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mTOR: An attractive therapeutic target for osteosarcoma?
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ABSTRACT
Osteosarcoma (OS) is a common primary malignant bone tumor with high 

morbidity and mortality in children and young adults. How to improve poor prognosis 
of OS due to resistance to chemotherapy remains a challenge. Recently, growing 
findings show activation of mammalian target of rapamycin (mTOR), is associated 
with OS cell growth, proliferation, metastasis. Targeting mTOR may be a promising 
therapeutic approach for treating OS. This review summarizes the roles of mTOR 
pathway in OS and present research status of mTOR inhibitors in the context of OS. 
In addition, we have attempted to discuss how to design a better treatment project 
for OS by combining mTOR inhibitor with other drugs.

INTRODUCTION

Osteosarcoma (OS) is the most common primary 
bone malignant neoplasm in children and young adults 
which is featured with high local aggressiveness and 
distant organic metastasize [1]. Despite great advances 
in treatments, comprising neoadjuvant chemotherapy 
and surgical technology, a notable number of relapse 
or metastasis still occur [2, 3]. The cure rate of OS is 
approximately 25 % when accompanied with metastasis 
at the time of diagnosis, which remains almost stagnant 
over the past 20 years [4, 5]. Thus, novel chemotherapy 
drugs are urgently needed.

Mammalian target of rapamycin (mTOR), a 
downstream mediator in the phosphatidylinositol 
3-kinase(PI3K) signaling pathway, is an essential serine/
threonine kinase [6]. It involves in regulating important 
cellular functions including survival, cell growth, 
proliferation, migration and angiogenesis [7, 8]. Recently, 
growing researches show aberrant activation of mTOR in 
many cancer including human osteosarcoma [9]. Notably, 
the inhibitors of mTOR can demonstrate anti-tumor 
effect in OS by inhibiting cell growth and proliferation, 
which raises great interesting in exploring available drug 
targeting mTOR to improve survival rate of OS [8].

In this review, the role of mTOR pathway 
and present inhibitors targeting on mTOR in OS are 
summarized. In addition, we also discuss the strategy 
reversing resistance to chemotherapeutics for OS patients. 

OVERVIEW OF THE MTOR PATHWAY

mTOR is a serine/threonine kinase, which acts as a 
central controller in regulating important cellular functions 
[6]. It exists in two multiprotein complexes, mTOR 
complex 1(mTORC1) and mTOR complex 2(mTORC2). 
mTORC1 consists of mTOR, regulatory associated protein 
of mTOR (Raptor), mLST8(mammalian lethal with 
SEC13 protein 8)/G-protein β-subunit like protein (GβL), 
RAS40 and Deptor [10]. While mTORC2 is composed 
of rapamycin-insensitive companion of mTOR (Rictor), 
mTOR, mLST8/GβL, proline-rich repeat protein-5 (PRR-
5)/protein observed with Rictor-1 (Protor-1), stress-
activated-protein-kinase-interacting protein 1 (Sin1), and 
Deptor [11]. Despite both mTORC1 and mTORC2 can be 
restrained by rapamycin, mTORC1 seem to be relatively 
sensitive to it [12]. 

The main upstream signals of mTORC1 are 
adenosine 5’-monophosphate (AMP)-activated protein 
kinase (AMPK) and PI3K pathway [13, 14]. PI3Ks 
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constitute a lipid kinase family. Once activated, its 
catalytic subunit activates AKT. Subsequently mTORC1 
is activated. Another upstream effector, AMPK, is a 
key energy sensor [15], which can regulate cellular 
metabolism. Activation of AMPK by nutrient deprivation 
promotes mTORC1 inactivation. The downstream 
mediators of mTORC1 include ribosomal S6 protein 
kinase 1 (S6K1) and eIF4E-binding protein 1 (4E-BP1), 
cyclin dependent kinases (CDKs) and the hypoxia-
inducible factor 1α (HIF1α), which promote the 
expression of a wide range of glycolytic genes [16]. Thus, 
in the nutrient rich environment, mTORC1 is stimulated 
and promotes protein synthesis, cellular growth as well as 
the inhibition of autophagy, a saving program to survive 
starvation [17]. 

