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ABSTRACT
The PVT1 lncRNA has recently been involved in tumorigenesis by affecting the 

protein stability of the MYC proto-oncogene. Both MYC and PVT1 reside in a well-known 
cancer-risk locus and enhanced levels of their products have been reported in different 
human cancers. Nonetheless, the extension and relevance of the MYC-PVT1 deregulation 
in tumorigenesis has not yet been systematically addressed.

Here we performed a pan-cancer analysis of matched copy number, transcriptomic, 
methylation, proteomic and clinicopathological profiles for almost 7000 patients from 17 
different cancers represented in the TCGA cohorts. Among all cancers types, kidney renal 
clear cell carcinoma (KIRC) showed the strongest upregulation of PVT1 and increased 
levels of both MYC and PVT1 correlated with the clinical outcome. PVT1 misregulation in 
KIRC is mostly associated to promoter hypomethylation rather than locus amplification. 
Furthermore, we found an association between MYC levels and PVT1 expression, which 
impacted on MYC-target genes. 

Collectively, our study discloses the role of PVT1 as a novel prognostic factor and 
as a molecular target for novel therapeutic interventions in renal carcinoma.

INTRODUCTION

Long non-coding RNAs (lncRNAs) play important 
regulatory roles in the gene expression and are deregulated 
in a variety of tumors [1]. The mechanisms through which 
lncRNAs contribute to the regulatory networks that lead to 
cancer development are diverse. lncRNAs can regulate gene 
transcription by binding promoter regions and/or changing 
histone marks and the chromatin state [2]. In addition, they 
may interact with and alter the activity of proteins, which 
may be important for cancer biology [3]. Recent findings 
revealed that the PVT1 lncRNA controls MYC protein 
stability and they both cooperate to promote cell proliferation 
in cancer [4]. PVT1 protects MYC protein from degradation 
by reducing the phosphorylation of a threonine residue [4]. 

MYC expression is complex and modulated at multiple 
levels but becomes deregulated in many human cancers. 
Interestingly, MYC and the PVT1 lncRNA gene reside in 8q24, 
one of the most highly amplified locus across malignant tissues 
[5, 6]. Overall, MYC overexpression and PVT1 up-regulation 
have been reported for several human cancers [7, 8]. However, 
the extension and relevance of MYC and PVT1 alterations in 
tumorigenesis has not yet been thoroughly addressed.

In this study, we have integrated multi-omics data 
from The Cancer Genome Atlas (TCGA) to explore the 
relevance of MYC-PVT1 deregulation across several cancer 
types. Our pan-cancer analysis revealed that kidney renal 
clear cell carcinoma (KIRC) shows the most extreme up-
regulation of PVT1 and the strongest connection between 
MYC-PVT1 enrichment and clinical outcome. In KIRC 
patients, increased PVT1 expression associated significantly 
with high MYC protein levels and misregulation of MYC 
responsiveness genes. Moreover, we found that PVT1 up-
regulation in KIRC is the result of promoter hypomethylation 
rather than copy number amplification. Altogether, our data 
disclose the prognostic power of the PVT1 in KIRC and 
support its role as potential therapeutic target. 

RESULTS

PVT1 up-regulation in KIRC leads to poor survival

We set out to investigate the impact of MYC-PVT1 
deregulation in several cancers using multi-omics data for 
approximately 7000 patients from the TCGA (Table S1). 
Overall, evaluation of copy number and transcriptome 
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patterns showed distinctive MYC-PVT1 profiles across the 
17 cancer types inspected (Figure 1A). MYC-PVT1 locus 
amplification was widespread and present in over half of 
the patients for most tumor types (Figure S1A). Hence, 
low frequency (less than 20%) of locus gain was observed 
for renal cancers (KIRC and KIRP), thyroid carcinoma 
(THCA), pheochromocytoma and paraganglioma (PCPG). 
Although widespread across cancers, the extensive locus 
gain was not mirrored by an overall up-regulation of both 
genes (Figure 1A). Increased expression levels of PVT1 
were observed for almost all tumors when compared to 
the surrounding normal tissues, with KIRC showing 

the largest difference (Figure 1B and S1B). A thorough 
analysis revealed a high prevalence of PVT1 up-regulation 
in many tumors, spreading to 80% of the KIRC patients 
(Figure 1C). On the contrary, MYC misregulation differed 
according to the malignancy type (Figure 1B and S1B) 
and only colorectal cancers (COAD and READ) showed 
a high frequency of MYC up-regulation (Figure 1C). 
Furthermore, PVT1 overexpression was also observed 
for several KIRC cell lines (Figure S1C). Although PVT1 
locus harbors several miRNA genes, their expression 
levels were similar between tumor and normal tissues 
(Figure S1D). 

