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ABSTRACT:
This study reports on probing the utility of in situ chromatin texture features such 

as nuclear DNA methylation and chromatin condensation patterns — visualized by 
fluorescent staining and evaluated by dedicated three-dimensional (3D) quantitative 
and high-throughput cell-by-cell image analysis — in assessing the proliferative 
capacity, i.e. growth behavior of cells: to provide a more dynamic picture of a cell 
population with potential implications in basic science, cancer diagnostics/prognostics 
and therapeutic drug development. Two types of primary cells and four different 
cancer cell lines were propagated and subjected to cell-counting, flow cytometry, 
confocal imaging, and 3D image analysis at various points in culture. Additionally 
a subset of primary and cancer cells was accelerated into senescence by oxidative 
stress. DNA methylation and chromatin condensation levels decreased with declining 
doubling times when primary cells aged in culture with the lowest levels reached 
at the stage of proliferative senescence. In comparison, immortal cancer cells with 
constant but higher doubling times mostly displayed lower and constant levels of 
the two in situ-derived features. However, stress-induced senescent primary and 
cancer cells showed similar levels of these features compared with primary cells 
that had reached natural growth arrest. With regards to global DNA methylation and 
chromatin condensation levels, aggressively growing cancer cells seem to take an 
intermediate level between normally proliferating and senescent cells. Thus, normal 
cells apparently reach cancer-cell equivalent stages of the two parameters at some 
point in aging, which might challenge phenotypic distinction between these two types 
of cells. Companion high-resolution molecular profiling could provide information on 
possible underlying differences that would explain benign versus malign cell growth 
behaviors.

INTRODUCTION

Cells that share the same genotype, may not 
necessarily present the same phenotype, including 
structural and functional properties that can be assayed 
with a plethora of existing technologies. The differences 
largely arise from layers of information beyond the DNA 

sequence, collectively termed epigenetic signatures, 
of which the currently most popularly investigated are 
differential DNA methylation, histone modifications, and 
micro RNA (miRNA) display. All three modalities may 
influence chromatin conformation in mammalian cells: 
both, locally for regulating site-specific gene expression 
and globally to modulate the plasticity of the higher-order 
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organization of the genome [1-3]. Particularly, changes 
in DNA methylation patterns have been associated with 
the progression of cells during differentiation [4-7] as 
well as the etiology and pathology of complex traits 
[8,9]. Differences in DNA methylation patterns between 
normal and cancer cells have been well documented 
[10-12]. Cancer cells usually display hypermethylation 
of a relatively small number of single gene promoters 
mostly in gene-rich genomic regions termed CpG-
islands, leading to silencing of certain tumor suppressors 
involved in cell-cycle regulation, DNA mismatch repair, 
cellular differentiation, and apoptosis. This phenomenon 
is often coexistent with hypomethylation at the global 
DNA (gDNA) level, a large portion of which occurs in 
repetitive elements; potentially inducing activation of 
latent retrotransposons with the consequence of genome-
wide mutations and genome instability [13] alongside 
with substantial spatial reorganization of chromatin in cell 
nuclei, which can be visualized by light microscopy [14–
18]. This differential topology can be also be triggered by 
exposing cells to strong demethylating agents [19,20]. 

Recent advancements in cellular imaging and 
computational image analysis have made it feasible for 
large volumes of images to be analyzed in relatively short 
amount of time at substantially lower costs, compared to 
genome-wide molecular assays such as DNA microarrays 
and massively-parallel sequencing, when being performed 
at the single-cell level. Even though these techniques 
are rapidly improving in sensitivity towards single-cell 
resolution and becoming gradually miniaturized and 
automated, still two factors will remain for a while, which 
attenuate their use in a cell-by-cell mode: a) the high 
cost accumulation, and b) the computational complexity 
for data interpretation. Furthermore, imaging modalities 
have the advantage of interrogating cells in their native 
environment, thus adding contextual information to 
subcellular structure analysis. Therefore, we need to 
appreciate affordable technologies that provide high 
statistical values and acknowledge cellular heterogeneity. 
With regard to that, 3D quantitative DNA methylation 
imaging (3D-qDMI) has been particularly developed 
as a tool towards the causal assessment of global DNA 
demethylation, heterochromatin decondensation, 
and relevant genome reorganization in cell nuclei to 
characterize cells in response to environmental changes,  
for directed differentiation of stem cells and therapeutic 
reprogramming by demethylating agents [18–24]. The 
effects are measured through in situ analysis of nuclear 
structures (chromatin texture) representing methylated 
CG-dinucleotides (MeC) and gDNA, which are delineated 
by fluorescence labeling and analyzed via machine-
learning algorithms. 3D-qDMI is a high-throughput, 
imaging-based assay that allows for the rapid cell-by-cell 
analysis of MeC topology in thousands of individual cells, 
with the ability to identify and flexibly eliminate outlier 
cells in order to leverage data confidence. 

Importantly, a connection between global 
hypomethylation and aging has been proposed [25], 
as reviewed by Pogribny and Vanyushin [26], based on 
original observations in the different organs of various 
species [27,28] and later confirmation with in vitro assays 
using organ-derived cultured cells [29–34]. Therefore, 
global hypomethylation can also be found in senescent 
cells [35–39]. Replicative senescence (RS), originally 
known as permanent growth arrest and repressible by 
pharmacological intervention [40], is a naturally occurring 
event in normally dividing cells after a certain number 
of mitotic doublings [41]. Typically, growth arrest in 
RS occurs during G1-phase of the cell cycle and is 
accompanied by telomere shortening [42], the expression 
of senescence-associated β-galactosidase (SA-β-gal) [43], 
and the appearance of extremely condensed genomic areas 
known as senescence-associated heterochromatin foci 
(SAHF) [44]. Additionally, senescent cells mostly display 
a distinct enlarged and flat cellular morphology [45]. 

Chromatin reorganization has been suggested 
as a significant contributor to aging [49–50]. Separate 
from RS, accelerated senescence can also be induced 
in cells following exposure to certain stress factors: 
this is more specifically referred to as stress-induced 
premature senescence (SIS) [51]. Physiologically aged 
and prematurely aged genomes also undergo wide-ranging 
changes in epigenetic modifications that lead to chromatin 
reorganization [52,53]. Early experiments in mammalian 
cells have demonstrated the occurrence of a global decline 
in DNA methylation in cultured cells including primary 
fibroblasts from different species compared with their 
immortalized counterparts [54,55]. The overall decline 
of methylation results mostly from the loss of DNA 
methylation at repetitive regions that represent about 
55% of the human genome and are normally highly 
methylated. Age-related global hypomethylation concerns 
in particular satellite repeats (Sat2 and Satα DNA) as part 
of constitutive heterochromatin located at pericentric and 
centromeric loci [54–56], as well as interspersed repeat 
sequences such as short interspersed nuclear elements 
(SINES) and long interspersed nuclear elements (LINES) 
that have been reported to become hypomethylated during 
aging [57]. The importance of retrotransposons in aging 
was supported by recent evidences in which the class 
of Alu sequences — the most abundant primate SINE 
— was found demethylated in the context of adult stem 
cell aging, due to elevation in DNA damage as a result of 
demethylation-induced increase in Alu transcription [58]. 
Interestingly, adipose-derived stem cells, which undergo 
senescence in culture, could be rejuvenated by suppressing 
Alu expression: a result that challenges the original 
principle of the irreversibility of cellular senescence. 
Also, several histone modifications are affected during 
aging. Although driving mechanisms for chromatin and 
epigenetic changes during aging are currently unknown, 
it has been suggested that the epigenetic alterations 
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are largely triggered by DNA damage, reviewed by 
Oberdoerffer and Sinclair [49]. In this scenario, randomly 
occurring DNA damage leads to chromatin remodeling 
with various functional consequences. Aged genomes are 
characterized by increased DNA damage and high levels 
of persistent DNA breaks. In particularly, and in line with 
the morphological changes in chromatin, changes on the 
histone-level can range from depletion such as in the 
case of histone H2A [59] and changes in the abundance 
level of histone-tail modifications. The heterochromatin-
associated trimethylation of histone H3 lysine 9 and the 
transcriptionally repressive trimethylation of histone H3 
lysine 27 are largely lost in aged and prematurely aged 
cells [60,61]. Conversely, global trimethylation of H4 
lysine 20 increases with age [62]. Furthermore, probably as 
a consequence of loss of pericentromeric heterochromatin 
structure, physiologically aged and premature aged cells 
express normally silenced heterochromatic satellite repeats 
[54–56]. 

