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AbstrAct
Glioblastoma multiforme (GBM) is a highly malignant brain tumor associated 

with a poor prognosis. Cross-talk between competitive endogenous RNAs (ceRNAs) 
plays a critical role in tumor development and physiology. In this study, we present 
a multi-step computational approach to construct a functional GBM long non-coding 
RNA (lncRNA)-mediated ceRNA network (LMCN) by integrating genome-wide lncRNA 
and mRNA expression profiles, miRNA-target interactions, functional analyses, and 
clinical survival analyses. LncRNAs in the LMCN exhibited specific topological features 
consistent with a regulatory association with coding mRNAs across GBM pathology. We 
determined that the lncRNA MCM3AP-AS was involved in RNA processing and cell cycle-
related functions, and was correlated with patient survival. MCM3AP-AS and MIR17HG 
acted synergistically to regulate mRNAs in a network module of the competitive LMCN. 
By integrating the expression profile of this module into a risk model, we stratified 
GBM patients in both the The Cancer Genome Atlas and an independent GBM dataset 
into distinct risk groups. Finally, survival analyses demonstrated that the lncRNAs and 
network module are potential prognostic biomarkers for GBM. Thus, ceRNAs could 
accelerate biomarker discovery and therapeutic development in GBM.

IntroductIon

Glioblastoma multiforme (GBM) is an aggressive, 
malignant brain tumor [1]. There are approximately 
10,000 new cases of high-grade glioma each year [2]. 
The prognosis is poor despite advances in treatment 
modalities (e.g., maximal surgical resection followed by 
irradiation and adjuvant temozolomide chemotherapy) 
that have improved survival [3]. While histological 
diagnosis based on morphology can provide valuable 
information regarding treatment, it is insufficient for 
predicting clinical outcomes [4]. There is an urgent need 
for suitable molecular biomarkers for GBM diagnosis and 
for predicting patient prognosis.

MicroRNAs (miRNAs) regulate gene expression 
at the post-transcriptional level and are involved in 
diverse biological processes and diseases [5]. Recently, 
long non-coding RNAs (lncRNAs) have received 
considerable attention [6]. These RNAs are non-protein-
coding and are greater than 200 nucleotides in length. 
Owing to the development of high-throughput sequencing 

technology, lncRNAs have been discovered in a wide 
range of biological processes [7]. Recent studies have 
suggested that lncRNAs play complex and critical roles 
in tumor development and pathology [8]. For example, 
the expression of the oncogenic lncRNA MALAT1 was 
correlated with metastasis and patient survival in lung 
cancer [9] and GBM [8]. Additionally, the lncRNA H19 
was shown to promote cancer development and invasion 
in glioma [10]. Finally, the lncRNA HOTAIR is highly 
expressed in metastatic breast cancer, and inhibition of 
HOTAIR expression may therefore prevent metastasis [11].  
Over-expression of HOTAIR has been shown to promote 
epithelial ovarian cancer metastasis and was predictive of 
poor patient prognosis [12]. 

The functions of lncRNAs in GBM are not well 
characterized, and the identification of lncRNA biomarkers 
is challenging. Typically, a ‘guilt by association’ strategy 
has been used to characterize lncRNA function [13–15].  
Recent studies have demonstrated that lncRNAs compete 
with endogenous RNAs (ceRNAs) by acting as miRNA 
sponges to regulate expression level of other transcripts 
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[16–19]. For example, the lncRNA HULC plays an 
important regulatory role in lung cancer by acting as 
an endogenous ceRNA [20]. In addition, the muscle-
specific lncRNA linc-MD1 regulates the timing of muscle 
differentiation by sequestering miR-133 to modulate the 
expression of MAML1 and MEF2C [21]. A recent study 
identified a lncRNA-associated ceRNA network across 
12 different cancers and identified prognostic lncRNAs 
using network analysis [19]. Another study proposed that 
the ceRNA interaction network of GBM could reveal 
canonical oncogenic pathways [22]. Several ceRNA-
related databases have also been developed to facilitate 
interference of lncRNA function [15, 19, 23]. Collectively, 
this data underscores the importance of lncRNA 
interactions with ceRNAs, and indicates that integration 
of expression profiles and network analysis could enable 
identification of risk lncRNAs and the underlying tumor 
pathology.