Compared with mTORC1, the upstream pathways 
of mTORC2 are less known. PI3K is regarded as a direct 
upstream effector of mTORC2 [18], while AKT is the 

main target. Stimulation of AKT by mTORC2 activates 
mTORC1, thus forming a positive feedback to enhance the 
signal (Figure 1). Besides, mTORC2 is related to insulin 
sensitivity and cytoskeletal reorganization [19, 20]. 

ROLES OF THE MTOR PATHWAY IN OS

Promoting cellular growth and proliferation

Activation of mTOR pathway is a important 
signaling pathway stimulating cell growth and 
proliferation [17]. Aberrant activation of mTOR has 
been detected in OS [9]. Rapamycin is a common mTOR 
inhibitor. Treatment with rapamycin suppressing OS 
cell growth and proliferation has been well documented 
[21]. Moreover, Rapamycin can effectively inhibit 

Figure 1: Overview of mTOR signaling pathway. Activation of PI3K/AKT pathway can stimulate mTORC1, meanwhile 
mTORC1are negatively regulated by AMPK. Activation of mTORC1 upregulates CDK and phosphorylates S6K1 and 4EBP1, modulating 
cellular growth, autophagy, and apoptosis process. Additionally, PI3K is also the upstream controller of mTORC2, activation of which 
phosphorylates AKT, forming a positive feedback to enhance the signal. Moreover, activation of mTOR2 is involved in insulin sensitivity 
and cytoskeletal reorganization.
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osteosarcoma stem cells proliferation [22]. Additionally, 
some moleculars and drugs, such as lupeol, Oleanolic 
acid, metformin,p53, icariside II, capsaicin, phosphorus-
containing sirolimus, heat shock protein 90B1, inhibit OS 
cell growth and proliferation by targeting AMPK/mTOR 
and PI3K/AKT/mTOR signaling and down-regulating 
cyclin D1 and phosphorylation of S6K1 and 4EBP1, which 
are regarded as downstream target of mTORC1 [23-30]. 
Besides, overexpression of miR-101 can down-regulate 
the expression of mTOR, contributing to the inhibition of 
OS cell proliferation [31]. Moreover, activation of PI3K/
mTOR signaling by X-Box Binding Protein 1 correlates 
to Poor Prognosis [32]. Taken together, mTOR play a vital 
role in promoting growth and proliferation in OS.

Inducing cellular metastasis

Distant organic metastasize remains the predominant 
lethal for cancer patients. Thus, how to prevent metastas 

presents a great challenge. It has been proved that mTOR 
has potential function on facilitating metastasis. Notablely, 
rapamycin reduces tumor cell metastasis in a murine 
model of osteosarcoma via blocking the mTOR/S6K1/4E-
BP1 pathway [33, 34]. Metformin exerts markedly 
anti-metastatic potentials by downregulating matrix 
metalloproteinases, which have an ability of degrading 
extracellular matrix to facilitate tumor cell metastasis [25, 
35-36]. In addition, the histone deacetylase inhibitor and 
P53 can also downregulate mTOR to restrain metastasis 
[26, 37]. Another pathway by which activation of mTOR 
pathway promotes OS cell metastasis is angiogenesis. P53 
and phosphorus-containing sirolimus suppresses OS cell 
angiogenesis through inhibition of mTOR [26, 30]. Thus, 
inhibition of mTOR may be a novel effective candidate 
therapeutic strategy against OS cell metastasis. 

Table 1: Research status of mTOR in the context of OS
Publication Name Main Findings Ref

2005,2009 
2013,2015 Rapamycin Rapamycin can inhibit OS cell proliferation,metastasis, and induce 

autophagy.   
[22][33]
[34] [44]
[61]

2010 Everolimus Combination with ZOL(zoledronate, an anti-osteoporotic drug) augments the 
inhibition of Everolimus in cell proliferation. [65]

2011 Oleanolic acid (OA) OA exhibits potent anti-tumor activity against osteosarcoma cells [23]

2011 Cucurbitacin B Cucurbitacin B alone or in combination with methotrexate(MTX) exerts 
anti-tumor  effects on human OS [66]

2012 Ridaforolimus In Phase II study, ridaforolimus shows promising anti-proliferative activity 
against OS [62]

2013 Everolimus Sorafenib in combined with everolimus contributes to an increasing 
antitumor activity [67]

2014 NVP-BEZ235 NVP-BEZ235,a dual PI3K/mTOR inhibitor,shows promising antitumor 
activity in OS. [72]

2014 Temsirolimus Temsirolimus combined with cisplatin or bevacizumab exerts synergistic 
effects for treatment of OS. [68]

