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ABSTRACT
Deregulated inflammation is considered to be one of the hallmarks of cancer 

initiation and development regulation. Emerging evidence indicates that the 
inflammasome plays a central role in regulating immune cells and cytokines 
related to cancer. The inflammasome is a multimeric complex consisting of NOD-
like receptors (NLRs) and responds to a variety of endogenous (damage-associated 
molecular patterns) and exogenous (pathogen-associated molecular patterns) 
stimuli. Several lines of evidence suggests that in cancer the inflammasome is 
positively associated with characteristics such as elevated levels of IL-1β and IL-
18, activation of NF-κB signaling, enhanced mitochondrial oxidative stress, and 
activation of autophagic process. A number of NLRs, such as NLRP3 and NLRC4 
are also highlighted in carcinogenesis and closely correlate to chemoresponse and 
prognosis. Although conflicting evidence suggested the duplex role of inflammasome 
in cancer development, the phenomenon might be attributed to NLRs difference, 
cell and tissue type, cancer stage, and specific experimental conditions. Given the 
promising role of inflammasome in mediating cancer development, precise elucidation 
of its signaling network and pathological significance may lead to novel therapeutic 
options for malignancy therapy and prevention. 

INTRODUCTION

Inflammation is recognized as a major hallmark of 
cancer. As early as 1863, Rudolph Virchow speculated 
on a link between cancer and inflammation based on 
the observation of leukocyte infiltration in human breast 
cancer [1, 2]. It is generally accepted that up to 25% of 
malignancies are related to chronic inflammation, chronic 

infection, or both [3-5]. Numerous studies provide 
evidence that chronic inflammation facilitates resistance 
to growth inhibition, independent neoangiogenesis, 
apoptotic evasion, malignant transformation, and 
metastatic potential obtainment [6]. During tumor 
initiation, oxidative molecules including reactive oxygen 
species and reactive nitrogen species induced by tumor 
infiltrating immune cells induce epigenetic alterations in 
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oncogenes or tumor suppressive genes, thereby promoting 
carcinogenesis[7-9]. On the other hand, during tumor 
progression and metastasis, cytokines or chemokines 
secreted by immune cells lead to an increase in cell 
survival, motility and invasiveness, such as epithelial-
mesenchymal transition (EMT) [10-12]. Elucidating the 
molecular network between inflammation and cancer 
risk is of great significance for cancer prevention and 
treatment. 

Once invaded by harmful microbes or foreign 
particles, germline-encoded pattern recognition receptors 
(PRRs) constitute the first line of defense. The PRR 
superfamily includes members of the Toll-like receptors 
(TLR), nucleotide-binding and oligomerization domain 
containing receptors (NOD-like receptors, NLRs), 
retinoic acid-inducible gene (RIG) I-like RNA helicases, 
C-type lectins, and AIMs like receptors (ALR) [13-
15]. The molecular targets of PRRs usually include 
pathogen associated molecular patterns (PAMPs) and 
danger associated molecular patterns (DAMPs). Binding 
of PAMPs or DAMPs to these receptors leads to an 
initiation of the host’s immune response by activation of 
inflammatory cells and a number of transcription factors 
such as NF-κB, STAT, and FOXO [16, 17]. The multimeric 
inflammasome complex senses all these processes.

Jurg Tschopp was the first to identify the 
inflammasome in 2002 [18]. Its structure consists of an 
assembly, either of the NLR proteins, NLRP1, NLRP3, 
NLRC4, NLRP6, and NAIP5 or the DNA-sensing 
complex of AIM2, a member of the interferon-inducible 
HIN-200 protein family [19]. Activation of inflammasome 
leads to NLR oligomerization and subsequent interaction 
with the adaptor protein ASC and the CARD domain of 
caspase-1. Caspase-1 in turn, regulates the maturation 
of proinflammatory cytokines interleukin-1β (IL-1β) 
and IL-18 or the rapid inflammatory form of cell death 
called pyroptosis [20-22]. Notably, the level of IL-1β and 
IL-18 were found to be significantly elevated in various 
types of malignancies. These cytokines can facilitate 
pro-carcinogenic activity by triggering the secretion of 
VEGF, FGF2 and STAT3, and subsequently support 
cancer survival and distant metastasis [23-25]. Therefore, 
elucidating the molecular network of inflammasomes has 
become a novel strategy for cancer prevention research.