In this study, we used a multi-step computational 
approach to construct a functional lncRNA-mediated 
ceRNA network (LMCN) involved in GBM. We 
utilized the high-throughput molecular profiles of 422 
GBM samples collected from The Cancer Genome 
Atlas (TCGA) [24]. Our systematic analysis entailed 
integrating genome-wide lncRNA/mRNA expression 
profiles, comprehensive miRNA-target interactions, 
functional analyses, and clinical survival analyses. Based 
on network analysis, we found that lncRNAs exhibited 
specific topological features in the LMCN, consistent with 
a regulatory association with coding mRNAs across GBM 
pathology. The lncRNA MCM3AP-AS was involved in 
RNA processing and cell cycle-related functions, and was 
significantly associated with survival in GBM patients. 
Additionally, we found that MCM3AP-AS and the 
lncRNA MIR17HG had a synergistic regulation of mRNA 
expression. By exploring a competitive sub-network 
within the LMCN, we determined that MCM3AP-AS and 
MIR17HG were involved in a ceRNA regulatory module 
and synergistically competed with MATR3, XPO1, and 
ZCCHC14. By integrating the expression profile of this 
module into a risk model, we stratified GBM patients from 
both the TCGA and another independent GBM dataset 
(GSE7696) into different risk groups. These analyses 
demonstrated that cancer-associated lncRNA-mediated 
ceRNA networks could be used to accelerate the discovery 
of molecular biomarkers and GBM therapeutics. 

rEsuLts

construction of the LMcn

To evaluate the lncRNA-mediated ceRNA 
interaction landscape, we constructed a LMCN using a 
multi-step approach. Previous studies have indicated that 
lncRNA transcripts compete with endogenous mRNAs to 
bind miRNAs [25], which can be identified using current 
miRNA target prediction methods [26–28]. The miRanda 

[29] method was first used to predict miRNA target sites in 
lncRNA transcripts (Figure 1). To identify experimentally 
verified miRNA-lncRNA interactions, we collected and 
integrated AGO-CLIP sequencing data into our method. 
For the miRNA-mRNA interactions, we used manually 
curated datasets from the TarBase and miRTarBase, 
which provide high confidence miRNA-target interactions 
supported by experiments. To identify candidate lncRNA-
mRNA competing pairs, we used a hypergeometric test 
to compute the significance of shared common miRNAs 
between each lncRNA-mRNA pair. Significant pairs were 
retained for further identification. A number of ceRNAs 
are co-expressed in certain tissues and exhibit activities 
in specific cancers [19]. To identify active ceRNA pairs 
in GBM, we computed the Pearson correlation coefficient 
for each candidate ceRNA pair identified above. Finally, 
significantly co-expressed lncRNA-mRNA ceRNA pairs 
were used to construct the LMCN and were graphically 
modeled (Figure 1). The LMCN contained 393 lncRNAs, 
4,176 mRNAs, and 16,860 ceRNA interactions.

biological and topological properties of the 
LMcn

Based on the LMCN, we explored the structure 
and organization of the ceRNA interactions in GBM. 
The LMCN was separated into two layers using the 
Cytoscape software Organic layout. The lncRNA nodes 
were typically in the central region of the network, 
while the mRNAs nodes were typically in the outside 
layer (Figure 1). Crosstalk between ceRNAs can be 
modulated by multiple layers of gene regulation that 
involve interactions between diverse RNA species [30]. 
Based on ceRNA regulatory behavior, we concluded 
that the lncRNAs in the LMCN were more likely 
to have central regulatory roles than mRNAs. An 
investigation of the degree of the distribution of the 
lncRNA nodes (R2 = 0.95), the mRNA nodes (R2 = 0.98),  
and the entire network (R2 = 0.98) revealed power law 
distributions (Figure 2A–2C), which indicated that the 
GMB-associated LMCN was a scale-free network. These 
results suggested that the LMCN was similar to many 
biological networks and was well organized by a core set 
of lncRNA-mRNA competing principles into structured 
rather than random networks [31]. We considered two 
topological properties of the LMCN: the node degree 
and the betweenness centrality (BC). In general, a higher 
degree indicated that the node was a hub that participated 
in more ceRNA interactions. A higher BC implied that the 
node was a bottleneck that acted as bridges connecting 
different network modules. We found that lncRNA nodes 
usually had more degrees and BCs compared to mRNA 
nodes (Figure 2D, 2E). These observations indicated 
that although the lncRNAs did not code for proteins, 
they exhibited more specific topological properties than 
mRNAs in the LMCN.
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We next analyzed the topological properties of 
well-known GBM-associated lncRNAs in the LMCN. 
In the lncRNADisease database [32], there were three 
lncRNAs associated with risk of GBM. Two of these 
lncRNAs, H19 and MALAT1, had annotated Ensembl 
IDs and were mapped to the LMCN. H19 was shown 
to have relatively high and low expression levels in 
CD133+ and CD133− glioblastoma cells, respectively [33]. 
Additionally, knockdown of MALAT1 reduced GBM cell 
migration [34]. We found that both H19 and MALAT1 had 
a higher node degree and BC in the LMCN (Figure 2F), 
indicating that they were both hub and bottleneck nodes.