Figure 1: PVT1 and MYC deregulation in cancer. (A) Heatmap with copy number variation and expression alterations for MYC 
and PVT1 across 17 different TCGA cancer types: KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell carcinoma), 
KICH (kidney Chromophobe), BLCA (bladder urothelial carcinoma), BRCA (breast invasive carcinoma), CESC (cervical squamous 
cell carcinoma and endocervical adenocarcinoma), COAD (colon adenocarcinoma), HNSC (head and neck squamous cell carcinoma), 
LIHC (liver hepatocellular carcinoma), LUAD (lung adenocarcinoma), LUSC (lung squamous cell carcinoma), PAAD (pancreatic 
adenocarcinoma), PCPG (pheochromocytoma and Paraganglioma), PRAD (prostate adenocarcinoma), READ (rectum adenocarcinoma), 
THCA (thyroid carcinoma), UCEC (uterine Corpus Endometrial Carcinoma). Alterations are represented for each patient relative to normal 
tissue for expression (blue – down-regulation; red – up-regulation) and copy number variation (deletion – down-regulation; amplification 
– up-regulation). (B) PVT1 and MYC expression levels (log2 RSEM) in normal (gray) and tumor (orange) tissues from patients. Significant 
differences are highlighted with * (Student T-test p-value < 0.05). (C) Proportion of patients with up-regulation (red) and down-regulation 
(blue) of PVT1 and MYC. 
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Considering the widespread PVT1 misregulation, 
we next assessed whether high expression levels would 
decrease the clinical patient outcome. Kaplan-Meier 
survival analyses revealed that PVT1 overexpression was 
associated with worse survival rates in KIRC and pancreas 
adenocarcinoma (PAAD) (Figure 2A, 2B and S2A). High 
levels of MYC lead to low survival in bladder cancer 
(BLCA) (Figure 2C and S2B). Furthermore, supporting the 
impact of PVT1 in the clinical outcome of KIRC patients, 
we observed that high expression levels were significantly 
associated with neoplasm status after surgery and advanced 
clinical stage or metastasis (Fisher’s Exact -test p-value 
< 0.05) (Figure 2D). Interestingly, besides PVT1, only 
5 other genes showed a strong misregulation consistently 
linked with clinical outcome and tumor features in KIRC 
(phenotype permutation p-value < 0.001, Figure 2E and 
Table S2). Most of these genes have been previously 
associated with worst survival or more aggressive state of 

tumors: MYBL2 [9]; IL20RB [10]; MFSD4 [11]; CRHBP 
[12] and  CWH43 [13]. These results indicate PVT1 as a 
novel prognostic biomarker in KIRC.

Promoter hypomethylation associated with PVT1 
up-regulation in KIRC

We next investigated which genomic alterations 
are the cause of PVT1 increased levels across many 
different human cancers [5, 6]. A thorough analysis of 
individual profiles detected that PVT1 locus amplification 
is observed in 40% of the patients from 13 cancers that 
have PVT1 up-regulation. (Figure 3A). In contrast, PVT1 
up-regulation were not associated with locus amplification 
in 80% of KIRC patients. Besides copy number variations, 
misregulated gene expression in malignant tissues can be 
also driven by altered promoter methylation [14]. Thus, 
we subsequently assessed the methylation levels of PVT1 

Figure 2: PVT1 up-regulation and clinical outcome. (A) Log-rank Test p-values (-log10 p-value) for survival analysis of PVT1 
expression levels across all cancers. The vertical dashed line corresponds to the significance level (p-value of 0.05). (B) Kaplan-Meier 
survival curves for PVT1 expression in KIRC. Patients were split according to PVT1 expression levels: high (red) and low (black). (C) 
Log-rank Test p-values (-log10 p-value) for survival analysis of MYC expression levels across all cancers. (D) Proportion of KIRC patients 
with high (red) and low (black) PVT1 expression levels across different neoplasm status (tumor free and with tumor) and stages (I, II, III 
and IV). (E) Number of genes with significant expression alterations, association with neoplasm status, tumor stage and clinical outcome 
in KIRC. Six genes showed misregulation consistently associated with clinical features: PVT1, MYBL2, IL20RB for high expression; 
MFSD4, CRHBP and CWH43 for low expression in tumor samples.
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promoter. Although all cancers showed alterations in 
PVT1 promoter methylation, significant levels of promoter 
hypomethylation were found in KIRC (Figure 3B 
and S3A). Further analysis revealed that most KIRC 
patients with PVT1 up-regulation also presented PVT1 
promoter hypomethylation (Fisher’s Exact -test p-value 
< 0.005, Figure 3C). Indeed, PVT1 expression levels 
were negatively correlated with promoter methylation in 
KIRC (R = –0.45, p-value < 0.05) (Figure 3D and 3E). 
Additionally, methylation profiles in KIRC cell lines 
showed overexpression of PVT1 associated with promoter 