2014  PP242 Inhibition of mTORC2 effectively promotes cisplatin-induced apoptosis [60]

2014
Temsirolimus, 
LY294.002 and 
PP242

mTOR inhibitors can blunt the p53 response to nucleolar stress in OS. [79]

2015 Rapamycin JQ1 and rapamycin synergistically inhibite the growthl of OS cells in vitro 
and in vivo. [69]

2015 Temsirolimus In this phase II trial the combination of cixutumumab and temsirolimus does 
not show objective result. [78]

2015 Everolimus The combination of sorafenib and everolimusdoes not attain the prespecified 
target of 6 month PFS in a non-randomised phase 2 clinical trial [70]

2015 MLN0128 MLN0128 exerts anti-tumor activity in  in vitro and in vivo model of OS. [63]

2015 NVP-BEZ235 NVP-BEZ235 shows promising anti-tumor activity, which is enhanced by 
MEK/Erk inhibitors [73]

2015  INK-128 INK-128 exibit  potent anti-OS activity in vitro and in vivo. [64]

2016  Rapamycin The combination of rapamycin and an autophagy inhibitor exerts synergistic 
effects for treatment of OS by effectively promoting the apoptotic pathway. [71]
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Inhibition of apoptosis

Apoptosis is refered to a process of programmed 
cell death which occurs in multicellular organisms [38, 
39]. Chemotherapy kills cancer cell mainly by inducing 
apoptosis. Therefore, developing an effective proapoptotic 
drug seemed to be a good therapeutic candidate for OS. 
Interestingly, many findings demonstrate that inhibition of 
mTOR pathway can induce apoptosis of OS cell [26, 27, 
29, 31, 40-44]. At the same time, β-Elemene, isolated from 
herbs and plants, upregulates HIF-1αprotein via PI3K/
Akt/mTor signaling pathway, contributing to inhibition of 
apoptosis [45]. Moreover, overexpression of miR-101 can 
suppress the expression of mTOR, inducing the apoptosis 
of OS cell [31]. Therefore, drug suppressing mTOR 
pathway has pro-apoptotic effect, which may be a useful 
therapeutic option for OS.

Suppression of autophagy

Autophagy is a cellular physiological process which 
delivers cytoplasmic material to the lysosome to provide 
energy and nutrients [46, 47]. It occurs as a strategic 
survival mechanism that reuses energy and nutrients 
under special conditions [48, 49]. Thus, autophagy is 
regarded as an emergency pathway of protecting cells 
from adverse microenvironment. Surprisedly, autophagy 

is also detected in OS cell [50]. Inhibition of mTOR in 
OS cell leads to autophagy which has advantage effect on 
cell [51-52]. Meanwhile, inhibition of autophagy has a 
negative impact on osteosarcoma tumors [50]. Therefore, 
activation of mTOR induces autophagy, which is regared 
as a prosurvival response contributing to drug resistance. 
Moreover, treating with autophagy inhibitors may lead OS 
cell apotosis [53]. Nevertheless, activation of autophagy 
by rapamycin also leads to OS cell death. This mechanism 
may be due to the extent of autophagy activation beyond 
the reversibility of cell viability, contributing to out of 
control of autophagy process [54-58]. Taken together, the 
signaling pathways involved in autophagy are still little 
known. In addition, in view of the mTOR is the mutual 
upstream controller of apoptosis and autophagy process, 
breaking the balance between apoptosis and autophagy 
and shifting to apotosis after activation of mTOR pathway 
may be a promising strategy for facing the challenges 
of OS. Further investigations are needed to help us 
understand completely about the roles of mTOR pathway 
in OS (Figure 2).