INFLAMMASOME CASCADE 
SIGNALING 

Compared to TLRs that are usually located on 
the membrane, NLRs are intracellular molecules and 
classified into 22 and 34 isoforms in human and mouse 
genome, respectively. The NLRs are characterized by 
a tripartite structure, consisting of a carboxy-terminal 
leucine-rich repeat domain, a central nucleotide-binding 
oligomerization domain, and a variable N-terminal 
protein-protein interaction domain, which can be either 

a Pyrin domain (PYD), a caspase recruitment and 
activation domain (CARD), or a baculovirus inhibitor 
of apoptosis repeat domain (BIR) (Figure 1) [26, 27]. 
The common NLRs and their functions and ligands 
are summarized in Table 1. The leucine-rich repeat 
domain appears to act as a ligand sensing component of 
NLRs; however, the molecular basis of ligand-binding 
mechanisms of NLRs is poorly understood [28]. The 
nucleotide-binding oligomerization domain facilitates 
recruitment of pro-caspase-1 via interactions between 
pro-caspase-1 and adaptor protein ASC, which take place 
in the CARD domain [29]. The PYD domain of ASC 
interacts with NLRs and its CARD domain binds directly 
with pro-caspase-1. Once pro-caspase-1 is recruited to 
the inflammasome, it will be cleaved into a p35 and p10 
fragments in a proximity-induced multimerization manner. 
The p35 fragment will subsequently be processed into the 
CARD and a p20 subunit. The p10 fragment together with 
2 molecules of p20 will finally form an active caspase-1 
enzyme, which converts pro- IL-1βand pro-IL-18 into 
their active forms (Figure 2) [30, 31]. Furthermore, 
pyroptosis could also be induced following caspase-1 
activation and its activation is considered to be a critical 
mechanism fighting against Gram-negative and Gram-
positive bacteria [32]. 

Alternatively, inflammasome could also be 
activated through a non-canonical pathway, which 
involves caspase-11 or caspase-8. Caspase-11 was found 
to be necessary for the maturation of IL-1β and IL-18 
in enteric bacteria such as Escherichia coli, Citrobacter 
rodentium, and Vibrio cholera. After recruitment to 
the inflammasome, pro-caspase-11 is cleaved into the 
p26 subunit and subsequently interacts with caspase-1 
[33]. Studies show that caspase-8 was necessary for the 
inflammasome activation in LPS-primed macrophages 
and dendritic cells [34]; however, the detailed interaction 
mode and mechanisms are poorly understood. 

REGULATION OF INFLAMMASOME 
ACTIVATION

Given that IL-1β, IL-18 and pyroptotic death 
response have the potential to damage the host, tight 
control of inflammasome activation is of great significance 
for the prevention of disease progression. According to 
the 2-signal model of inflammasome induction, NF-κB 
is thought to serve as the first signal that primes NLR 
and pro-IL-1β expression [17, 22, 35]. Constitutive 
activation of NF-κB is shown in a wide variety of tumor 
types, such as lymphoma, liver cancer, lung cancer, 
breast cancer, etc [36, 37]. Besides, NF-κB is activated 
in response to carcinogenic processes such as tobacco, 
stress, obesity, alcohol, infectious agents, irradiation, etc 
[36, 37]. Furthermore, NF-κB controls the expression of 
the genes linked with proliferation, invasion, angiogenesis, 
and metastasis of cancer [38]. Besides, NF-κB activation 
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further upregulates a series of inflammatory factors, such 
as TNFα, IL-6, IL-1 and IL-8, which constitute a positive 
feedback loop to induce cellular and DNA damage and 
to promote cell proliferation and transformation [36]. A 
previous study also demonstrated that NLRP3 promoter 
contains putative NF-κB binding site and NF-κB inhibition 
resulted in a significant reduction of NLRP3 expression 
[39]. Meanwhile, mounting evidence suggested that 
NLRP3 inflammasome formation is positively associated 
with NF-κB activity following drug treatment such as 
LPS, CPT-11, FGF-21, etc [40-42]. All these findings 
implied that the pro-tumorigenic ability of NF-κB might 
be attributed to inflammasome activation.