hypomethylation (Figure S3B). To estimate the effect 
of copy number alterations and methylation changes 
on PVT1 expression levels, we fit a linear regression 
model to each TCGA cohort (Figure S3D). In general, 
PVT1 locus amplification contributed significantly for 
PVT1 misregulation in most cancer types (Figure 3F and 
S3E). However, in KIRC, promoter hypomethylation is 
a stronger determinant of PVT1 up-regulation than locus 
amplification (Figure 3F and S3E). Overall, our results 
suggest that PVT1 misregulation in KIRC is the result of 
promoter hypomethylation.

Figure 3: PVT1 promoter hypomethylation. (A) Proportion of patients with PVT1 RNA up-regulation (red); RNA up-regulation and 
DNA copy number amplification (red stripes). (B) PVT1 promoter methylation levels (B-value) in normal (gray) and tumor (orange) tissues 
from patients. Significant differences are highlighted with * (Student T-test p-value < 0.05). (C) Proportion of patients with increased 
levels of PVT1 segregated in deregulated features: only RNA up-regulation (red); RNA up-regulation and DNA copy number amplification 
(red stripes); RNA up-regulation and DNA promoter hypomethylation (green); RNA up-regulation, DNA promoter hypomethylation and 
DNA copy number amplification (green stripes). (D) Pearson correlation estimates of significant association between PVT1 expression and 
promoter methylation levels across all cancers (adj. p-value < 0.05). (E) Correlation between PVT1 expression and promoter methylation 
levels in KIRC. (F) Significance of the model coefficients for PVT1 copy number variation (red stripes) and promoter methylation (green) 
estimated for each cancer type. The vertical dashed line corresponds to the significance level (p-value of 0.05).
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Enhanced MYC protein and signaling is 
associated with poor prognosis in KIRC

Previous reports have shown that PVT1 stabilizes 
MYC protein levels, promoting cell proliferation in cancer 
[4]. Thus, we assessed MYC protein levels using Reverse 
Phase Protein Array data (RPPA). We found that patients 
with high PVT1 expression levels also showed a significant 
increase of MYC protein concentration for five cancers, 
including KIRC (Figure 4A). Because MYC is an oncogenic 
transcription-factor we then explored whether MYC-PVT1 
deregulation would impact genes responsive to MYC. 
Indeed, comparison of tumor and normal samples showed 
a significant proportion of MYC-target genes misregulated 
in KIRC and other cancers (Fisher’s Exact -test adj. p-value 
< 0.05, Figure 4B and Table S3). Strikingly, only KIRC 
patients showed high levels of MYC protein associated with 
poor survival rates (Figure 4C and 4D). Further, 23% of 
the misregulated MYC-target genes in KIRC also showed 
a significant correlation with worse prognosis (Table S3).

Collectively, our results show that MYC-PVT1 
misregulation appears to be an important predictor of poor 
prognosis in renal carcinoma. 

DISCUSSION

Herein we performed a comprehensive analysis of 
almost 7000 patients from the TCGA to study the disrupted 
patterns of MYC-PVT1 in cancer. Our pan-cancer analysis 
using diverse multi-omics data revealed that KIRC is the 
malignancy for which MYC-PVT1 misregulation is most 
strongly associated with a poor overall survival. 

Although PVT1 gene is located in one of the 
most highly amplified locus across malignant tissues 
[5, 6], we found that less than 20% of the KIRC patients 
presented PVT1 locus gain. Indeed, we further show that 
the increased PVT1 lncRNA levels in KIRC patients 
are associated with PVT1 promoter hypomethylation. 
Hence, our results suggest that promoter hypomethylation 
is an important cause of PVT1 up-regulation in tumor 

Figure 4: MYC protein levels in cancer. (A) MYC protein levels (RPPA protein abundance) in tumor patients with low (gray) 
and high (red) PVT1 expression levels. Significant differences are highlighted with * (Student T-test p-value < 0.05). (B) Proportion of 
MYC-target genes misregulated across all cancers. Significant enrichment is highlighted with * (Fisher’s Exact-test adj. p-value < 0.05).  
(C) Log-rank Test p-values (-log10 p-value) for survival analysis of MYC protein levels across all cancers. (D) Kaplan-Meier survival 
curves for MYC protein in KIRC. 
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patients lacking 8q24 locus amplification. Active DNA 
demethylation has been associated to the Ten-eleven 
translocation (TET) family proteins, which oxidize 
5-methylcytosine into 5-hydroxymethylcytosine [15].  
TET overexpression leads to promoter demethylation and 
transcription activation of specific genes [16, 17]. Since 
TET overexpression was already observed in different 
cancers [18, 19], such misregulation could be responsible 
for the hypomethylation of PVT1 promoter in KIRC. 