Identification of lncRNAs associated with GBM 
prognosis

Based on the characteristics of the lncRNAs in the 
LMCN, we hypothesized that some hub and bottleneck 
nodes were risk lncRNAs for GBM. These properties have 
been utilized to infer which nodes were prognostic factors 
for cancer and to identify modules within the network  
[14, 35]. We performed a Cox regression analysis of the 
hub and bottleneck nodes to investigate whether lncRNAs 
with specific properties were prognostic factors in GBM. 
In previous studies, hubs were typically defined as the 
top 10–20% of the nodes in the networks [23, 36, 37].  
We defined hubs as the top 5% (approximately the top 20 
of 393 lncRNAs), which was a more stringent threshold. 

Similarly, bottleneck nodes were defined as the top 5% 
according to BC. Overall, 18 lncRNAs were defined as 
both hubs and bottleneck nodes. Five lncRNAs had a 
significant effect on survival (Table 1). To determine 
whether these lncRNAs were prognostic factors for GBM, 
we constructed a risk model (described in the Materials 
and Methods). We randomly assigned 422 GBM patients 
to two groups that were used as training (n = 211) and 
test (n = 211) datasets (Table 2). Kaplan-Meier survival 
analysis of the training dataset revealed that MCM3AP-
AS could be used to divide the training GBM patients into 
two different risk groups (Figure 3A, P = 1.58 × 10−4). 
The high-risk group consisted of patients with high risk 
scores and had lower survival times (Figure 3A). Next, 
we investigated MCM3AP-AS in the test dataset using 
the same risk score threshold as that of the training 
set. The patients were divided into high- and low-risk 
groups (Figure 3B, P = 0.03). We used MCM3AP-AS as 
a prognostic biomarker in order to divide all 422 GBM 
patients into different groups (Figure 3C, P = 1.48 × 10−5).  
These results indicated that MCM3AP-AS was a 
protective factor for survival in GBM.

McM3AP-As is involved in rnA processing and 
cell cycle-related functions

The hub and bottleneck properties of MCM3AP-
AS indicated this lncRNA likely competed with other 

Figure 1: Construction of the LMCN and overview across 422 GBM patients. The framework considered both computational 
prediction and experimental validation methods and datasets to identify functional lncRNA-mediated, competing interactions (left panel). 
Interactions between ceRNAs were illustrated and analyzed as a competing network.
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mRNAs and was connected to different components of 
the LMCN. According to the Ensembl Genome Browser, 
MCM3AP-AS is an antisense non-coding RNA that aligns 
with the coding-gene MCM3AP, which is one of the 
mini-chromosome maintenance proteins essential for the 
initiation of DNA replication (Supplementary Figure S1).  
To investigate the functions of MCM3AP-AS, we used 
a ‘guilt by association’ method [13, 19]. MCM3AP-AS 
interacted with 257 ceRNA neighbors in the LMCN. A 
hierarchical cluster analysis based on these 257 mRNAs 
revealed that 422 GBM patients could be divided into 
three groups (1, 2, and 3) with specific expression 
patterns (Figure 4A). MCM3AP-AS neighboring genes 
could generally be grouped into four different sets  
(a, b, c, and d). GBM Gene set functional enrichment 
analysis was then performed on each of the four gene 
sets based on Gene Ontology terms. The genes were 
significantly enriched in RNA processing and cell cycle-
related functions (Figure 4B). Gene set a was associated 
with the negative regulation of RNA expression. Gene set 
b was associated with RNA splicing and mitochondrion 
localization, which is consistent with the function of 
MCM3AP. Gene set c was associated with RNA splicing, 
processing, and stabilization. Finally, gene set d was 