Similar to NF-κB, type I interferon is also important 
for inflammasome activation. AIM2 inflammasome 
activation following F.tularensis infection requires type 
I interferon stimuli, whereas macrophages deficient in 
the type I interferon secretion, result in reduced response 

of AIM2 inflammasome [43-45]. Although the precise 
mechanism of interferon signaling remains unclear, it 
has been proposed that type I interferon activates AIM2 
inflammasome by generating cytosolic DNA from 
F.tularensis [44, 45]. However, type I interferon is also 
reported to inhibit inflammasome activation by two distinct 
mechanisms including the alteration of intracellular pro-
IL-1β concentration and inhibiting caspase-1 activation 
[46]. The reduction of pro-IL-1β is determined by the 
capacity of type I interferon to induce the production of 
the anti-inflammatory cytokine, IL-10. IL-10 activation by 
STAT3 signaling pathway can inhibit the synthesis of pro-
IL-1β and pro-IL-1α [47]. In addition, type I interferon 
is capable of suppressing caspase-1 activity by activation 
of the transcription factor, STAT1, subsequently inhibiting 
NLRP3 and NLRP1 inflammasome (Figure 3) [48]. Both 
in vitro and in vivo experiments further confirmed that 
IFN-β could suppress NLRP3 inflammasome, but the 

Table 1: Inflammasome and non-inflammasome forming NLRs, functions and their ligands
NLRs NLR family functions Ligands

NLRP3 NLRP
Interacts with caspase-1 
and ASC; activates NF-κB 
signaling and IL-1β /IL-18 
release

Muramyl dipeptide, LPS, Bacterial 
and viral DNA/RNA, silica, amyloid-β 
fibrils, extracellular ATP

NLRC4 LRC
Interacts with caspase-1, ASC 
and NAIP; elevates NF-κB 
signaling and IL-1β /IL-18 
release

Flagellin from Salmonella, Legionella, 
Listeria, Pseudomonas

NAIP NLRB Formation of NAIP/NLRC4 
inflammasome complex Flagellin from Legionella

NLRP6 NLRP

Inflammasome complex 
formation with ASC and 
caspase-1; activates NF-κB 
signaling and IL-1β /IL-18 
release

Ligands unknown

NLRP1 NLRP
Inflammasome complex 
formation with ASC and 
caspase-1

Muramyl dipeptide, Toxoplasma gondii 
and Bacillus anthracis lethal toxin

NLRP12 NLRP
Inhibits IRAK1, TRAF3 
and NIK, attenuates both 
canonical and non-canonical 
NF-κB signaling

Ligands unknown

NLRX1 NLRX
Inhibits TRAF6 and 
attenuates canonical NF-κB 
signaling

Viral RNA

NLRC3 NLRC
Inhibits TRAF6 and 
attenuates canonical NF-κB 
signaling

Ligands unknown

NOD1 NLRC Interacts with RIP2 and 
recruits RICK and CARD9

GM-tripeptide
γ-d-Glu-DAP(iEDAP)
d-lactyl-l-Ala-γ-Glu-meso-DAP-Gly 
(FK156)
heptanolyl-γ-Glu-meso-DAP-Ala

NOD2 NLRC
Recruits RIP2 and activates 
NF-κB and MAPK pathways; 
negatively regulated by 
CARD8

Muramyl dipeptide
MurNAc-l-Ala-g-d-Glu-l-Lys (M-TRlys)
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exact molecular mechanism that guides the preferential 
targeting of NLRP3 and NLRP1 inflammasome by type 
I interferon remains to be identified [49]. These data 
provide a duplex role of type I interferon in inflammasome 
modulation, which might be dependent on infected 
organisms or cell type and inflammation status. Besides 
the crosstalk between cytokines and inflammasomes, 
recent studies also suggest that the effector and memory 
T cells can block the activation of caspase-1 and IL-1β 
in macrophages and dendritic cells, mediated by CD40L, 
OX40L, and RANKL, which are all members of the TNF 
superfamily of ligands expressed on activated cells [50, 
51]. Interestingly, although it is recognized that the T 
cells only target NLRP1 and NLRP3 inflammasomes, the 
underlying molecular mechanisms of how TNF ligands 
mediate the inhibition of caspase-1-dependent production 
of IL-1β is unknown and needs further investigation.