INHIBITORS OF MTOR

Despite great advances in treating OS, significant 
improvement in survival rate and survival time is not 
acquired. The reason is that cancer cell exerts resistance 

Figure 2: The roles of mTOR pathway in OS cell.
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to chemotherapy drug in clinical application, even it 
shows promising anti-tumor activity in pre-clinical test. 
Surprisingly, overactivation of mTOR pathway may relate 
to resistance to chemotherapy drug [59]. Therefore, the 
combination of chemotherapy drugs and mTOR inhibitors 
may demonstrate synergistic effects. Consistent with this 
notion, C6 ceramide can sensitize pemetrexed-induced 
apoptosis and cytotoxicity via inactivation of AKT-
mTOR signaling in OS [59]. Moreover, specil inhibition of 
mTORC2 but not mTORC1 can promote cisplatin-induced 
apoptosis [60]. Thus, exploring novel mTOR inhibitors 
raise great interest treating OS.

Table 1 lists present research status of mTOR in the 
context of OS. 

mTOR inhibitor suppresses OS cell growth solely 
in vivo and in vitro and phase II study [22, 23, 33, 34, 
44, 61-64]. Besides, Some reports find mTOR inhibitor 
achieves an increasing anti-tumor effect when combining 
with other forms of drugs, such as anti-osteoporotic drug, 
extra terminal domain protein inhibitor, conventional 
chemotherapy drugs [65-71]. In addition, a dual PI3K/
mTOR inhibitor shows an promising result in treating 
OS cell, and this anti-tumor activity can be enhanced by 
MEK/Erk inhibitors [72, 73].

The roles of autophagy in OS cell survival and death 
are paradoxical and complex [74] just as we talk above. 
Notablely, some researchers pay attention to inhibiting 
both mTOR and antophagy process for treating OS. 
Heat shock protein 90 (Hsp90), an abundant molecular 
chaperone, is involved in cell growth, differentiation and 
survival [75, 76]. Hsp90 inhibitor suppresses mTOR, 
contributing to autophagy. However, in combination with 
antophagy inhibitor, hsp90 exerts a much greater extent 
apoptosis [77]. Another finding also shows that rapamycin 
induces the apoptosis of OS cells, which is enhanced by 
antophagy inhibitor [71]. Thus, treating OS cell with 
mTOR inhibitor alone may inhibit the proliferation and 
promotion of OS cell by targeting mTOR pathaway. 
However, as the ability of pro-apoptosis is growing, the 
escape pathway of autophagy is triggered, counteracting 
the anti-tumor effect of mTOR inhibitor and contributing 
resistence to mTOR inhibitor, which is consistent with the 
modest anti-tumor effect of mTOR inhibitor in clinical 
application. Autophagy inhibitor can elevate efficiency of 
mTOR inhibitor by blocking autophagy process in treating 
OS. Owing to partly understand in the autophagy pathway 
in OS, further investigations are needed.

Overall, mTOR inhibitor combined with other 
drugs may provide a novel therapeutic strategy against 
OS. However, the combination of the anti-insulin-growth 
factor type 1 receptor antibody and mTOR inhibitor 
does not show a objective result in an phase II trial 
[78]. The different conditions of cell living in between 
pre-clincal test and clinical study and the distrinct type 
of drug combined with mTOR inhibitor may lead to 
dissatisfied result. Moreover, nucleolar stress , induced 

by chemotherapeutic drugs, stimulates p53-dependent 
signaling pathways which contribute to cell cycle arrest, 
apoptosis, and mTOR inhibitor can alleviate this p53 
response to nucleolar stress [79-85]. The cross-linking of 
p53-dependent signaling pathways and mTOR pathway 
may explain this inconsistent result. Thus, we should take 
the complexity and potential problems into consideration 
when mTOR inhibitor combined with other cytotoxic 
compounds is applied in treating OS.

Taken together, the combination of mTOR inhibitor 
and other drugs may provide an efficient therapeutic 
strategy against OS. However, the mTOR signaling 
pathway is complexity in OS, and its roles in OS are still 
not completely understood. Further studies will help us 
design a combinatorial chemotherapy regimen against OS.

CONCLUSIONS

Activation of mTOR pathway promotes OS cell 
proliferation, metastasis, and inhibits the intracellular 
processes of apoptosis and autophagy. mTOR inhibitor 
used alone exerts a promising anti-tumor activity, which 
is enhenced by combining with other drugs for OS. Thus, 
exploring a better combinatorial chemotherapy regimen 
provide a novel therapeutic approach for OS. However, 
the detail mechanism of mTOR pathway and synergistical 
effect of mTOR inhibitor and other drugs in OS are still 
not fully understood. Therefore, future further researches 
are required to gain a better understanding. 
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