Investigations addressing the relationship between 
tumorigenesis and senescent cells, have led to earlier 
considerations hypothesizing that cellular senescence may 
act as a tumor suppressing mechanism [63–71]. Even pre-
malignant lesions may have a high chance of becoming 
senescent cells and stop proliferation, depending on the 
availability and activity of certain TSGs such as p53 or 
p16. This fact induced an initial enthusiasm for senescence 
as a strategy in cancer therapy. More recent experimental 
results have led to reconsiderations of this approach. 
Senescent cells, although permanently growth-inhibited 
in turn may drive tumor cells and even normal cells in 
the tumor microenvironment towards more aggressive 
growth behavior by promoting chronic inflammation via 
pro-inflammatory cytokine secretion [72,73]. Therefore, 
benefits or disadvantages of the presence of senescent 
cells may very well be context dependent.  Along these 
lines, a hallmark of malignant epithelial cancer cells in 
comparison with their normal counterparts and benign 
cancer cells is their significantly higher proliferation rate, 
which they often acquire during the transformation phase 
in the early stages of tumorigenesis. A better understanding 
of these differences through studies of epigenetic features 
in conjunction with chromatin organization in cells 
may also lead to improvements in cancer diagnosis and 
prognosis as well as therapies.

Recently, three-dimensional DNA methylation 
imaging (3D-qDMI) was introduced with the notion of 
characterizing cells and tissues based on their nuclear 
global DNA methylation distribution patterns (MeC 
phenotypes) in a cell-by-cell mode. Applications of 
this technology have been utilized in the evaluation 
of demethylating effects of epigenetic drugs and the 
progression of human and mouse embryonic stem cells in 
early differentiation [19–24]. In here, we report on using 
3D-qDMI to probe the utility of MeC-related chromatin 
texture features (MeC phenotypes) in characterizing cells 

based on their proliferative capacity, i.e. growth behavior. 
Being able to characterize fixed cells in conjunction with 
this important characteristic could provide a more dynamic 
picture of a cell population, therefore having tremendous 
implications in cancer diagnostics/prognostics and anti-
cancer drug development.

RESULTS

Additional experiments were performed, in which 
primary and cancer cells were synchronized in interphase 
to investigate any cell cycle-specific fluctuations in said 
features. Since the main objective of this study was to 
observe if changes in chromatin condensation and spatial 
nuclear MeC patterns can be correlated to differences in 
cellular proliferation capacity, it was necessary to verify 
that our 3-D image analysis is able to distinguish between 
differential nuclear texture information independent from 
the cycle stage of the cell.

Differential growth behavior of cells

This study analyzed six different human cell types: 
including two primary cells, neonatal dermal fibroblasts 
(HDF) — the most extensively studied cell type in the 
context of cellular aging — and prostate epithelial cells 
(HPEpiC), as well as four human cell lines, modeling 
androgen-sensitive and insensitive prostate cancer 
(DU145 and LNCaP, respectively) and metastatic breast 
cancer MDA-MB-231 and MDA-MB-435, currently 
disputed as melanoma-derived cell line). Primary cells 
were grown to RS, while cancer cells were cultured 
in parallel to provide sufficient statistical samples by 
monitoring proliferation over equivalent time periods. At 
specific time points during culture, a fraction of cells was 
analyzed with 3D-qDMI. Cell counts and doubling times 
during culture for both types of primary cells and the four 
cancer cell lines used in this study are shown in Figure 1. 
Doubling times increased in primary cells as cells reached 
senescence, while doubling times stayed nearly constant 
for all cancer cell lines, as anticipated. We observed that 
DU145, MDA-MB-231 and MDA-MB-435 grew at a 
fairly similar rate, whereas the androgen-sensitive LNCaP 
cells grew relatively slower. We assume that this might 
have been due to lack of androgen in the culture medium. 
The results confirm that proliferative capacity of primary 
cells rapidly decrease as they age in culture, while this 
capacity stays nearly constant for immortal cancer cell 
lines. 

Furthermore, in order to also assess differential 
growth behavior and correlated MeC phenotypes of 
primary and cancer cells in response to induction of 
accelerated senescence (SIS), cells were exposed to H2O2 
following previously published protocols [51, 74, 75].
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MeC/DAPI codistribution correlates with 
proliferative capacity of cells

Immunofluorescence (IF) samples were generated 
every 3-5 passages for primary cells, while for cancer 
cells, at least 5 different IF samples were created at 
selected passages throughout the culturing process. In 
addition to visualization of MeC and gDNA, we also 
co-stained for the proliferation marker Ki-67. Although 
it is possible to quantify Ki-67 signal intensities using 
the 3D-qDMI framework, for the purposes of this study 
Ki-67 was only used as a qualitative marker to roughly 
distinguish between proliferating and declined cells. 
Typically, greater than thousand nuclear regions of interest 
(ROI) were recognized in most analyzed IF samples. Of 
these nuclear ROIs, those categorized as “dissimilar” and, 
thus identified as outliers — based on methods previously 
described in [21,22] — were excluded from subsequent 
image analysis. In all images used in this study, the 
percentages of nuclear ROIs deemed as outliers were less 
than 1%, and their exclusion did not significantly alter data 
confidence. Each nuclear ROI is analyzed individually 
using 3D-qDMI, and the cell-specific data are then pooled 
to form population-level statistics. This study focused on 
four categories of analytical parameters to delineate DNA 
methylation and chromatin condensation patterns in each 
nucleus: (1) physical information, particularly the spatial 
dimensions (in x-, y-, z-coordinates) and volume of ROI; 
(2) MeC/DAPI codistribution; (3) statistics for a subset 
of signals, i.e. percentage of low-intensity MeC (LIM%) 
and low-intensity DAPI (LID%) pixels within ROIs, 
determined by a threshold on image-inherent features; and 

(4) topological voxel-level parameters, which represent 
degrees of meth and cond, and the correlation of the two 
at the voxel level as assoc. Figure 2 depicts qualitative 
changes of DNA methylation patterns in cultured primary 
cells based on the first three types of analytical parameters: 
as cells age, the relative pixel intensities in MeC and Ki-67 
channels decrease, while the nuclear volume, delineated 
by DAPI counterstaining, increases. These changes 
correlate with increasing doubling times. Higher-passage 
populations comprise a majority of enlarged senescent 
cells. In our study, we also chemically induced growth 
arrest in aggressively proliferating prostate cancer cells 
(DU145) and a subset of HDF by exposing cells to H2O2 
as previously mentioned. The stress-induced senescent 
cancer cells analogously showed a differential MeC/DAPI 
pattern in comparison with their proliferating counterparts, 
although the latter as usual showed lower global MeC 
levels than normal cells. Interestingly, there was no 
significant difference in the MeC/DAPI patterns between 
replicative senescence and stress-induced senescence 
within the same cell type and also between HDF and 
DU145 cells. 