Evolutionarily, autophagy is a cell-protective 
mechanism against harmful stress that facilitates 
catabolic processes and inhibits anabolic metabolism. 

Growing evidence indicates that autophagy is a critical 
process participating in cancer initiation and metastasis, 
growth, and drug resistance [52, 53]. Intriguingly, recent 
reports have also indicated that autophagy regulates 
various aspects of the immune response, such as 
antigen presentation, cell death, and cytokine secretion 
in immune cells [54]. In autophagy-deficient Atg16-

/- mice, it was observed that the levels of IL-1β and IL-
18 were significantly elevated following LPS treatment. 
However, the elevated IL-1β and IL-18 expression was 
not due to enhanced transcriptional activity, but instead 
was attributed to over-activation of caspase-1 [55]. 
Subsequent mechanistic studies demonstrated that the 
augmented caspase-1 activity might be due to the failure of 
autophagy-deficient cells to clear damaged mitochondrion 
[55]. When autophagy is inhibited, excessive reactive 
oxygen species (ROS) will accumulate in the damaged 
mitochondrion, resulting in the release of mitochondrion 
DNA into the cytoplasm that finally triggers activation 
of NLRP3 inflammasome (Figure 3) [56, 57]. However, 

Figure 1: Schematic representation of the basic structure of individual NLR domain. Human NLRs were classified into five 
categories including NLRA, NLRB, NLRC, NLRP and NLRX. All 22 human NLRs contain a central NACHT domain and a C-terminal 
ligand sensing domain LRR, with the exception of NLRP10. The N-terminal domain of each NLR is specific and responsible for ascribing 
different biofunctions. CARD: caspase association and recruitment domain; ATD: acidic transactivation domain; FIND: function to find 
domain; PYD: pyrin domain; BIR: Baculoviral inhibition of apoptosis protein repeat domain; LRR: leucine-rich repeats; MT: targets 
NLRX1 to the mitochondria but no sequence homology with tranditional mitochondrial targeting sequence has been reported. 
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detailed mechanisms accounting for how mitochondrial 
ROS or mitochondrial DNA activates inflammasome are 
still unclear. Meanwhile, an inflammasome-independent 
mechanism of autophagy-mediated regulation of IL-1β 
expression was recently identified. Autophagosome could 
degrade pro-IL-1β, thereby restraining the substrate for 
caspase-1 processing (Figure 3) [58, 59]. Alternatively, 
autophagy inhibition could also activate the transcription 
of pro-IL-1β in human peripheral blood mononuclear 

cells [59]. Recently, autophagy was reported to affect 
inflammasome activity by influencing IL-1β translocation 
from the endoplasmic reticulum and Golgi apparatus [60]. 
Lastly, autophagy machinery is believed to participate 
in clearing large inflammasome complexes from cells 
in order to prevent excessive cell damage by IL-1β and 
IL-18 [61]. Therefore, the autophagic process regulates 
inflammasome activation at several levels. 

Figure 2: Basic mechanisms of activation of the main NLRs inflammasome. The recognition of PAMPs and/or DAMPs leads 
to NOD domain oligomerization, which in turn facilitates recruitment of pro-caspase-1 via the CARD domain interactions between pro-
caspase-1 and adaptor protein ASC. Pro-caspase-1 will be then cleaved and converts pro- IL-1βand pro-IL-18 into their active forms to 
amplify the inflammatory response. On the other hand, caspase-1 can lead to cell pyropotosis with the consequence of membrane rupture 
and release of alarmins such as IL-1α and HMGB1. 
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ROLE OF NOD-LIKE RECEPTORS IN 
CANCER DEVELOPMENT

The abnormal activation of inflammasome is 
linked to various types of human disease, such as 
cryopyrinopathies, gout, asbestosis, silicosis, Alzheimer’s 
disease, and autoimmune diseases [62, 63]. To date, 
more than 70 inherited mutations have been identified 
associating with cryopyrinopathies occurrence, a large 
majority of which are situated within and around NLRP3 
NACHT domain [64, 65]. These mutations are therefore 

believed to induce conformational changes that render 
NLRP3 constitutively active, resulting in continuous 
caspase-1 activation and release of IL-1β and IL-18 [65]. 
Besides, decreased NLRP3 expression and reduced IL-
1β production have recently been linked with increased 
susceptibility to Crohn’s disease in humans [66, 67]. 
Moreover, inflammasome deregulation was also recorded 
to contribute to the pathogenesis of experimental 
autoimmune encephalomyelitis [68]. Significantly, 
accumulating evidence also suggested that NLRs are 
closely correlated to cancer occurrence, but conflicting 