Recent findings revealed that gain of PVT1 
expression was required for high MYC protein levels in 
human cancer cells [4]. Indeed, our study reveals that 
KIRC patients show consistently high levels of both PVT1 
lncRNA and MYC protein, leading to misregulation of 
MYC responsiveness genes. Notably, increased levels of 
MYC protein and MYC-target genes are linked to worst 
prognosis in renal carcinoma. Thus, our data suggest that 
PVT1 may act as an oncogene in renal carcinoma via 
stabilization of MYC protein, and subsequently activation 
of MYC pathway. However, future studies are required to 
confirm that high MYC protein levels in KIRC are caused 
by PVT1-induced MYC protein stabilization. 

Inhibition of MYC is an attractive pharmacological 
approach for cancer treatment [20]. For instance, expression 
of a dominant-negative inhibitor of MYC heterodimerization 
in the mouse model for lung adenocarcinoma resulted in 
tumor regression [21]. However, MYC is an important 
transcription factor and an essential protein, thus therapeutic 
interventions to directly inhibit MYC have severe effects 
in patients [20]. Since loss of PVT1 RNA in colon cancer 
cell line reduces MYC protein to more normal levels [4], 
inhibiting PVT1 could be a more accessible and feasible 
therapeutic strategy for renal cancer. Modulation of 
lncRNAs functions have showed promising anticancer 
effects and expanded the development of lncRNA-based 
cancer therapies involving small interfering RNAs, antisense 
oligonucleotides, ribozymes and aptamers [22]. 

In conclusion, our study reveals that PVT1 is 
strongly overexpressed in KIRC and associated to the 
enhancement of MYC signaling and worst clinical 
outcome. Moreover, our findings highlight the role of 
PVT1 as biomarker for KIRC and a promising therapeutic 
target for cancer treatment.

MATERIALS AND METHODS

Large-scale data selection

The analysed TCGA data was downloaded from 
Broad Institute TCGA Genome Data Analysis Center 
(Table S1). Only cancers with transcriptome data for 
tumor and normal tissues (50 samples minimum) were 
selected, encompassing approximately 7000 patients from 
17 different cancer types: KIRC (kidney renal clear cell 
carcinoma), KIRP (kidney renal papillary cell carcinoma), 
KICH (kidney Chromophobe), BLCA (bladder urothelial 

carcinoma), BRCA (breast invasive carcinoma), CESC 
(cervical squamous cell carcinoma and endocervical 
adenocarcinoma), COAD (colon adenocarcinoma), HNSC 
(head and neck squamous cell carcinoma), LIHC (liver 
hepatocellular carcinoma), LUAD (lung adenocarcinoma), 
LUSC (lung squamous cell carcinoma), PAAD (pancreatic 
adenocarcinoma), PCPG (pheochromocytoma and 
Paraganglioma), PRAD (prostate adenocarcinoma), READ 
(rectum adenocarcinoma), THCA (thyroid carcinoma), 
UCEC (uterine Corpus Endometrial Carcinoma). Number 
of normal and tumor tissues assessed by copy number 
variation (SNP Array); DNA methylation (Methylation 
BeadChip Array); expression (RNA-seq) and protein level 
(RPPA) are described in Table S1. 

miRNA data for 568 KIRC patients (497 tumor 
and 71 normal) was obtained from TCGA in bam format. 
RNA-seq and BS-seq data for HEK293 [23] and KIRC 
cell lines [24,25] were obtained from the GEO (http://
www.ncbi.nlm.nih.gov/geo/, GSE68938, GSE51867, 
GSE64451, GSE44866).

Copy number variation data analysis

Copy number levels from GISTIC algorithm 
represented locus loss (-2 for possible homozygous 
or -1 for heterozygous loss), locus gain (2 for possibly 
homozygous or 1 for heterozygous gain) and no alteration 
(0). Putative magnitudes of variations were considered for 
linear models analysis, whereas to determine patients with 
locus gain or deletion values were resumed to -1 (loss) or 
1 (gain). 