Topological voxel analysis for a more dynamic 
analysis of nuclear textures

To investigate the correlation between MeC 
topology/nuclear texture and cell proliferation a new 
analytical module called topological voxel analysis 
(TVA) was developed to extend pre-existing analytical 
modules in 3D-qDMI [21,22]. In our previous work with 
3D-qDMI, we focused on the analysis of topological 

Figure 1: Growth rate of aging primary and cancer cells in culture. (A) Doubling times are plotted against passage numbers 
(left panel) and cumulative doublings are plotted against total days in culture for HDF and HPEpiC cells. Prostate epithelial cells that have 
been established from adult tissue seem to approach senescence much earlier than neonatal dermal fibroblasts. For HDF cells, an abrupt 
increase in doubling times occurs around passage 40, while similar behavior can be seen for HPEpiC cells at around passage 10. (B) Cancer 
cells used in this study, also show variability of doubling times, with LNCaP cells growing significantly slower than the other three cell 
lines. However, growth rates of cancer cells do not change much with increase in passage numbers, indicating their immortality.
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distribution of low-intensity MeC (LIM) and low-
intensity DAPI (LID) sites within the nuclear region of 
interest (ROI) to highlight changes in chromatin density 
between drug-treated and untreated cells. We experienced 
a more differential analysis at the nuclear periphery, 

which contain mostly facultative heterochromatin 
[19,22]. However, differences more in the interior of 
nuclei, which preferentially are composed of euchromatin 
and constitutive heterochromatin, were more difficult to 
discern via this approach, and requested a more careful 

Figure 2: MeC/DAPI codistribution in proliferating and senescent cells. Confocal mid-section images of primary and cancer 
cells at selected passages during culture and in response to oxidative stress (SIS): As HDF and HPEpiC cells age, there is a general decline in 
global MeC (green) signal. In parallel, the number of cells presenting the proliferation marker Ki-67 (red) decreases with increased passage 
number. Cells at higher passage numbers exhibit larger nuclei. These qualitative phenotypes, as gleaned from visual impressions, correlate 
with quantitative measurements: i.e. increasing doubling times and a flattening of the MeC/DAPI codistribution graphs in respective 
scatter plots (shown for selected framed nuclei) in aging cells. In contrast, the representative and immortal DU145 cancer cell populations 
comprise a majority of Ki-67-positive cells, with doubling times that are much shorter than primary cells.  A convergence towards lowest 
MeC-signal levels can be observed in senescent populations for the two categories of cells, independent from the cause of growth arrest, 
either replicative or stress-induced (by H2O2 exposure). 
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selection of signal cut-off levels for determining LIMs and 
LIDs. In order to better utilize chromatin condensation as 
a nuclear texture feature, we applied TVA that is based on 
a different sub-compartmentalization of the nucleus than 
previously used for the study of LIM/LID topology.

To quantify differences in the spatial codistribution 
of DAPI and MeC signals the three parameters cond, 
meth, and assoc were calculated for each nuclear ROI. 
Our approach was inspired by previous publications 
delineating heterogeneity and condensation levels of 
stained chromatin for 2-D images [76–80]. Chromatin 
condensation in a given voxel is measured by the 
parameter cond, representing the condensation level of 
genomic DNA, while the relative degree of methylation 
in the same given voxel is measured by the parameter 

meth. The parameter assoc describes the correlation of 
low- or high-intensity pixels in both channels to determine 
how associated one signal in a given physical space 
is with the other signal in the same space. Once these 
parameters are found for each voxel within the nuclear 
ROI, they can be processed by two different methods. 
First, topological changes in parametric value can be 
measured at each normalized position from the nuclear 
center to the periphery, and subsequently these trend 
lines for each nuclear ROI in a cell population can be 
compared to determine how much topological variation in 
chromatin condensation and methylome distribution exists 
for a given population of cells. Second, volume-weighted 
mean of voxel-level parametric values are determined 
to represent a singular parametric value for the whole 

Figure 3: Voxel-based parameters are independent from cell cycle stages. Confocal mid-section images of HDF (A) and 
DU145 cells (B) are shown with their respective MeC/DAPI codistribution scatter plots. Below the images are graphs displaying the cell 
type-specific respective distribution of topological voxel analysis parameters cond, meth, and assoc at the two major interphases of the cell 
cycle (G0/G1 and G2) and for related unsynchronized control populations. In all graphs, each data point represents one nuclear ROI volume. 
The parameter distributions display a high similarity across the three cell groups. 



Oncotarget 2013; 4: 474-493480www.impactjournals.com/oncotarget

nuclear ROI. Detailed methodology and explanation of 
how analyses using the voxel-level parameter occur are 
presented in the Supplementary Materials (File 5).

No significant differences exist between DNA 
methylation and chromatin condensation patterns 
of cells at different stages of the cell cycle

To ensure that spatial MeC and global DNA co-
distribution patterns do not vary significantly during 

the interphase cell cycle, as to adversely affect the 
data confidence of 3D-qDMI analysis, 3D-qDMI with 
topological voxel analysis was performed on three types 
of populations for both, HDF and DU145 cells: G0/G1-
enriched and G2-enriched populations, together with an 
unsynchronized control population. Synchronization was 
performed using a combination of a double-thymidine 
block and serum starvation, and cell population synchrony 
was verified by fluorescence-activated cell sorting 
(FACS) based on propidium iodide (PI) staining. For all 
enrichment assays, a majority (>75%) of cells was found 

Table 1: Voxel-based parameter values for HDF and DU145 cells at different cell 
cycle phases.

HDF G0/G1 HDF G2 HDFcontrol Analysis 
Parameters (µ ± σ)

DU145 
G0/G1

DU145 
G2

DU145 
control

560 783 1066 Total cells analyzed 412 504 625

176 ± 33 306 ± 63 172 ± 48 Nuclear ROI volume  
(1000 pixels) 174 ± 40 283 ± 67 171 ± 59

48.2 ± 14.1 51.1 ± 15.4 50.4 ± 12.5 LID% 51.7 ± 14.4 54.2 ± 15.0 51.4 ± 17.8

36.9 ± 20.0 35.7 ± 26.0 39.8 ± 21.0 LIM% 50.9 ± 19.2 54.8 ± 23.7 51.8 ± 24.2

0.55 ± 0.10 0.57 ± 0.10 0.53 ± 0.14 cond 0.43 ± 0.11 0.40 ± 0.12 0.42 ± 0.08

0.43 ± 0.10 0.48 ± 0.11 0.46 ± 0.14 meth 0.31 ± 0.15 0.32 ± 0.15 0.30 ± 0.10

0.76 ± 0.08 0.80 ± 0.06 0.75 ± 0.08 assoc 0.75 ± 0.08 0.76 ± 0.07 0.73 ± 0.06

Figure 4: Averaged parameter values of primary cell populations at different stages in culture. Change in nuclear ROI 
volume (represented in million pixels) and parameters cond, meth, and assoc are shown against both, passage number (top panel) and 
inverse of doubling time (bottom panel). With each successive passage, both HDF and HPEpiC show decrease in meth and cond . These 
changes correspond to the cells’ abating proliferation capacity, as measured by doubling times.
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to be in the targeted phase. Furthermore, since serum 
starvation was used to arrest cells in G0/G1 phase, viability 
of synchronized populations was tested: as >90% of cells 
being viable the cell enrichment step was successful 
without significant induction of cell death. More details 
on verification of cell cycle synchronization and cell 
viability can be found in the Supplementary Materials 
(File 1). Figure 3 displays examples of G0/G1 and G2 

synchronized cells with distributions of topological voxel 
analysis parameters (cond, meth, and assoc) (Table 1) 
plotted against the volume of nuclear ROIs. As can be seen 
from this distribution scatter plot, there are no statistically 
significant differences in the values of each parameter 
for any of the three groups of cells; in other words, DNA 
methylation and relevant chromatin condensation patterns 
of cells are not unique to a particular stage of the cell 

Table 2: Voxel-based parameter values for HDF and HPEpiC at selected passages.

