0 and thus represent 
positive and negative deviations from chronological age in 
years. The residuals were calculated by a linear regression 
procedure in which methylation age was the outcome and 
chronological age was the independent variable. 

statistical analyses

Study populations in the discovery and 
validation panels were described with respect to major 
socio-demographic characteristics, DNA methylation age, 
lifestyle factors, smoking behavior and serum cotinine 

levels.
Initially, we investigated the associations of 

self-reported smoking indicators (smoking status 
[current/ former/ never smoker], cumulative smoking 
exposure [pack-years, in current and former smokers] 
and smoking cessation time [years, in former smokers 
only], independent variables) and cotinine levels (ng/
ml, independent variable) with AA (dependent variable) 
derived according to both algorithms (Horvath & Hannum 
et al.) in the discovery panel. Two linear regression models 
were employed, controlling for potential confounding 
factors. Model 1 was adjusted for age (years) and sex, 
and Model 2 was additionally adjusted for alcohol 
consumption (abstainer, low [women: 0 - < 20 g/d, men: 
0 - < 40 g/d], intermediate [20 - < 40 g/d and 40 - < 60 g/d, 
respectively], high [≥40 g/d and ≥60 g/d, respectively]), 
body mass index (BMI, kg/m2, underweight or normal 
weight [ < 25], overweight [25 - < 30], obese [≥30]), 
physical activity (inactive [ < 1h of physical activity/
week], medium or high [≥2 h of vigorous and ≥2 h of light 
physical activity/week], low [other]), the prevalence of 
cardiovascular diseases (yes/no), diabetes (yes/no) and 
cancer (yes/no). Indicators with a p-value < 0.05 were 
considered as AA-associated factors.

Furthermore, we selected a total of 150 loci related 
to active smoking, which were identified ≥2 times in 
previous smoking EWASs, as biomarkers of smoking 
exposure [4], excluding one locus (cg11314684) which 
was part of Horvath’s predictor of methylation age [9]. 
Associations of their methylation levels (independent 
variables) with AA (dependent variable) were analyzed 
by two mixed linear regression models with methylation 
assay batch as random effect, controlling for potential 
confounding factors in both panels. Model 1 was adjusted 
for age (years) and sex. Model 2 was additionally adjusted 
for the leukocyte distribution estimated by the Houseman 
algorithm [41], alcohol consumption, body mass index 
and physical activity. After correction for multiple testing 
by the false discovery rate (FDR, Benjamini-Hochberg 
method [52]), CpG sites with corrected p-values < 
0.05 were selected from the discovery panel and then 
replicated in the validation panel. Loci with FDR < 0.05 
in the validation panel were eventually considered as AA-
associated loci. We additionally conducted a sensitivity 
analysis in the validation panel adjusting for covariates 
of Model 2 plus the prevalence of cardiovascular diseases 
(yes/no), diabetes (yes/no) and cancer (yes/no) to confirm 
the identified AA-associated loci.

Finally, we used the identified AA associated loci to 
construct a smoking index (SI) according to Teschendorff 
et al.’s algorithm [6], to measure the deviation of DNA 
methylation in a given sample from a normal reference, 
with the mean taken over the identified loci. In more 
detail, we computed the mean β value (μc) and standard 
deviation (σc) across the never smokers of the given 
dataset, and then defined the SI as 
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where Wc is +1(-1) if the smoking-associated CpG, 
c, is hypermethylated (hypomethylated) in smokers and 
where βc is the β value of this CpG in samples s [6]. We 
calculated the SI for each participant in both panels based 
on the validated AA associated loci, and then compared it 
with the single epigenetic smoking indicator cg05575921 
(AHRR) used in the study by Beach et al., [15] and the 
SI estimated based on 1501 loci identified in the study 
by Teschendorff et al. (Teschendorff SI) [6]. Mutual 
correlations of these indicators and AA were assessed by 
Spearman’s correlation coefficients, and the associations 
of the smoking indicators with AA were assessed by mixed 
linear regression (Models 1 and 2). The associations of SI 
with the prevalence of aging-related diseases (Yes/No), 
including cardiovascular diseases, diabetes and cancer, 
were analyzed by logistic regression with adjustment for 
potential covariates in the validation panel. Additionally, 
we employed restricted cubic spline functions using the 
SAS macro from Desquilbet et al. to evaluate the dose-
response relationships of both indicators with AAs [53], 
controlling for age (years), sex, the leukocyte distribution 
estimated by Houseman’s algorithm, alcohol consumption, 
body mass index and physical activity (categorical 
variables were transformed into dummy variables). The 
25th, 50th and 75th percentiles of the SI were chosen as the 
knots. Data cleaning and all aforementioned analyses were 
performed by SAS version 9.3 (SAS Institute Inc., Cary, 
NC, USA).
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