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ABSTRACT

Piwi-interacting RNAs (piRNAs), whose role in germline maintenance has been 
established, are now also being classified as post-transcriptional regulators of gene 
expression in somatic cells. PIWI proteins, central to piRNA biogenesis, have been 
identified as genetic and epigenetic regulators of gene expression. piRNAs/PIWIs 
have emerged as potential biomarkers for cancer but their relevance to breast cancer 
has not been comprehensively studied. piRNAs and mRNAs were profiled from normal 
and breast tumor tissues using next generation sequencing and Agilent platforms, 
respectively. Gene targets for differentially expressed piRNAs were identified from 
mRNA expression dataset. piRNAs and PIWI genes were independently assessed for 
their prognostic significance (outcomes: Overall Survival, OS and Recurrence Free 
Survival, RFS). We discovered eight piRNAs as novel independent prognostic markers 
and their association with OS was confirmed in an external dataset (The Cancer 
Genome Atlas). Further, PIWIL3 and PIWIL4 genes showed prognostic relevance. 
306 gene targets exhibited reciprocal relationship with piRNA expression. Cancer 
cell pathways such as apoptosis and cell signaling were the key Gene Ontology terms 
associated with the regulated gene targets. Overall, we have captured the entire 
cascade of events in a dysregulated piRNA pathway and have identified novel markers 
for breast cancer prognostication.

INTRODUCTION

Piwi-interacting RNAs (piRNAs, 24 – 32 nt in 
length) belong to a class of small regulatory RNAs that 
include microRNAs (miRNAs) and small interfering 
RNAs (siRNAs) [1]. Mature forms of these RNAs 
associate with biogenesis pathway proteins such as 
Argonaute (AGO) class of proteins: miRNAs and siRNAs 
with AGO proteins and piRNAs with PIWI proteins [2–
5] to guide target specific gene regulation [6, 7]. Gene 
regulation exerts control at transcriptional and post-
transcriptional levels and piRNAs, in association with 
PIWI proteins, are involved in both levels [8, 9]. For a 
long time, the only roles of PIWI proteins were believed 
to be in the regulation of transposons and [10] in the 
maintenance and development of germinal stem cells 

[11]; however, the functions of piRNAs and PIWI proteins 
as epigenetic regulators have started to emerge [1, 12]. 
It is now known that PIWI proteins, which are guided 
by piRNAs bind to specific targets (based on sequence 
specific complementarity) and recruit chromatin modifiers 
to enable transcriptional repression [13]. Apart from this, 
a direct association between the piRNA–PIWI protein 
complex and stem cell development and maintenance has 
been established [14]. Cancer stem cells form a critical 
fraction of a tumor mass, are required for incessant cell 
proliferation, and may underlie resistance to drugs and 
radiation; accordingly, cancer stem cells are believed to 
contribute to tumor recurrence [15, 16]. The role of the 
piRNA–PIWI protein complex in post-transcriptional gene 
regulation is also slowly garnering attention. Although the 
exact mechanism remains elusive, investigators initially 
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have reported the sequence specific complementary 
binding of a piRNA to a target messenger RNA (mRNA) 
at the 3’ untranslated region (UTR) and subsequent gene 
regulation, in a manner similar to that of miRNAs [17–19]. 
It is increasingly being recognized that the sequence based 
complementarity may not be restricted to 3’ UTR and 
may expand to 5’UTR, the coding sequence or even the 
introns [20]. Given the diverse functions of piRNAs and 
PIWI proteins, it is evident that these molecules may also 
contribute to tumorigenesis [9].

Human homologues of PIWI proteins (originally 
described as P-element induced wimpy testis in 
Drosophila) identified thus far are PIWIL1 (HIWI), 
PIWIL2 (HILI), PIWIL3 and PIWIL4 (HIWI2) 
[21]. Although the expression of PIWI proteins in 
somatic tissues has been known since 1998, our major 
understanding of these molecules stem from germ cells. 
Only recently, have researchers demonstrated their 
possible involvement in tumorigenesis [9]. Aberrant 
expressions of these genes and proteins in malignancy 
have been associated with hallmarks of cancer and 
have also shown promise as potential prognostic and 
diagnostic markers for different cancer types [22]. In 
this regard, the differential expression of piRNAs and 
therefore their oncogenic or tumor suppressor roles have 
also been observed in various cancer types [19, 20], and 
a few studies have highlighted their association with 
clinicopathological factors [23]. An even smaller number 
of studies have reported the relevance of piRNAs as 
prognostic/diagnostic markers [24–26]; however, the 
study designs of the majority of these studies are limited to 
candidate piRNA molecules or are challenged with limited 
sample sizes.