Figure 3: Main signaling involved in the regulation of inflammasome activation. Type I interferon signaling triggers the 
production of IL-10, which in turn acts on cells in an autocrine or paracrine manner to suppress the intracellular concentration of pro-IL-
1β via the stat3 pathway. ROS burst from damaged mitochondrion could drive activation of inflammasome, but autophagy could block 
the accelerated IL-1β/IL-18 production via degrading the damaged mitochondrion and sequestering intracellular stores of pro-IL-1β and 
IL-18. Meanwhile, effector and memory T cells could also suppress inflammasome activation via a cognate mechanism mediated by TNF 
superfamily and their receptors.
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evidence also exists, which might be due to the dual 
functions of inflammasomes in promoting carcinogenic 
inflammation or eliminating malignant cells via the 
pyrotosis death pathway. 

NLRP3 signaling and its duplex role 

NLRP3 is the most well-studied member of 
NLR family. It can be activated by a wide range of 
signals including infected pathogens, endogenous or 
environmental origins [69]. Based on current findings, 
3 distinct mechanisms have been proposed to account 
for NLRP3 activation, including potassium efflux, 
phagolysosomal destabilization and mitochondrial ROS 
burst. Various bacterial pathogens can secret pore-forming 
toxins (e.g., nigericin from Streptomyces hygroscopicus, 

listeriolysin O from Listeria monocytogenes, pneumolysin 
from Streptococcus pneumoniiae, alpha-hemolysin from 
Escherichia coli) and subsequently activate the NLRP3 
inflammasome by increasing potassium efflux [70-76]. 
In addition, bacterial and viral RNA is also reported to 
be an initial factor contributing to NLRP3 inflammasome 
assembly [77]. Moreover, extracellular ATP released from 
phagocytosed dying cells acts on purinergic receptor, 
P2X7 and induces pannexin-1 (PANX1) channels to 
promote potassium efflux and results in NLRP3 activation 
[78-80]. On the other hand, intracellular uptake of 
crystalline and particulate matters is also capable of 
causing lysosomal destabilization and release of cathepsin 
B, a sensor of NLRP3 [81-85]. Lysosome rupture-
induced NLRP3 activation was also observed in cathepsin 
B-deficient cells, a phenomenon that may be attributed to 
potassium efflux (Figure 4) [86].

Figure 4: Simplified mechanisms for NLRP3 inflammasome activation. Three distinct machineries have been proposed to 
account for NLRP3 activation, including K+ efflux, phagolysosomal destabilization and mitochondrial ROS burst. Extracellular ATP 
released from dying cells acts on purinergic receptor P2X7 and prompts pannexin-1 (PANX1) channels to enhance K+ efflux and result 
in NLRP3 activation. Meanwhile, PAMPs such as pore-forming toxins are also capable to facilitate K+ efflux and activate NLRP3 
inflammasome. Besides, K+ efflux could be activated by crystals or particular maters, which enter the cells via endocytosis and trigger 
NLRP3 inflammasome via cathepsin B following lysosome rupture. Finally, intracellular Ca2+ accumulation could result in mitochondrion 
damage and lead to ROS burst, which may activate the NLRP3 inflammasome either directly or by inducing K+ efflux. Following NLRP3 
activation, IL-1β and IL-18 will be greatly produced and results in inflammation or pyroptotic cell death.
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Notably, mitochondrial ROS generation is 
considered to be one of the most important mechanisms 
of NLRP3 activation. Pharmacological inhibition of 
mitochondrial ROS burst has been shown to prevent 
NLRP3-inflammasome formation [81, 82, 87]. Although 
the detailed molecular mechanisms of ROS-mediated 
NLRP3 activation remain largely unclear, calcium influx 
mediated by the transient receptor potential melastatin 
2 (TRPM2) has been suggested to be a possible reason 
[87]. Extracellular calcium has been shown to activate 
the calcium sensing receptor (CASR) and thus lead to the 
release of calcium stores from the endoplasmic reticulum 
(ER), eventually triggering the formation of NLRP3 
inflammasome (Figure 4) [88-90]. On the other hand, 
mitochondrial ROS burst is an upstream event leading to 
the loss of mitochondrial membrane potential, a pivotal 
event in inducing intrinsic apoptosis. Interestingly, 
overexpression of the anti-apoptotic protein, BCL2, was 
shown to limit the activation of NLRP3 inflammasome, 
indicating that apoptosis-regulated proteins might be 
closely correlated with NLRP3 activation [91, 92]. 
More recently, cIAP1, cIAP2, and XIAP have also been 
linked with inflammasome activation. cIAP1 and cIAP2 
were found to enhance inflammasome activation by 
ubiquitinating and stabilizing caspase-1 and consequently, 
promoting Il-1β release, whereas concurrent inhibition of 
cIAP1, cIAP2, and XIAP was shown to limit caspase-1 
activation [93-95]. Overall, these studies place the 
mitochondria as a potential player for inflammasome 
activation. However, the precise role of mitochondria 
in mediating NLRP3 inflammasome formation and 
subsequent promotion of carcinogenesis awaits 
clarification. 