enriched in cell cycle processes such as M phase, nuclear 
division, and proliferation. We observed higher expression 
of MCM3AP-AS in group 2 compared to groups 1 and 3. 
Kaplan-Meier survival analysis indicated that the group 2  
patients had significantly longer survival times than 
group 1 (Figure 4C; log-rank test, P = 0.02) and group 3  
(P = 6.15 × 10−4).

Identification of a highly competitive sub-
network reveals prognostic ceRNA modules

While the LMCN could provide a global view of all 
possible competing ceRNA interactions that could be used 
to investigate the regulatory properties of the lncRNAs, 
the partial sub-networks revealed a more detailed picture 
of how the lncRNAs synergized with competing mRNAs. 
We derived a high-competing sub-network (sub-LMCN) 
from the LMCN by applying a Pearson correlation 
coefficient threshold > 0.5. This threshold was used in a 
previous study to identify functional activated (competing) 
ceRNA networks across 12 cancers [19]. The sub-LMCN 
contained 52 lncRNAs, 462 mRNAs, and 653 ceRNA 
interactions (Figure 5A). Similar to the LMCN, the sub-
LMCN also had a scale-free structure with power law 

Figure 2: Topological analysis reveals specific properties of the LMCN. The lncRNA nodes (A), mRNA nodes (b), and the 
entire network (c) reflect a power-law distribution. The node degree distribution of the lncRNAs was significantly higher than that of 
the mRNAs (d). The BC distribution of the lncRNAs was significantly higher than that of the mRNAs (E). Several well-known GBM 
associated lncRNAs were found in the hub and bottleneck nodes in the LMCN (F).
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degree distributions (Figure 5C, R2 = 0.9970). GBM-
associated lncRNAs such as MALAT1 [34] and MCM3AP-
AS (identified in this study) competed with other mRNAs 
in the sub-LMCN.

To identify synergistic, competing lncRNA modules, 
we used the Biclique algorithm. This algorithm was 
applied in a previous study of ceRNA networks [19] to 
identify ceRNA network modules within the LMCN. 
We found that MCM3AP-AS competed with three 
mRNAs (MATR3, CCHC14, and XPO1) and an lncRNA 
(MIR17HG) in a 5-ceRNA module (Figure 5B). These 
data were indicative of synergistic regulatory effects 
between the two lncRNAs. Within this module, XPO1 
was associated with GBM prognosis [38]. To evaluate 
the association between the 5-ceRNA module and GBM 
survival, we integrated the expression profiles of the 
nodes into a risk model (Materials and Methods). Using 

the median risk score, we classified the training GBM 
patients into high- and low-risk groups (Figure 6A,  
P = 9.03 × 10−3). We then used the risk model to test the 
GBM patients using the same risk score threshold as that 
used to test the training patients. Similarly, the test group 
was divided into high- and low-risk groups (Figure 6B,  
P = 0.02). We used this 5-ceRNA module as a prognostic 
biomarker to divide all 422 GBM patients and obtained 
statistically significant results (Figure 6C, P = 0.03). 

To evaluate whether the 5-ceRNAs module could be 
used as a prognostic biomarker, we applied the module to 
an independent GBM dataset (GSE7696). In this step, 76 
patients with well-annotated clinical follow-up data were 
analyzed. We found that this module could also be used to 
divide the 76 GBM into high- and low-risk groups with 
significantly different survival times (Figure 6D, P = 0.02). 