Given the current knowledge that piRNAs and PIWI 
genes (i) are abundantly expressed in somatic tissues, 
(ii) are potential biomarkers for cancer and (iii) are 
involved in gene regulation and in normal developmental 
processes, extensive profiling and characterization 
studies are needed to understand the contribution of these 
molecules to tumorigenesis. The contribution of both 
piRNAs and PIWI genes to breast cancer has not been 
comprehensively studied and is the focus of this report. 
We hypothesized that varying levels of piRNAs and their 
upstream biogenesis pathway (PIWI) genes contribute 
to breast tumorigenesis and act as prognostic markers 
for breast cancer. Our specific objectives were (i) to 
identify differentially expressed piRNAs and PIWI gene 
transcripts (mRNAs) (hereafter referred to as PIWI genes) 
in breast tumor tissues relative to normal (reduction 
mammoplasty) breast tissues, (ii) to identify piRNAs and 
PIWI genes as prognostic markers (outcomes: overall 
survival, OS and recurrence free survival, RFS) and (iii) 
to identify complementary gene (mRNA) targets at the 
3’ UTR for the piRNAs associated with breast cancer 
prognosis.

RESULTS

piRNAs are expressed in breast tissues

The next generation sequencing (NGS) experiment 
generated approximately 10 million reads from normal 
tissues and about 165 million reads from tumor tissues. A 
good 50–60% of the reads were retained in both the tissues 
after trimming the adapters, and about 85% of the reads 
(88 million reads in total from both tissue types) aligned to 
the human genome (hg19). Among the reads that aligned, 
4,207,022 were classified as piRNAs, which annotated 
to 676 individual piRNAs. The sequencing protocol 
followed was 36 cycles single end protocol. Of the 36 
nucleotides, 7 belonged to the index sequence and reads 
ranging from 17 – 27 nucleotides were retained (Figure 
1A), representing the RNA species from miRNA, piRNA, 
tRNA etc. The actual lengths of the piRNAs range from 
24-32 nt (as annotated in piRNA database [27]). The 676 
piRNAs identified were in the range 26-32 nt (Figure 1B). 
We recognize that not all of piRNAs on the genome were 
captured due to limitations of the library construction. This 
is unlikely to have affected the results and interpretations 
of the current study. We observed similar patterns of 
distributions for piRNA reads from the TCGA data set, 
also generated from the 36 cycle single end protocol (data 
not shown).

piRNAs have predominantly been studied in 
germline cells and, have only recently been reported in 
somatic tissues. In the germline, they are most commonly 
seen as clusters; while in the somatic tissues, they have 
been observed to be mapping to intronic and exonic regions 
of several protein-coding genes [26]. We confirmed these 
findings in our profiling experiments for piRNA expression 
from somatic breast tissues. Of the 676 piRNAs profiled, 
429 mapped to exons and introns of known protein coding 
genes, and 309 mapped to exons and introns of long non-
coding RNAs. A few of the piRNAs also mapped to other 
non-coding RNA classes such as miRNAs, tRNAs and 
snoRNAs (Figure 1C, Supplementary Table S1).

piRNAs are potential independent prognostic 
markers for breast cancer

Case–control (CC) method

The raw data was normalized using the RPKM 
method and was adjusted for any potential batch effects 
(Supplementary Figure S1). One sample was identified as 
a potential outlier and was removed, leaving 102 breast 
tumor tissues and 11 normal tissues for further analysis. 
Out of the 676 piRNAs profiled, 42 were retained 
after filtering for read counts and 25 were identified as 
differentially expressed (DE). 17 piRNAs were up-
regulated and eight were down-regulated with fold change 
(FC) > 2 and False Discovery Rate cut–off 0.05 (Figure 2, 
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Supplementary Table S2). Raw counts of the 676 piRNAs 
and normalized counts (after adjusting for batch effects) of 
676 and 42 filtered piRNAs are provided in Supplementary 
Table S3.

Of the 25 DE piRNAs, three piRNAs each were 
significant (permuted p value < 0.1) in the univariate 
analysis for OS and RFS (Supplementary Table S4) and 
were used to construct the individual risk scores. Two 
piRNAs (i.e. hsa_piR_009051 and hsa_piR_021032) 
were significant for both OS and RFS. The receiver 
operating characteristics (ROC) curve  estimated cut-off 
points for OS and RFS were 2.04 and 0.07, respectively, 
dichotomizing the patients into low–risk (≤ 2.04 for OS 
and ≤ 0.07 for RFS) and high–risk (> 2.04 for OS and 
> 0.07 for RFS) groups. The risk scores were found to 
be significant after adjusting for tumor stage and age 
at diagnosis for OS and tumor stage for RFS (Table 1). 
Patients belonging to the high–risk group were associated 
with poor OS (Figure 3A) and RFS (Figure 3C).