HDF P10 HDF P25 HDF P43 Analysis 
Parameters(µ ± σ) HPEpiC P1 HPEpiC P5 HPEpiC P14

1407 1283 514 Total cells analyzed 1449 1668 680

2.82 3.42 10.14 Doubling Time 
(days) 1.47 2.11 infinity

151 ± 35 194 ± 41 248 ± 87
Nuclear 
ROI volume  
(1000 pixels)

150 ± 61 201 ± 55 214 ± 87

1675 ± 522 1689 ± 299 1191 ± 250 DAPI raw intensity 
(max value: 4096) 1657 ± 456 1516 ± 315 939 ± 386

1353 ± 566 1009 ± 223 577 ± 284 MeC raw intensity 
(max value: 4096) 1149 ± 379 1311 ± 369 332 ± 291

51.0 ± 12.3 54.9 ± 13.7 80.7 ± 7.8 LID% 48.0 ± 18.6 56.4 ± 16.6 84.6 ± 11.7

51.5 ± 10.5 54.5 ± 12.3 81.1 ± 11.7 LIM% 46.7 ± 20.0 51.6 ± 14.3 87.4 ± 10.1

0.53 ± 0.13 0.46 ± 0.07 0.26 ± 0.06 cond 0.46 ± 0.10 0.44 ± 0.08 0.23 ± 0.08

0.52 ± 0.13 0.36 ± 0.08 0.13 ± 0.06 meth 0.47 ± 0.12 0.46 ± 0.10 0.11 ± 0.05

0.78 ± 0.10 0.77 ± 0.06 0.80 ± 0.08 assoc 0.75 ± 0.09 0.80 ± 0.09 0.89 ± 0.10

Figure 5: Voxel-based parameters in primary and cancer cells. (A) The graph presents pooled data from all primary cells. A 
distinct positive correlation can be seen in meth and cond compared to inverse of doubling times. Low parameter values at low growth 
capacity (as measured by doubling times) correspond to seemingly senescent cells, and high parameter values correspond to early passage 
cells with short doubling times; with overall high correlativity to doubling times; meth: r2 = 0.772, cond: r2 = 0.757, and assoc: r2 = 0.410. 
We interpret that DNA demethylation along with chromatin decondensation increase in primary cells as cell growth slows down. (B) In 
comparison: according to pooled data from all cancer cells, immortal cells of all four kinds show a fairly equally low meth value (global 
hypomethylation) at significantly higher proliferation rates (as measured by doubling times). Even though there are differences in doubling 
times amongst the cancer cell lines, no significant correlation of parameter values with doubling times was measured (cond: r2 = 0.441; 
meth: r2 = 0.474; assoc: r2 = 0.369). 
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cycle. Table 1 shows the mean and standard deviation 
for various 3D-qDMI analysis parameters. The only 
significant difference between the three populations — 
for each cell type — is the nuclear (ROI) volume, which 
is reasonable, considering the diploid state of cells in G2 
versus G1 due to the extra copy of genomic DNA that was 
synthesized during the intermediate S phase of the cell 
cycle. From these results, we conclude that the image-
analysis features utilized to discriminate cells in growth 
behavior are detached from cell cycle phases. Therefore,  
feature data collected from cells that are randomly fixed 
in non-synchronous populations will not be influenced by 
this inherent parameter of living cells.

Chromatin demethylation and decondensation 
occur with increased passage numbers in primary 
cells

We then assessed the fourth type of analytical 
parameter in the same samples as above. For that, the 
three TVA features meth, cond, and assoc, were measured 
in all cell types at specific time points within the entire 
culture duration for HDF and HPEpiC cells (Figure 4). As 
previously shown in Figure 1, the two primary cell types 
reached RS after around 50 and 15 doublings, respectively. 
Table 2 presents a tabular form of data given in Figure 
4 for selected passages. The entire data set is available 
in the Supplementary Materials (File 2). Prior to reaching 
RS, we observed an increase in doubling times for these 

cells with successive passage, as a sign of decline of the 
overall proliferative capacity of these cells. This decline 
was generally accompanied by a decrease in Ki-67 
presentation, as evidenced in Figure 2. 

Through each successive passage, both HDF and 
HPEpiC show a progressive loss of global methylation 
and became highly hypomethylated upon reaching 
their respective RS point, as measured by an increase 
in LIM% and a decrease in the parameter meth. Global 
hypomethylation becomes highly evident after passage 
30 in HDF cells and passage 10 in HPEpiC cells. At the 
same time, an increase in LID% and a decrease in cond 
could be observed, implying that global hypomethylation 
is accompanied by chromatin reorganization in aging 
cells. Therefore, as expected, the parameter assoc, which 
measures the correlation of low- or high-intensity pixels 
in both DAPI and MeC channels at a given voxel cube, 
also increased as cells RS. This increase can be attributed 
to the overall increase in the distribution of pixels within 
the ROI that are of both, low-intensity DAPI and low-
intensity MeC. These changes in global DNA methylation 
and spatial genome organization are concordant with 
visual impressions provided by high-resolution images 
of stained cells, as previously shown in Figure 2. When 
the correlation of the analytical parameters to doubling 
times from all images of primary cell IF-samples was 
calculated, parameters cond and meth showed high levels 
of correlation with doubling times (Figure 5A). 

Hypomethylation is evident in cancer cells 
compared with primary cells

As expected, TVA features did not change much 
for specimens collected at various times in the culture of 
cancer cells. Table 3 shows the averaged results from these 
specimens for each cell type. 

Overall, cancer cells showed lower degrees of 

Table 3: Voxel-based parameter values for cancer cells at selected 
passages.
Analysis Parameter DU145 LNCaP MDA-MB231 MDA-MB435

Doubling time (days) 1.77 2.81 1.50 1.42

Total cells analyzed 2966 2992 3902 4753

Nuclear ROI Volume  
(103 pixels) (µ ± σ) 156 ± 57 183 ± 54 129 ± 43 136 ± 41

LID% (µ ± σ) 62.5 ± 12.2 39.4 ± 13.2 4.76 ± 12.6 45.6 ± 13.9

LIM% (µ ± σ) 67.7 ± 9.6 63.7 ± 17.1 61.3 ± 17.4 50.9 ± 23.9

cond (µ ± σ) 0.319 ± 0.098 0.398 ± 0.092 0.439 ± 0.135 0.443 ± 0.111

meth (µ ± σ) 0.301 ± 0.117 0.301 ± 0.131 0.336 ± 0.134 0.360 ± 0.109

assoc (µ ± σ) 0.742 ± 0.093 0.720 ± 0.080 0.688 ± 0.178 0.633 ± 0.116

Table 4: Pearson’s correlation coefficients 
of parameter values compared to inverse of 
doubling times for primary and cancer cells

cond meth assoc

Primary Cells 0.757 0.772 0.410

Cancer Cells 0.441 0.474 0.369
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methylation, as evidenced by high LIM% and low meth, 
compared to primary cells with similar proliferation rates. 
Primary cells with higher proliferation capacities (in the 
earlier passages) usually showed higher degrees of global 
methylation with meth ~ 0.5, as previously shown in 
Figure 4, while for cancer cells, values of meth remained 
well below this level for all cancer cell types. On the other 
hand values for LID% and cond were similar to that of 
highly proliferative, early passage primary cells. As in 
cancer cells, global hypomethylation was not necessarily 
correlated with signs of chromatin decondensation. In 
these types of cells we consistently registered assoc-values 
lower than those measured in primary cells; although 

this difference was not large enough to be statistically 
significant. Therefore, in order to further search for 
measureable chromatin texture-based differences 
between highly proliferative primary and cancer cells, 
we calculated the degree of correlation between the TVA 
parameters and the cells’ doubling. Figure 5B shows a 
scatter plot of doubling times and 3D-qDMI analytical 
parameters for each cancer cell line used in this study. 
Unlike in primary cells, none of the TVA parameters 
correlated satisfactorily with doubling times in cancer cell 
lines. This is an interesting difference observed between 
normal and cancer cells, which can be interpreted as such: 
values of these parameters may be disconnected from 
growth rates (and associated proliferative capacity) in 
transformed cells. 

To determine how well TVA parameters correlate 
to doubling times, Pearson’s correlation coefficients were 
calculated between each parameter and the inverse of 
doubling times, as shown in Table 4.

In primary cells, both cond and meth showed good 
level of correlativity with r2 > 0.75. The same was not 
experienced for cancer cells: instead both showed poor 
correlativity with r2 < 0.5. Using this knowledge, primary 
cell data was fitted to a logistic curve. Several models were 
explored, including exponential, logarithmic, polynomial, 
and linear models. The logistic model was chosen from 
ANOVA (analysis of variance) analysis. Figure 6 exhibits 
the same data as in Figures 5A and 5B overlaid with 
logistic fitting curves. From these results it is apparent 
that cancer cells display parametric values outside the 
confidence range that can be estimated from primary cell 
data, and these differences could be used to discriminate 
primary and cancer cells. However, this claim needs to be 
verified in future follow-up studies.