Table 1: Univariate Cox regression analysis of the hub and bottleneck lncRNAs in the LMCN

LncrnA Ensembl ID
Univariate Cox analysis

Hr (95% cI) Coefficient P-value
MCM3AP-AS ENSG00000215424 0.6221 (0.5246–0.8356) −0.4123 0.0005
NEAT1 ENSG00000245532 1.1703 (1.0432–1.3129) 0.1572 0.0073
LRRC75A-AS1 ENSG00000175061 0.7378 (0.5931–0.9177) −0.3041 0.0063
RP11-175O19.4 ENSG00000231025 0.7928 (0.6591–0.9535) −0.2322 0.0137
AC074117.10 ENSG00000234072 0.7661 (0.6229–0.9423) −0.2663 0.0116

Table 2: Clinicopathologic characteristics of the TCGA GBM patients (n = 422)

characteristic
Number of patients

All patients 
n = 422

training set 
n = 211

test set 
n = 211

Sex
 Male 262 129 133
 Female 160 82 78
Age
 Mean ± SD 56.96 ± 14.73 56.00 ± 15.27 57.91 ± 14.14
 Range 10–89 10–89 14–86
Histological type
 Treated primary GBM 17 12 5
 Untreated primary GBM 405 199 206
History of neoadjuvant treatment
 Yes 20 12 8
 No 402 199 203
Survival (months)
 Mean ± SD 18.24 ± 19.30 20.78 ± 22.38 15.70 ± 15.27
 Range 0.10–129.37 0.20–129.37 0.10–88.27
State 
 Alive 52 27 25
 Dead 370 184 186



Oncotarget41742www.impactjournals.com/oncotarget

Figure 3: Survival analyses based on MCM3AP-AS expression. (A) MCM3AP-AS expression could be used to divide the GBM 
patients in the training dataset into two different risk groups (log-rank test, P = 1.58 × 10−4). (b) MCM3AP-AS expression could be used to 
divide patients in the test group into two different risk groups (P = 0.03). (c) MCM3AP-AS expression could be used to divide all 422 GBM 
patients into two different risk groups (P = 1.48 × 10−5). The patients with high-risk scores were assigned into high-risk groups (associated 
with reduced survival times). The vertical gray lines represent the risk score thresholds in the survival analysis.

Figure 4: Comprehensive analysis of the expression and function of MCM3AP-AS- competing genes. (A) A two-
dimensional hierarchical analysis of the expression profiles of MCM3AP-AS and competing genes. The genes were clustered into four sets 
across three groups of patients. (b) Functional enrichment analysis of each clustered gene set reveals RNA processing and cell cycle-related 
functions. (c) A Kaplan-Meier survival analysis indicates group 2 patients had significantly higher survival times than group 1 (Figure 4C, 
log-rank test, P = 0.02) and group 3 (P = 6.15 × 10−4).
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Figure 5: Overview of the highly competitive sub-network and module analysis. (A) The sub-LMCN contains 52 lncRNA, 
462 mRNA, and 653 ceRNA interactions. LncRNAs are shown as blue nodes and mRNAs are shown as yellow nodes. (b) Identification 
of a synergistic, co-competing module. Pearson correlation coefficients are provided for each edge. (c) The sub-LMCN had a scale-free 
structure with power law degree distributions.

Figure 6: Survival analysis of the 5-ceRNA module. Kaplan-Meier survival curves are shown in the top panel. The risk score 
distributions and individual plots of patient survival are shown on the middle and bottom panels. (A) The 5-ceRNA module could be used 
to divide the GBM patients in the training group into two different risk groups (log-rank test, P = 9.03 × 10−3). (b) The 5-ceRNA module 
could be used to divide GBM patients in the test group into two different risk groups (P = 0.02). (c) The 5-ceRNA module could be used 
to divide all of the 422 GBM patients into two different risk groups (P = 0.03). (d) The 5-ceRNA module also could be used to divide an 
independent set of GBM patients into two different risk groups (P = 0.02). The vertical gray lines represent the risk score thresholds in the 
survival analysis.



Oncotarget41744www.impactjournals.com/oncotarget

dIscussIon

MiRNAs are likely regulated by other RNAs that 
contain complementary miRNA binding sites such as 
lncRNAs and mRNAs. These miRNA sponges (ceRNAs) 
mutually regulate their expression via competing 
mechanisms, which are important for various tumor 
physiological and pathological processes. Typically, a 
‘guilt by association’ strategy is employed to characterize 
lncRNA function [14, 15]. Analysis of gene expression 
data in combination with matched microRNA profiles 
indicated that the GBM ceRNA interaction network was 
associated with canonical oncogenic pathways [22]. 
However, this study was based upon a limited number 
of lncRNAs. Using a miRNA prediction method and co-
expression analysis, another study identified lncRNA-
associated ceRNA networks as well as prognostic 
lncRNAs across 12 cancers [19]. However, GBM samples 
were not analyzed in this study. 