With regards to pro-tumorigenic ability, NLRP3 
polymorphism is shown to be associated with melanoma 
susceptibility, colorectal cancer prognosis, and overall 
survival of myeloma [96]. In a Swedish case-control 
study, NLRP3 variant (rs35829419) was significantly 
more common in male patients than in controls (OR, 
2.22; CI, 1.27-3.86) and showed strong association with 
nodular melanoma (OR, 2.89; CI: 1.33-6.30) [97]. It has 
been suggested that NLRP3 activation could suppress 
NK and T cell-mediated anti-tumor actions in a sarcoma 
mouse model and metastatic melanoma, whereas the 
population of myeloid-derived suppressor cells and Tregs 
were increased [98]. Consistently, NLRP3 silencing 
resulted in a 5-fold reduction in the number of tumor-
associated myeloid-derived suppressor cells found in host 
mice, and NLRP3-/- MDSCs were less efficient to reach 
the tumor site, demonstrating the critical role of NLRP3 
in preventing cancer occurrence by modulating host 
immunity [99]. Furthermore, it was found that NLRP3-
deficient mice generated less pulmonary metastasis in 
an orthotopic transplant mouse model of mammary 
adenocarcinoma [100]. In addition, chemotherapeutic 
agents, gemcitabine and 5-fluorouracil were shown to 

activate NLRP3-medaited inflammasome formation 
in myeloid-derived suppressor cells, leading to IL-1β 
production that is capable of inducing IL-17 secretion 
from CD4+ T cells and blunting the anticancer efficacy of 
chemotherapeutic drugs [101]. Accordingly, gemcitabine 
and 5-fluorouracil exert increased antitumor effects when 
tumors were established in NLRP3-/- or Caspase-1-/- 
mice, and NLRP3 activation by chemotherapeutic drugs 
is considered to be a positive regulator to promote 
cancer growth [101]. All these findings suggest the pro-
tumorigenic role of NLRP3 in cancer development. 

 Although several lines of evidence have indicated 
the pro-carcinogenic activities of NLRP3, its role in cancer 
development remains controversial. NLRP3-/- mice were 
shown to be more susceptible to cancer and the number 
of colon polyps in the AOM-DSS mouse model and the 
accelerated tumor growth in the carcinogenesis model 
was accompanied with drastically low levels of colonic 
IL-18, suggesting that NLRP3 may play a protective role 
against neoplasia formation and IL-18 might be closely 
associated with colon cancer initiation [102, 103]. Of note, 
IL-18 knockout mice generated more tumors than controls 
after administering AOM-DSS (azoxymethane- dextran 
sodium sulfate), whereas injection of recombinant IL-18 
successfully restrained disease progression, which might 
be associated with MyD88-related pathway [104]. Similar 
anti-carcinogenic role of NLRP3 was also observed in 
hepatocellular carcinoma. Both mRNA and protein levels 
of NLRP3 were significantly down-regulated in the hepatic 
parenchymal cells derived from liver cancer biopsies 
compared to non-cancerous samples [105]. In this context, 
it is logical to deduce that NLRP3 may play a duplex role 
in controlling cancer growth. Thus, on one hand, NLRP3 
could promote tumor cell survival through activation of 
NF-κB-stat1/3 pathway or by limiting cytotoxic immune 
cells infiltration, but on the other, it could suppress 
malignant progression by triggering mitochondrial 
apoptotic pathway or by enhancing immune-cytokine 
levels in the tumor microenvironment. In addition, the role 
of NLRP3 in cancer development might be tissue or cell 
dependent. For example, NLRP3 exhibits a protective role 
for colon cancer, but pro-carcinogenic effects for gastric 
and prostate malignancies [106]. Therefore, a much more 
comprehensive analysis of NLRP3 using conditional 
knockout models and pharmacological activators or 
inhibitors is needed to decode the precise effects of 
NLRP3 on cancer development in the future.