Figure 6: Different growth behaviors of primary 
cells and cancer cells as evidenced by voxel-based 
parameters. When comparing primary cell data (dark, 
diamond markers) to cancer cell data (light, square markers), it 
can be seen that while primary cells correlate well to growth 
capacity (as measured by doubling time), cancer cells do not. 
In this figure, both cond and meth are fit with a logistic curve, 
which was determined to be the best fitting curve based on F-test 
results. Parametric values from cancer cell populations lie further 
away from fitted curves and from primary cell populations.

Table 5: Voxel-based parameter values for proliferating, 
replicative senescent, and stress-induced senescent HDF 
cells.

Analysis Parameter Normally 
Proliferating

Replicative 
Senescence

Stress-induced 
Senescence

Total cells analyzed 1066 1482 1323
Nuclear ROI Volume  
(103 pixels) (µ ± σ) 142 ± 47 215 ± 81 189 ± 56

LID% (µ ± σ) 0.544 ± 0.047 0.792 ± 0.064 0.753 ± 0.144

LIM% (µ ± σ) 0.505 ± 0.133 0.792 ± 0.133 0.773 ± 0.118

cond (µ ± σ) 0.471 ± 0.077 0.280 ± 0.078 0.316 ± 0.128

meth (µ ± σ) 0.479 ± 0.160 0.162 ± 0.092 0.102 ± 0.095

assoc (µ ± σ) 0.722 ± 0.079 0.816 ± 0.092 0.790 ± 0.093
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DNA methylation and chromatin condensation 
patterns of replicative senescent cells and stress-
induced senescent cells are similar

In order to establish a correlative relationship 
between proliferative capacity of cells — as measured by 
cellular growth rates — and TVA features, it was necessary 
to set a baseline value for these analytical parameters 
using a known non-proliferative cell. As mentioned above, 
primary cells were grown until they reached replicative 
senescence, in order to obtain cells that lack growth 
potential. Separate from RS, stress-induced premature 
senescence was studied by treating HDF and DU145 cells 
with hydrogen peroxide (H2O2). Details on concentration 
and time of peroxide treatment and pre- and post-treatment 
cell counts are available in the Supplementary Materials 
(File 3). Senescence was verified in both, RS and SIS cells 
by two methods in parallel subcultures at same propagation 
time points: (i) a subset of cells was simultaneously 
immunostained for the proliferation marker Ki-67 in 
the IF, and a marked decrease in the presence of Ki-67 
signals in both types of senescent cells over regularly 
proliferating cells was noticed; (ii) another subset of cells 
was colorimetrically stained for presence of senescence-
associated β-galactosidase (SA-βgal). RS and SIS cell 
populations presented an absolute majority of large and 
flat cells with strong SA-βgal expression compared with 
populations with predominantly proliferating cells (data 
not shown).

As previously demonstrated in Figure 2, structural 
differences between normally proliferating cells and 
senescent cells could be retrieved by visual inspection, 
while no significant differences were observed between RS 
and SIS cells. For primary cells, H2O2-treatment yielded 
typical MeC phenotypes that were very similar to MeC 
phenotypes of RS cells. Both types of growth-arrested 
cells have strongly reduced MeC loads and the associated 
TVA features verify these changes quantitatively. Table 5 

shows image analysis results for untreated proliferating 
(control), as well as RS- and SIS-HDF cells. Both visual 
and quantitative data reveal no difference in the two types 
of senescent cells regarding said features.

In the case of cancer cells, such as DU145, SIS-type 
cells exhibited: (i) larger nuclear ROI, (ii) an increase 
in LID% and LIM%, and (iii) decreased values for cond 
and meth. Thus, the LIM/LID and the meth/cond data 
sets are in agreement with one another. Table 6 compares 
image analysis results for untreated proliferating and SIS-
DU145 cells. The parametric (feature) values from nuclei 
in the latter group are on par with those observed in RS 
primary cells, indicating that there is also no difference 
between transformed (originally immortal) cells and 
primary cells, when they are driven or accelerated into 
senescence. Therefore, it seems as if the stage of growth 
arrest is correlated with the differential TVA features, 
independent from the cells original growth character and 
the method by which senescence was elicited. In a closer 
look at our measures, we gleaned that untreated cancer 
cells exhibit lower degrees of meth/cond (~30% less) 
concordant with higher values for LIM/LID (~21%) than 
early passage primary cells. Therefore, concerning these 
features, aggressively growing cancer cells seem to take an 

Table 6: Voxel-based parameter values for 
proliferating and stress-induced senescent 
DU145 cells.
Analysis Parameter Proliferating Senescence
Total cells analyzed 534 426
Nuclear ROI Volume  
(103 pixels) (µ ± σ) 166 ± 58 213 ± 66

LID% (µ ± σ) 0.661 ± 0.088 0.749 ± 0.158

LIM% (µ ± σ) 0.666 ± 0.101 0.823 ± 0.096

cond (µ ± σ) 0.353 ± 0.092 0.259 ± 0.128

meth (µ ± σ) 0.318 ± 0.073 0.179 ± 0.077

assoc (µ ± σ) 0.773 ± 0.062 0.799 ± 0.079

Figure 7: Cellular DNA methylation and concurrent 
chromatin condensation levels. The illustrated scheme is 
derived from the 3-D image- and flow-cytometrical results of 
our cell-by-cell study, summarizing the correlations we found. 
In a nutshell, cancer cells with an accelerated growth behavior 
compared with their normal counterparts take a meta-stage in 
global DNA methylation and chromatin condensation levels 
between the latter and senescent cells that have reached growth 
arrest. As benign primary cells seem to reach cancer-cell 
equivalent stages of the two parameters at some point in aging,  
this calls the question as to whether the underlying sequence 
of molecular profiles may differ between the two categories of 
cells. Along the same lines of thought, it would be informative 
exploring this matter also for SIS, which is depicted as a shorter 
but more forceful process (thick arrow) than gradual aging (thin 
arrow).
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intermediate level between normally proliferating and 
senescent cells, as illustrated in Figure 7.

DISCUSSION

The main objective of this study was to investigate 
the relationship between the spatial nuclear distribution 
of methylcytosine — as an epigenomic landmark in 
conjunction with chromatin condensation patterns — and 
cellular growth behavior, using a novel image-cytometrical 
approach. This study was inspired by the notion to 
discover chromatin texture-based features that can be 
extracted by automated image analysis for generating a 
more dynamic and activity-based picture of individual 
cells in a population; with conceivable applications 
in pre-clinical drug testing and cancer pathology. By 
delineating and quantifying in situ spatial distributions 
of genomic DNA and MeC residues, 3D-qDMI delivers 
a dynamic and motion-based picture of cells. Especially 
in clinical pathology, where traditional staining methods 
provide a more static picture reminiscent of the tissue’s 
history but mostly challenging the prediction of tissue 
(and disease) fate, extracted TVA features could support 
tissue characterization towards more confident prognosis. 
Thus, 3D-qDMI may contribute as a high-throughput, 
and cost-effective companion assay for screening of 
tumors and other epigenetics-related abnormalities. Our 
approach follows the appeal of exploiting differential 
DNA methylation patterns as potentially powerful 
epigenetic markers in the characterization and therapy 
cancer malignancies [81–83]. Changes in the DNA 
methylation profile of cancer cells are often comprised 
of hypermethylation of single gene promoters, leading 
to aberrant silencing of disease-related genes, and global 
hypomethylation of repetitive sequences in intergenic 
regions and heterochromatic areas of the genome: 
tumor cells harbor at average 20–45% less MeC content 
compared with their normal counterparts [13, 84–89]. 
The effect of hypomethylation on cancer cells has been 
evidenced as correlating with chromosomal instability 
[90,91]. Though some variations exist in the DNA 
methylation profile among different types of tumors, the 
general trends of specific hypermethylation, mostly within 
CpG islands, and global hypomethylation appear to be 
ubiquitous in all tumors [36, 92]. Therefore, a secondary 
objective of this study was to assess the feasibility of 
distinguishing and/or discriminating cells with different 
proliferative capacities, based on their spatial nuclear 
DNA methylation phenotypes and relevant higher-order 
genome organization.