Several valuable ceRNA resources have been 
developed to facilitate functional analysis of lncRNAs 
such as starBase [39], DIANA-LncBase [40], LncACTdb 
[19] and miRSponge [15]. Here, we have used a more 
comprehensive approach to construct a functional 
lncRNA-mediated ceRNA network across 422 TCGA 
GBM samples. Our systematic analysis involved 
the integration of genome-wide lncRNA and mRNA 
expression profiles, miRNA-target interactions, functional 
analyses, and clinical survival analyses. We found that 
lncRNAs in the LMCN exhibited hub and bottleneck 
features, indicating they had regulatory associations with 
coding mRNAs across GBM pathology. MCM3AP-AS, 
which is involved in RNA processing and cell cycle-
related functions, was significantly associated with 
survival. By exploring the highly competitive sub-network 
of the LMCN, we determined that MCM3AP-AS and 
MIR17HG comprised a ceRNA regulating module that 
competed with MATR3, ZCCHC14, and XPO1, which 
was associated with GBM prognosis [38]. By integrating 
the expression profile of this module into a risk model, 
we could stratify GBM patients from both the TCGA 
and the GSE7696 datasets into different risk groups. The 
results demonstrated that the cancer-associated LMCN 
can be used to accelerate biomarker discovery and GBM 
therapeutic development.

Blood-based biomarkers are critical for prediction 
of GBM patient survival. We observed MCM3AP-AS 
expression in white blood cells in a tissue-specific RNA 
analysis [41] and in several blood-associated RNA-
Seq profiles (GSE33816, GSE64813, GSE64655, and 
GSE64831). These data indicated that MCM3AP-AS can 
be secreted into the circulation and is therefore a potential 
blood-based biomarker for GBM. 

In summary, we have provided a comprehensive 
view of the LMCN across 422 TCGA GBM samples. The 
specific topological properties and synergistic, competitive 

effects of lncRNAs could reflect regulatory interactions 
with coding mRNAs in GBM.

MAtErIALs And MEtHods

Expression profiles of lncRNA and mRNA in 
GBM

Genome-wide lncRNA and mRNA expression levels 
were derived from a recent study [42], which repurposed 
publicly available array-based data. Generally, exon array 
data were collected from the TCGA data portal [24]. The 
probe sets of the human exon array were reannotated to 
the human genome (version hg19). The expression values 
of lncRNA/mRNA were calculated by summarizing 
the background-corrected intensity of all of the probes 
annotated to this gene [24]. Quantile normalization was 
performed on the expression values for lncRNAs/mRNAs 
across patients. The ComBat method was used to remove 
potential batch effects [43]. Finally, we determined 
the expression of 8,132 lncRNAs and 17,364 mRNAs, 
and log2 transformed the values. An independent GBM 
expression dataset (GSE7696, Affymetrix Human Genome 
U133 Plus 2.0 Array) was used to validate prognostic 
biomarkers. The expression of a given lncRNA/mRNA 
gene was inferred from the mean expression of the 
different array probes. A total of 76 patients with well-
annotated clinical follow-up information were analyzed in 
this step.

clinical characteristics of patients

The clinical and pathological data for the GBM 
patients were derived from the TCGA data portal. Detailed 
information for all of the GBM patients, the training 
dataset, and the test dataset are shown in Table 2. In 
total, 422 TCGA GBM patients with clinical follow-up 
information were retained in our framework. The clinical 
information of the GSE7696 dataset was derived from the 
Series Matrix File at the GEO database. The independent 
validation dataset consisted of 76 GBM patients.