Gene expression data analysis

TCGA expression data quantified as RSEM 
(RNA-Seq by expectation-maximization) [26] was 
logarithmically transformed (base 2) in order to follow 
a normal distribution. The statistical significance of 
differences in expression levels between normal and 
tumor samples was assessed using limma R Package 
[27]. To classify each patient based on gene expression 
misregulation, the expression of each tumor sample was 
compared to the distribution of normal samples for the 
same cancer type. Thus, a Z-score was calculated for each 
tumor sample and the statistical significance was assessed 
assuming a normal distribution. Finally, p-values were 
adjusted using FDR method to correct for multiple testing. 

Expression levels from GEO RNA-seq datasets 
were obtained using Kallisto [28] and reference human 
genome (hg19).

TCGA miRNA expression levels were summarized 
(RPKMs) according to miRBase annotations  [29] and 
differences were assessed using Student’s T-test.

The statistical significance of survival differences 
in the Kaplan-Meier analysis was assessed using the 
Log-rank test and splitting the tumor samples in two 
groups: low and high expression levels (median value 
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used as cut-off), as implemented in survival R package  
[30]. Different cut-off values were tested (Figure S4 
and S5). Sample size calculation was performed using 
the Cox Proportional-Hazards Model implemented in 
powerSurvEpi R package (https://cran.r-project.org/web/
packages/powerSurvEpi/) with postulated Hazard ration of 
2 and statistical significance of 0.05. Despite the patient 
cohort heterogeneity, 11 (65%) cancers contained adequate 
sample size for the survival analysis (Table S4). 

To identify genes with expression misregulation 
consistently associated with clinical features we used 
the following stringent criteria: 1) significant expression 
alterations in cancer (absolute log2 fold-change higher 
than 4 and FDR adj. p-value < 0.005); 2) survival (Log-
rank Test FDR adj. p-value  < 0.005); 3) neoplasm status 
(Fisher’s Exact Test FDR adj. p-value  < 0.005); 4) tumor 
stage (Fisher’s Exact Test FDR adj. p-value < 0.005). For 
each association the direction of expression alteration and 
clinical outcome was considered, i.e. genes up-regulated in 
cancer should show high expression levels associated with 
worst survival, not tumor free and advanced clinical status 
(vice-versa for down-regulated genes). The significance 
of the expression-clinical associations was assessed using 
phenotype permutations, where the clinical features were 
randomly reshuffled and the procedures described above 
were recalculated on the reshuffled dataset. The process 
was repeated 1000 times recording the number of genes 
detected with expression-clinical associations. 

Fisher’s Exact-Test was used to evaluate association 
between the two groups and neoplasm status or tumor 
stage. MYC-target genes were obtained from Molecular 
Signatures Database [31,32] and enrichment in differentially 
expressed genes was assessed using Fisher’s Exact -test 
(p-values adjusted using FDR method).

DNA methylation data analysis

TCGA methylation levels were obtained as 
Beta-values (using the intensity of the Methylated and 
Unmethylated Alleles), ranging between 0 (unmethylated) 
and 1 (fully methylated). Beta-values for microarray 
probes located in the promoter region (from 2 Kb upstream 
to 100 bp downstream of the TSS) were averaged to obtain 
the final promoter levels. Methylation levels from GEO 
BS-seq datasets were obtained using Bismark [33] and 
percent methylation was called averaging CpG sites from 
the promoter region.

The statistical significance of promoter methylation 
alterations between normal and tumor samples across 
cancers was assessed using Student’s T-test. Promoter 
hyper/hypomethylation was determined using Z-score 
transformation and p-value correction, as done for 
expression data analysis. We used linear regression to model 
the PVT1 expression in terms of its own copy number 
variation and promoter methylation. The performance of the 
model was estimated using analysis of variance. Correlation 
between gene expression and promoter methylation levels 

was assessed using Pearson correlation (p-values adjusted 
using FDR method). 

Protein data analysis

RPPA Protein abundance values were normalized 
using a z-score transformation. Tumor samples were split 
according to PVT1 expression levels (median value used 
as cut-off). The statistical significance of differences in 
MYC protein levels between patients with low and high 
PVT1 expression was assessed using Student’s T-test. 
The statistical significance of differences in survival in the 
Kaplan-Meier analysis was assessed using the Log- rank 
test and splitting the tumor samples in two groups: low and 
high MYC protein levels (median value used as cut- off). 
Different cut-off values were tested (Figure S6). At least 
79% of the cancers contained adequate sample size for the 
survival analysis (Table S4)
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