The most important consideration behind any 
imaging-based assay is to accurately quantify imaged 
signals and in situ patterns at or even beyond the level of 
human visual perception. In our previous publications [19, 
21,22], we had introduced image-analysis tools to highlight 
differences in DNA methylation patterns based on MeC/

DAPI colocalization patterns and 3-D maps of LIMs and 
LIDs. The latter feature required a careful selection of 
defined intensity thresholds, which works well for the 
more consistent structure of the nuclear periphery, but may 
face challenges in the mapping of more subtle changes 
in the more internal nuclear regions: due to dynamic 
local differences in the euchromatin and heterochromatin 
portions of DNA. Therefore, we have extended 3D-qDMI 
with a new analytical module, termed topological 
voxel analysis. The idea behind this amendment is that 
fluctuations in chromatin reorganization, that in our case 
accompany DNA demethylation, can be traced through the 
measurement of DAPI intensity changes in the nucleus. 

When using 3D-qDMI to track changes in in situ 
DNA methylation and chromatin condensation patterns, 
an inquiry we made was, whether our approach would 
be sensitive to differences in MeC/DAPI codistribution 
patterns based on the unsynchronized cells being at 
different interphase cell cycle phases. This consideration is 
important in dissecting pattern changes that are attributed 
to conditional alterations (of interest) from cell cycle-
specific influences. In our analytical practice, cells in 
M- (mitotic) phase were excluded from assessment for 
two reasons: (a) most of these cells go through different 
nucleation phases and do not allow for a proper ROI 
determination (based on DAPI counterstaining), (b) 
because the unique and highly compact chromatin 
conformation is not suitable for differential pattern 
recognition. Because of these properties, all M-phase cells 
were automatically flagged as outlier cells by 3D-qDMI 
software and excluded from further analysis, based on 
criteria given in [21]. It is also important to note that the 
number of M-phase cells, in a given specimen, compared 
to the number of cells in the interphase is relatively small, 
and thus their elimination from topological analysis will 
not have an impact on the final statistical outcome. 

Although trying to interpret chromatin condensation 
using microscopy is not a new approach [48–52], to the 
best of our knowledge, our approach is novel in retrieving 
and cross correlating changes in both signatures — DNA 
methylation texture patterns and chromatin organization 
— with cellular proliferation, by means of confocal 
microscopy and comprehensive 3D image analysis. This 
was based on the hypothesis that higher resolved and 
therefore more differential texture information would be 
extractable from 3D analysis than from 2D analysis or 
maximum intensity projections of fluorescence signals. 
Additionally, we have chosen cell types and conditions 
that would allow us to associate the two signatures with 
the three major groups of cell growth behavior: normally 
proliferating primary cells, highly proliferating cancer 
cells, and minimally proliferating senescent (or near-
senescent) cells derived from these two cell types. The 
latter group enabled us to capture nuclear signatures in 
a more continuous form during which primary cells 
gradually changed their capability from growing at their 
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fastest (normal) rate in the early passages all the way to 
irreversible growth stop. Our results show that 3D-qDMI 
enhanced with the newly developed analytical methods 
is able to quantify phenotypic differences visualized 
through optical imaging, and that these differences match 
previously reported descriptions of epigenetic phenomena 
in cancer cells and senescent cells.

Initially, this study had planned to include a G1-only 
synchronization using thymidine block and nocodazole, 
which arrests cells in the mitotic phase. However, one 
major technical difficulty arose when using this approach. 
Cells arrested in the M-phase usually rounded up and 
detached from the glass surface; these detached cells could 
not be strongly re-attached (to allow immunofluorescence 
staining) to the substrate before cells progressed from 
G1 to S- phase. Furthermore, although not the primary 
reason for not using nocodazole, a recent publication from 
Cooper et al. [93] has suggested that nocodazole cannot 
synchronize cells properly. Therefore, acknowledging 
technical limitations in fixed cell assays and the limitations 
with nocodazole-inhibition, arresting cells to quiescence 
(G0 phase) via serum starvation seemed to be a reasonable 
alternative. While G0-phase cells are temporarily non-
dividing, they are not post-mitotic cells and could 
be triggered to enter the cell cycle under appropriate 
conditions [94]. Most importantly, methylation patterns 
of G0/G1 synchronized populations were not affected by 
deleterious drug treatment.

Flow cytometry of G0/G1 and G2 synchronized 
populations for both HDF and DU145 cells revealed that 
the cell cycle synchronization was highly efficient, as the 
vast majority of cells were found to be in the targeted cell 
cycle phase. At the same time, the image-cytometrical 
analysis of respective parallel populations using 3D-qDMI 
showed high degrees of homogeneity regarding DAPI/
MeC codistribution patterns, further supporting the results 
from flow cytometry. Using 3D-qDMI, no statistically 
significant differences were found between the G0/G1 and 
G2 synchronized populations and the control population 
for both HDF and DU145 cells, in all topological analysis 
criteria (LID%, LIM%, cond, meth, and assoc). This 
result may not be surprising considering that methylation 
of hemi-methylated DNA (replicated strand) by DNA 
methyltransferase Dnmt1 is tightly coupled with the 
replication process [95, 96]. Since this process is meant 
to mirror the molecular methylation patterns on the 
replicated strand, it should not change the distribution of 
methylcytosine within the genome and thus MeC/DAPI 
codistribution should essentially stay constant. This is in 
line with the fact that chromatin organization should be 
conserved during S-phase and inherited to daughter cells 
upon cell division [94, 97,98]. Therefore the differential 
methylation phenotypes we observed with 3D-qDMI in 
this study can be robustly associated with growth behavior 
and are not skewed by the inherent cell-cycle variability 
within analyzed cell populations. This fact renders DNA 

methylation phenotyping highly valuable for pathological 
tissue characterization in which synchronicity of cells 
within their native environment is naturally not the case. 

With this confidence, the relationship between 
cellular proliferation capacity and chromatin organization 
was studied. Primary cells were grown to their Hayflick 
limit, as they reached replicative senescence. The number 
of cells in culture was counted after every passage to 
generate a comprehensive database of growth rates. The 
proliferation capacity (as measured by doubling time) was 
fairly consistent for over the first 30 passages in HDF cells 
and the first 9 passages in HPEpiC cells. Past this point, 
the doubling times slowly increased followed by a sudden 
leap around passage 40 for HDF cells and passage 11 for 
HPEpiC cells. This event coincided with the majority 
of cells becoming senescent, and a residual minimal 
growth for a few cells within the propagated populations. 
The RS-cells showed a significant level of global 
hypomethylation, and enlarged nuclear morphology, and 
these changes could be detected by light microscopy and 
more thoroughly quantified with 3D-qDMI. To better 
understand topological changes in DNA methylation 
and accompanying chromatin reorganization, 3D-qDMI 
considers a variety of analytical parameters. Although 
these parameters are all related to the codistribution of 
MeC/DAPI signals found in the same image, they do 
not behave in exactly the same fashion. For example, in 
HDF cells, meth begins to decline significantly around 
passage 25, but this behavior is not seen by change in 
LIM%, although these two values are correlated. These 
differences can be used in creating a unique picture of 
the analyzed cells. When cells became essentially post-
mitotic, reorganization of genomic DNA was observed. 
This is evidenced by an increase in LID% and the 
correlated decrease in cond. However, at the same time, 
we observed a gain in the nuclear ROI volume. As, the 
total nuclear content of the cells did not change over time, 
a reduction in gDNA condensation could be associated 
with two phenomena: (i) global hypomethylation, and (ii) 
an increase in nuclear space. In comparison, the growth 
characteristics of cancer cells remained fairly consistent 
throughout the culture. A fraction of cells were fixed 
for immunofluorescence assay and subsequent image 
analysis; for each cancer cell type, at least five different 
cell populations (collected from different time points) 
were analyzed for this comprehensive study. 3D-qDMI 
parameters revealed that all cells showed reduced MeC 
pixel intensities, compared with primary cells. Global 
DNA hypomethylation in cancer cells is a well-known 
phenomenon, and is in stark contrast to that of normally 
proliferating primary cells at early passages, whereas 
both types of cells exhibited quite similar spatial intensity 
distributions in the DAPI channel.