Other NLRs in carcinogenesis

Besides NLRP3, a number of NLRs have also been 
shown to be associated with cancer progression. NLRC4 
was identified as a downstream transcriptional target of 
p53, indicating the tumor suppressive role of NLRC4 
[107]. Mice lacking NLRC4 had significantly increased 
tumor numbers and burden compared to the wild-type 
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controls in the AOM-DSS colon cancer model, but no 
differences in inflammation severity were noted, implying 
that tumor regulation by NLRC4 might be mostly cell 
intrinsic and not through down-regulation of inflammation 
[108, 109]. Similar to NLRC4, both NLRP6 and NLRP12 
were also found to play a critical role in AOM-DSS 
tumorigenesis. A significant increase in tumor number 
and burden was observed in NLRP6-deficient mice 
compared to wild-type controls after chemical induction. 
But unlike NLRC4, NLRP6-mediated protection against 
tumor formation is attributed to hematopoietic cells rather 
than intestinal epithelial cells, because similar numbers 
of tumor were observed between NLRP6 deficient mice 
and irradiated wild-type mice that were transplanted 
with NLRP6 deficient bone marrow [110-112]. By 
contrast, NLRP6 deficient mice that received wild-type 
bone marrow transplant were shown to have reduced 
tumorigenic ability, similar to that of wild-type animals 
[111]. In addition, genetic profiling of tumors from wild-
type and NLRP6 deficient mice exhibited a significant 
increase in the number of genes in the Wnt and Notch 
signaling cascade from a set of 1,884 genes, supporting a 
novel role of NLRP6 in controlling intestinal proliferation 
[112]. Of note, proinflammatory cytokines such as TNFα 
and IL-6 were elevated in the tumor microenvironment, 
whereas the level of IL-18 was significantly reduced. 
Meanwhile, IL-18 silencing in NLRP6 deficient mice has 
been associated with increased colon cancer development, 
indicating the pivotal role of cytokines in mediating the 
anti-carcinogenic activities of NLRP6 [110]. Similar 
to NLRP6, NLRP12 was also considered to be a tumor 
suppressive molecule as shown in ex vivo and in vivo 
carcinogenic animal models. Mice lacking NLRP12 were 
found to be more susceptible to DSS-injury, accompanied 
by increased body weight loss, enhanced pathology scores 
coupled with severe inflammatory cell infiltration and high 
levels of cytokine production [113-115]. The AOM-DSS 
mouse model also revealed that NLRP12 deficient mice 
had accelerated colon tumor development and progression, 
which was demonstrated with over-activation of NF-κB 
signaling pathway and enhanced gene expression such 
as CXCL12 and CXCl13 [116, 117]. Taken together, 
the NLRP6/12-mediated protective mechanisms against 
tumorigenesis provide a complex network involving 
interactions between hematopoietic cells, cytokines, 
and epithelial cells and further show that experimental 
validation is needed to pinpoint the precise signaling 
transduction mode underlying their anti-carcinogenic 
effects. 