Identification of miRNA-target interactions

Interactions between miRNA-lncRNAs were 
identified using existing miRNA target prediction 
methods [26–28]. Putative miRNA-lncRNA interactions 
were identified using the miRanda algorithm (version 
November, 2010) [29] with the default parameters (Score 
≥ 140 and Energy ≤ 7.0). The human mature miRNA 
sequences were downloaded from the miRBase (release 
19) [44]. The lncRNA sequences were obtained from the 
GENCODE database (v19) [45]. We predicted miRNA 
target binding sites on the whole lncRNA sequences. 
The AGO-CLIP sequencing datasets [46] were used to 
distinguish the experimentally validated cases from the set 
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of predicted miRNA-lncRNA interactions (Figure 1). Data 
for miRNA-mRNA interactions was downloaded from 
two highly reliable online miRNA reference databases, 
the TarBase (v6) [47] and the mirTarBase (release 4.5) 
[48]. Both databases store manually curated collections of 
experimentally supported miRNA targets.

Identification of potential ceRNA interactions

To identify competing lncRNA-mRNA interactions, 
we used a hypergeometric test, which enabled evaluation 
of the significance of the shared miRNAs between each 
lncRNA and mRNA. The genome had a total number of N 
miRNAs, of which K and M were the numbers of miRNAs 
associated with the current lncRNA and mRNA, and x was 
the common miRNA number shared by the lncRNA and 
mRNA. The P value was calculated in order to evaluate 
the enrichment significance for that function as follows:

0

( )( )1
( )

K N Kx
t M t

N
t M

P
−
−

=

= −∑ , (1)

The P values were subjected to false discovery rate 
(FDR) correction. A FDR < 0.01 was used as the threshold.

Co-expression analysis

To identify lncRNA-mRNA pairs, Pearson 
correlation coefficients were calculated based on the 
expression of the competing lncRNA-mRNAs pairs:

,
cov( , )  X Y

X Y

X Yr
s s

= , (2)

cov (X, Y) is the covariance of variables X and Y.  
Xs  and Ys  are the standard deviations for X and Y, 

respectively. The threshold was set to a FDR < 0.01.

Construction of the risk score model

To identify and evaluate the lncRNA signatures that 
could predict patient survival, patients were randomly 
assigned to either a training or test data set (Table 2). The 
sample sizes were the same in both groups, and there were 
no significant differences in clinical histological treatment 
(Chi-square test, P = 0.14) or history of neoadjuvant 
therapy (Chi-square test, P = 0.49). Univariate Cox 
regression analysis was used to evaluate the association 
between survival and candidate expression level. A risk 
score formula was the generated that integrated both the 
strength and positive/negative association between each 
candidate and survival. The risk score for each patient 
was calculated according to the linear combination of the 
expression values weighted by the regression coefficient 
from the univariate Cox regression analysis:

1
( )

n

i
i

RiskScore r Exp i
=

=∑ , (3)

in which ri was the Cox regression coefficient of 
candidate i from the training set, and n was the number 
of tested candidates. Exp (i) as the expression value of 
candidate i in a corresponding patient. The median risk 
score was used as a cut-off to divide patients in the the 
training dataset into high- and low-risk groups. Patients in 
the high-risk group were expected to have poor survival 
outcomes compared to patients in the low-risk group. 
This model and cut-off point was also applied to the test 
dataset in order to divide the patients into high- and low-
risk groups.

Network illustration and topological analysis

We used the Cytoscape software (v3.1.1) to 
construct and illustrate the ceRNA network. Several 
topological properties such as the node degree and the BC 
were analyzed using the built-in NetworkAnalyzer tool. 
The Maximal Biclique Enumeration algorithm was used 
to identify synergistic competing modules. This model 
consists of a complete bipartite graph in which an edge 
is realized from every vertex of a lncRNA set to every 
vertex of a mRNA set. Competing modules comprised of 
lncRNAs and mRNAs were identified using the Maximal 
Biclique Enumeration algorithm downloaded from the 
website of the Computational Biology Laboratory in the 
Department of Computer Science at Iowa State University.

Analysis of bc

BC is a measure of the centrality of a node in a 
network. It is equal to the number of shortest paths from 
each node to all others that pass through the node. This 
property reflects the amount of control that a node exerts 
over the interactions of other nodes. The BC of a node can 
be given as: (number of shortest paths that pass through 
the node)/(the total number of all shortest paths in the 
network).

survival analysis

Kaplan-Meier survival analyses was performed for 
the two groups of patients, and statistical significance was 
assessed using log-rank tests (P < 0.05). All analyses were 
performed using the R 3.1.0 software.
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