Prior to any regression analysis, it was necessary to 
set a baseline value for non-proliferating cells. For this 
purpose, we decided to model this behavior with senescent 
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cells. Representative for cancer cells, DU145 cells were 
treated with H2O2 to pressure cells into stress-induced 
senescence. Regarding the analytical parameters used in 
this study, values for cond and meth decreased, suggesting 
that SIS exerts a dual effect: DNA demethylation and 
concurrent chromatin decondensation. In parallel, HDF 
cells were also treated with H2O2 to observe if SIS yields 
values different from RS cells. However, no difference 
could be observed between the two types of senescent cells 
by 3D-qDMI. This observation leads to the conclusion 
that: untreated cancer cells, which generally exhibited 
lower degrees of meth/cond concordant with higher values 
for LIM/LID than early passage primary cells, seem to 
take an intermediate level between normally proliferating 
and senescent primary cells (Figure 7). In other words, 
the stage of senescence is correlated with values of the 
TVA-derived chromatin features that are below the level 
of cancer cells. However, a decrease in global DNA 
methylation and an increase of DNA decondensation both 
have causal associations with genomic instability, and the 
degree of both phenomena has so far been correlated with 
the degree of malignancy. Thus, the data suggests that by 
pushing the global level of the two cell properties below 
a certain level, the cells independent of their proliferative 
capacity and genomic make-up, could be driven into 
senescence. It would be interesting to identify the 
underlying DNA sequences and their genomic localization 
that match or even contribute to these particular cell 
behavior characteristics. This would provide insight as 
to whether there is a specific order of demethylation and 
structural changes taking place on the genome when the 
cells are driven towards senescence, and whether there are 
even differences if this process occurs gradually or more 
forcefully, also depending on the genomic and epigenomic 
make-up of the naïve cells.

Correlation analysis of voxel-based parameters to 
growth rates demonstrated distinct differences between 
primary and cancer cells. In primary cells, the parameters 
LID%, LIM%, cond, and meth showed high levels of 
correlativity to doubling times, whereas similar trends 
could not be found in cancer cells, even though the four 
cancer cell lines showed different doubling times that span 
a similar range observed with primary cells during in vitro 
aging. Statistical analysis with two-sample t-test revealed 
that these differences were significant (p < 0.01). Thus, it 
is conceivable that the relationship between growth rate 
and voxel-based parameters could be used to discriminate 
between normally growing cells, such as primary cells, and 
aggressively fast-growing cells, such as cancer cells. For 
application in cancer diagnostics, ideally, any phenotyping 
should be based only on image-intrinsic features, and not 
dependent on doubling times or other growth-related 
statistics, which constitute a priori knowledge that would 
not be available in fixed biopsy sections. Nevertheless, this 
type of approach could become useful in live-cell assays, 
which allow for monitoring of cells such as in pre-clinical 

drug screening and personalized treatment development 
with cultured patient cells; especially in the development 
of epigenetic drugs that aim at remodeling cells and their 
growth characteristics. 

In conclusion, this study verifies the capability of 
3D-qDMI to map and quantitate dynamic changes in 
DNA methylation patterns and associated chromatin 
organization. Using this cell-by-cell imaging-based 
assay together with novel informatics tools we were able 
to make two key observations. 1) We could reconcile, 
a gradual increase in global hypomethylation and 
decondensation of genomic DNA for primary cells during 
aging in culture, confirming previous reports based on 
molecular assays [29–34]. In comparison, cancer cells 
of various origins, although having different doubling 
times did not display any differences in the two nuclear 
phenomena, and revealed constant proliferation rates over 
the entire culturing time. The results are in agreement with 
previous documentations [49,54,99]. 2) Cells, independent 
from their class and original growth capacity, converge 
to the highest level of global DNA hypomethylation and 
decondensation when reaching senescence. This fact 
concurs with significant changes to higher-order genome 
organization in our study, as previously reported in 
conjunction with age-related DNA damage [100]. Recent 
evidences suggest that these alterations of the chromatin 
structure is caused by the relocation of chromatin 
modifiers such as histone deacetylase SIRT1 [101] and the 
nucleosome remodeling and histone deacetylase (NuRD) 
complex in mammals [102] and from repetitive DNA in 
constitutive heterochromatin as a result of DNA damage 
due to an impaired DNA repair machinery. Based on the 
abovementioned differences, we were able to determine a 
correlation between the reciprocal analytical parameters 
LIM%/LID% and meth/cond and the proliferative 
capacity of cells. As both, aging and transforming cells 
exhibit overlapping changes in their methylation profiles, 
the relocation of epigenetic machinery from its normal 
distribution in the genome could be a link between 
heterochromatin demethylation and the hypermethylation 
of cancer-related genes, leading to coexistence of the 
two aberrations in aging and cancer cells as discussed 
by Teschendorff et al. in [103]. Therefore, it is becoming 
increasingly obvious that cell growth behavior is tightly 
related to the interplay between the various epigenetic 
mechanisms and spatial genome organization. Combined 
imaging- and sequencing-based methylation structure 
analyses with recently available technologies [104–107] 
could unravel the differential methylation patterns and 
related genome supraorganization in aging cells and 
improve our understanding of how these signatures 
are distinct in cellular fate: namely between growth 
deceleration towards senescence and transformation into 
aggressively proliferating cancer cells, with implications 
in drug-based therapy. 
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MATERIALS AND METHODS

Cell culture

Six types of human cells were used in this study: 
dermal fibroblasts (HDF), and prostate epithelial cells 
(HPEpiC) as primary cells (both ScienCell, Carlsbad, 
CA), the androgen-sensitive human prostate cancer cell 
line LNCaP and the androgen-insensitive prostate cancer 
cell DU145, as well as the breast cancer cell line MDA-
MB231 and MDA-MB435 of controversial origin [108] 
(all ATCC, Manassas, VA). Cells were cultured at 37°C 
and 5% CO2 following standard culture procedures. 
HPEpiCs were grown in Prostate Epithelial Cell Basal 
Medium (ScienCell) supplemented with Prostate 
Epithelial Cell Growth Kit (ScienCell). LNCaP cells were 
grown in RPMI 1640 medium (Mediatech, Manassas, VA, 
USA) supplemented with 10% fetal bovine serum (FBS) 
(Mediatech), 1% Penicillin-Streptomycin (Mediatech), 
and 2.5 µg/mL Fungizone (Life Technologies, Carlsbad, 
CA). All other cells (HDF, DU145, MDA-MB231, and 
MDA-MB435) were grown in Dulbecco’s Modification 
of Eagle’s Medium (DMEM) (Mediatech) supplemented 
with 10% FBS, 1% Penicillin-Streptomycin, and 2.5 µg/
mL Fungizone. Primary cells were grown until their RS 
was reached. Cancer cells were grown for 8–10 passages, 
so that at least 5 distinct samples could be generated. All 
cells were passaged at 75–80% confluency with 0.05% 
trypsin-EDTA (Mediatech) to maintain uniform culturing 
conditions. Typically, during this study, cells were 
usually passaged every 4-5 days. If cells were at reduced 
proliferation levels, as in those cells near RS, and did not 
reach the aforementioned confluence levels for passaging, 
culture medium was changed once a week. Cells were 
regularly monitored for both phenotype and cell counts; 
phenotype was evaluated by light microscopy and cell 
counting was performed at time of each passage with a 
hemocytometer, and Trypan blue staining (Invitrogen) was 
used to exclude dead cells from propagation statistics.