Double-edged swords of pyroptosis

Pyroptosis is a critical self-protection mechanism 
responding to pathogen invasion by inducing pro-
inflammatory cell death. Unlike apoptosis, pyroptosis is 
characterized by cytoplasmic swelling and early cellular 

membrane rupture, which happens following caspase 
activation, nuclear condensation and DNA fragmentation 
[118]. Although the precise mechanisms underlying 
pyroptosis induction still remains elusive, the products 
released from dead cells may limit malignant cell survival 
and proliferation by activating the innate immune 
response. Increasing evidence validates that dying tumor 
cells following chemotherapy might activate the NLRP3 
inflammasome of dendritic cells via P2X7 purinergic 
receptors, thus priming tumor-specific interferon-γ-
producing T lymphocytes to limit cancer growth [119]. 
Moreover, mice lacking P2X7 or NLRP3 failed to prime 
interferon-γ-producing CD8+ T cells after chemotherapy, 
and anthracycline-treated breast cancer patients with 
P2X7 mutation developed metastatic lesions more 
rapidly than normal individuals [100]. Notably, a novel 
therapeutic strategy is in development to foster dendritic 
cells-mediated anti-tumor immunity via acceleration of 
pyroptosis of cancer cells by oncolytic viruses [120]. 
However, several studies have also indicated that 
pyroptosis might contribute to tumorigenic ability after 
inflammasome activation [121, 122]. These conflicting 
findings may be attributed to differences in the redox 
status of model cells and specific molecules involved in 
the process. For example, the reduced form of HMGB1 
released from dying cells could trigger dendritic cells to 
induce anti-tumor immune response, while the oxidized 
form of HMGB1 would be unable to activate the immune 
response [123, 124]. In addition, the role of pyroptosis in 
cancer development might critically depend on the cell 
type. Pyroptosis of immune cells might bring harmful 
consequences to tumor immunoediting, while cancer cell 
pyroptosis would improve anti-cancer immunity. Overall, 
impaired pyroptosis has been considered to be a potential 
mechanism linking chronic inflammation to cancer 
initiation, and pyroptosis targeting is becoming a novel 
strategy to prevent cancer and improve cancer therapeutic 
efficacy.

CONCLUSIONS

Remarkable advancements in recent years have 
greatly increased our understanding of NLRs function and 
the associated inflammasome in host defense and disease 
pathogenesis. NLR containing inflammasomes are not only 
important for fighting against bacterial, fungi and viruses, 
but also appear to be a critical step in mediating cancer 
initiation and progression. Inflammasome activation would 
create a pro-inflammatory microenvironment for inducing 
malignant transformation, and suppress local immunity 
caused by NK or T cells. In addition, chemotherapeutic 
agents were found to activate inflammasome defense, 
which had positive feedback to support cancer growth. 
Notably, inflammasome-related autophagy is also believed 
to significantly contribute to cancer drug resistance and 
metastasis. All these findings greatly highlight the role 
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of inflammasome as a novel target to prevent and treat 
cancer. 

Despite mounting evidence listed above suggesting 
the potential of the inflammasome as a promising marker 
for cancer prevention, contrary data also exists to imply 
that inflammasome signaling could behave as a kind of 
anti-cancer mechanism. Mice lacking NLRP3 or NLRC4 
show higher susceptibility to colon cancer following 
AOM-DSS treatment, and aberrant inflammasome 
formation leads to inhibition of tumor suppressor genes 
such as p53 and over-activation of oncogenes such as Wnt. 
What’s more, inflammasome-mediated pyroptosis is also 
considered to play a critical role in recruiting dendritic 
cells to limit cancer growth. Based on the conflicting 
evidence, a number of questions remain unanswered. 
Whether or not inflammasome-related carcinogenesis 
is cell dependent is an important question. A second 
question is whether a specific NLR would exhibit 
different bioactivity correlating with a cancer stage. 
Meanwhile, there are 22 NLR members in humans and 
it is unknown how these NLR molecules are activated or 
how they interact with each other. The complex network 
is awaits elucidation. There is also a lot of interest to 
identify novel ligand-receptor binding molecules, novel 
signaling pathway and novel targets for cancer prevention 
or therapy. The inflammasome is becoming a significant 
research topic in tumor microenvironment field and there 
is every likelihood that it could be developed as important 
biomarker for cancer diagnosis or prognosis prediction. 
Meanwhile, drug discovery targeting inflammasome 
modulation is also expected to improve cancer therapeutic 
efficacy to successfully reduce cancer risk. Taken together 
and given the emerging role of inflammasome in cancer 
development, understanding its signaling network and 
pathological significance might bring novel strategies for 
malignancy therapy and prevention. 
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