Stress-induced premature senescence

Stress-induced premature senescence was induced in 
HDF and DU145 cells via application of H2O2 following 
previously published protocols [46,47, 70]. HDF cells 
used for SIS study were at passage 20. Prior to application 
of H2O2, cells were grown to near-confluency (~100%). 
For cell counting purposes, a fraction of these cells was 
seeded in 6-well culture plates at 8·105 cells/ml, 24 hours 
before treatment with H2O2. SIS cells were studied at three 
different conditions: (i) control group (no H2O2); (ii) 200 
µM H2O2, previously deemed as the appropriate level for 
induction of senescence [109]; and (iii) 500 µM H2O2, a 
lethal dose of peroxide. For each condition, confluent cells 

were placed in a medium containing DMEM supplemented 
with 1% FBS and the appropriate concentration of 
HPLC-grade H2O2 solution (Sigma, St. Louis, MO) for 
2 hours at 37°C and 5% CO2. After peroxide treatment, 
cells grown in tissue culture flasks were detached by 
treatment with 0.05% trypsin-EDTA, seeded onto glass 
coverslips, and allowed to recover for 24 hours in regular 
culturing medium (DMEM supplemented with 10% 
FBS). Subsequently, cells were washed with phosphate-
buffered saline (PBS) and fixed for immunofluorescence 
assay. Analogously, for SIS cells in 6-well culture plates, 
cells were allowed to recover for up to 7 days in regular 
medium. Cells in the control group and the two H2O2-
treated groups were counted at three time points: (i) 
immediately after peroxide treatment, (ii) at 24 hours post 
treatment, and (iii) one week after senescence induction. 
Dead cells were excluded from cell counts with Trypan 
blue exclusion assay. Senescence in these cells were 
verified by light-microscopic observation of morphology, 
as well as staining for β-galactosidase expression with the 
Senescence β-Galactosidase Staining Kit (Cell Signaling 
Technology, Danvers, MA), as previously published [110] 
and according to vendor protocol.

Cell cycle synchronization and cell viability

HDF and DU145 cells were seeded onto glass 
coverslips at the concentration of 105 cells/mL for 
immunocytochemical staining and subsequent imaging 
via confocal microscopy. For FACS, a parallel set of 
cultures at the same concentration was maintained in 
TC-grade culture flasks, and processed as previously 
described [19]. Enrichment efficiency was evaluated by 
flow cytometry using a Becton-Dickinson FACScan (BD 
Biosciences). Excitation was achieved with a 488 nm 
laser line, and emission was collected at 617 nm. FACS 
data was then analyzed using ModFit LT (Verity Software 
House, Topsham, ME, USA). Separately, cell viability 
was tested, as the synchronization steps involved serum 
starvation. The two populations were tested for apoptosis 
using the Annexin V-FITC Apoptosis Detection Kit I 
(BD Biosciences) and flow cytometry. The results were 
analyzed by FACSDiva (BD Biosciences).

Immunofluorescence staining

At set time points, a fraction of cultured cells was 
seeded onto glass coverslips and allowed to attach for 24 
hours. Cells are then fixed in 4% paraformaldehyde/PBS, 
and sequentially stained with a mouse monoclonal anti-
MeC primary antibody (clone 33D3, GeneTex, Irvine, 
CA), and an Alexa 488-conjugated goat anti-mouse 
polyclonal secondary antibody (Life Technologies). 
For some samples, cells were simultaneously stained 
with an additional set of a rabbit polyclonal anti-



Oncotarget 2013; 4: 474-493489www.impactjournals.com/oncotarget

Ki-67 primary antibody (ab833, Abcam, Cambridge, 
MA) and subsequently Alexa 568-conjugated and a 
goat anti-rabbit polyclonal IgG (Invitrogen) to verify 
proliferation [111–113]. Although signals for Ki-67 can 
be quantified using methods described in the following 
subsection, for the purposes of this research, Ki-67 
was only used as a qualitative proliferation marker. 
Following immunocytochemical staining, specimens were 
counterstained with DAPI (Invitrogen) for delineation of 
nuclear gDNA, as previously described [19,23].

Image acquisition

Stained samples were imaged using an inverted 
confocal laser-scanning microscope (Leica Microsystems 
TCS SP5X Supercontinuum, Mannheim, Germany), 
equipped with a white-light laser for continuous excitation 
between 470 to 670 nm, and a 405 nm diode laser line 
for excitation of DAPI fluorescence. Images are acquired 
as a 3-D image (x, y, z) by collecting serial 2-D optical 
sections (x, y) at 250 nm increments (z) using a Plan-Apo 
63X 1.3 glycerol immersion lens (pinhole size was 1.0 
Airy unit). Each optical section is acquired at a resolution 
of 2048 x 2048 pixels, with a respective voxel size of 
120 nm x 120 nm x 250 nm (x, y, and z axes), and at a 
dynamic range of 12 bits per pixel. As such, the field of 
view in each section corresponded to a 246 µm by 246 µm 
square. As the cell monolayer area was much larger than 
the field of view, the entire IF sample was tiled and serial 
sections were generated at each position represented by 
tiling. To avoid possible bleed-through of signals (cross-
talk effect) between the channels, images for each channel 
were acquired sequentially. To improve signal-to-noise 
ratio, each recorded image was averaged four times. Raw 
images were obtained as Leica Image Format (lif) and 
offline-converted to a series of TIFFs for downstream 
image analysis.

Computational image analysis

Acquired images were analyzed using dedicated 
software developed with Matlab (MathWorks, Natick, 
MA, USA). Parts of this analytical tool were previously 
reported with more detailed explanation of methods used 
for 3-D image segmentation [21,22, 114]. Briefly, acquired 
3-D images were segmented and binarized by a threshold 
intensity that was determined from image-inherent 
features, to obtain seeds, which were used to define 
distinct 3-D nuclear ROIs via a modified version of seeded 
watershed algorithm [115] extended to three dimensions. 
Once nuclear ROIs are clearly defined, nuclear similarity 
and population homogeneity is assessed using Kullback-
Leibler (K-L) divergence [116] for each cell in a given 
population through the extraction of colocalized MeC/
DAPI patterns, allowing for identification and elimination 

(if necessary) of outlier cells in a given population. For 
all analyses used in this study, we have eliminated all 
nuclear ROIs deemed “dissimilar” (i.e., nuclear ROI 
with K-L divergence value greater than 4.5) according to 
definitions provided in [21]. Within defined nuclear ROIs, 
the chromatin condensation level and associated spatial 
distribution of MeC residues are analyzed by dividing a 
given ROI into cubes of constant voxel sizes (500 nm per 
side), which was decided by the physical limitations of the 
imaging system, namely due to the excitation wavelengths 
of fluorophores and the objective lens used for confocal 
microscopy. The methodology and justification for 
dividing nuclear ROI into these voxels are explained in 
the Supplementary Materials (File 4).  The distribution and 
location of low- and high-intensity pixels are analyzed for 
each voxel. These results are later combined for further 
analyses by comparing the condensation patterns for DAPI 
signals with associated changes of methylation patterns 
in the MeC channel. Finally, three other types of data, 
which were extracted from these images, were considered 
in the analyses presented in this study. First, the nuclear 
ROI volume is defined as the number of pixels within 
a given ROI. Since all imaging used in this study was 
done at identical image settings, each pixel represents a 
physical space of 120 nm (x) x 120 nm (y) x 250 nm (z). 
For convenience, all nuclear ROI volumes presented in 
here are defined as numbers of individual pixels. Second, 
for both DAPI and MeC channels, the mean of pixel 
intensities within a defined nuclear ROI was measured. 
Third, based upon a threshold derived from image-
inherent features, the percentage of low-intensity pixels 
in either DAPI (LID%) or MeC (LIM%) channel was 
measured and mapped in each nuclear ROI. More details 
on how a threshold intensity level is determined for each 
image is provided in the Supplementary Materials (File 6).

Statistical analysis

Analysis of data obtained with 3D-qDMI was 
performed with either Matlab or Origin (OriginLab Corp., 
Northampton, MA). Pearson’s correlation coefficients 
were calculated to determine the correlativity of 
parametric values to growth rates, while two-way ANOVA 
tests were applied for determining the best fitting model 
from primary cell data.

Supplementary materials

The following additional files are available 
Supplementary Materials. File 1 shows data for 
verification of cell cycle synchrony with PI staining and 
viability test with an apoptosis screening kit. File 2 lists 
the values for selected 3D-qDMI parameters time point 
sampled during the culture of primary cells. File 3 shows 
the cell survival rates after induction of stress-induced 
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senescence in HDF and DU145 cells after exposure to 
H2O2 at varying concentrations. File 4 describes the 
resolution of 3D-qDMI and how this information was 
exploited to determine the minimum analysis voxel cube. 
File 5 explains in detail the topological voxel analysis 
parameters introduced in this study. File 6 describes how 
thresholding intensity was obtained from image-inherent 
cues and how this process was applied to all analyses 
detailed in this report.
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