Case–only (CO) method

665 piRNAs were expressed with at least one read 
count in any one of the tumor samples. 53 piRNAs were 
retained with ≥ 10 read counts and expressed in at least 
90% of the tumor samples. The raw data was adjusted 
for batch effects. The raw data for all 665 piRNAs and 
the batch effects adjusted normalized counts of 665 and 
53 filtered piRNAs are provided in Supplementary Table 
S3. Four and six piRNAs (from the 53 filtered piRNAs) 
were significant in the univariate analysis for OS and RFS 
(Supplementary Table S4) with a permuted p-value ≤ 0.1. 
The risk scores were constructed using the four and six 
piRNAs for OS and RFS, respectively. The ROC based 
estimation of the cut–off point dichotomized the patients 
into two groups: low–risk (≤ 2.44 for OS and ≤ -0.54 for 
RFS) and high–risk (> 2.44 for OS and > -0.54 for RFS). 
For both outcomes, (i) the risk score showed p–value 
significance in the univariate and multivariate analyses 
(Table 2) after adjusting for potential confounders (tumor 

Figure 1: piRNAs in breast tissues. A: The above histogram corresponds to the number of reads mapping to different read length 
sizes. B: The numbers of annotated piRNAs identified under different transcript lengths are indicated. C: Pie-chart shows the number of 
piRNAs mapping to different classes of genes. ~61% of the piRNAs profiled in our study map to exons and introns of protein coding genes.
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grade and age at diagnosis for OS and tumor stage for 
RFS) and (ii) the high–risk group patients showed poor 
OS (Figure 3B) and RFS (Figure 3D).

The risk score for OS was significant in the 
external validation dataset

Batch–adjusted normalized counts of the four 
piRNAs (significant for OS in the discovery cohort) were 
extracted from the 84 samples in The Cancer Genome 
Atlas (TCGA) dataset. A risk score was constructed for 
OS, and the ROC based estimation of the cut–off point 
dichotomized the samples into low–risk (≤ -0.18) and 
high–risk (> -0.18) groups. Similar to the results obtained 
in the discovery cohort, the risk score showed promise 
as potential independent prognostic factor (Table 3), 
and patients in the high–risk group were significantly 
associated with poor OS (Figure 4; p<0.01).

PIWI genes are promising prognostic markers 
for breast cancer

All four human homologues of PIWI genes were 
expressed in our in-house breast cancer gene expression 

dataset. Comparison with normal breast tissues revealed 
that two genes (PIWIL1 and PIWIL3) were up-regulated 
and the remaining two (PIWIL2 and PIWIL4) were 
down-regulated in tumor tissues (Table 4). The up-
regulated PIWI genes did not show statistical significance 
between normal and breast tumor tissues. Nevertheless, 
we confirmed the expression of PIWI genes in breast 
(somatic) tissues. Since these proteins are involved in 
piRNA biogenesis, an aberrant expression of these genes 
in breast cancer may contribute to abnormal expression of 
piRNAs. As we had identified the prognostic significance 
of piRNAs, we hypothesized that genes coding for PIWI 
proteins may also be involved in breast cancer prognosis. 
Of the four PIWI genes, only PIWIL3 and PIWIL4 
genes were significant in the univariate analysis for OS 
and were used to construct a risk score. Similar to the 
piRNA analysis, ROC was used to estimate the optimal 
cut–off point for dichotomization of patients into low–
risk (≤ 0.56) and high–risk (> 0.56) groups. The risk 
score was significant for OS after adjusting for age at 
diagnosis and Triple Negative Breast Cancer (TNBC) 
status (Table 5). In the case of RFS, PIWIL3 gene was 
found to be significant. The potential of PIWIL3 gene as 
an independent prognostic marker was confirmed in the 

Figure 2: Differential expression of piRNAs. 25 differentially expressed piRNAs were used for unsupervised hierarchical clustering 
using average linkage method for linkage analysis and Euclidean distance measure.
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Table 1: Univariate and multivariate results of piRNAs identified in Case–control method (Discovery cohort)

Parameter

Overall Survival Recurrence Free Survival

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR
(95% CI) p-value HR

(95% CI) p-value HR
(95% CI) p-value HR

(95% CI) p-value

Risk score 2.31
(1.27 – 4.22) 0.01 2.29

(1.24 – 4.27) 0.01 2.53
(1.25 – 5.16) 0.01 2.79

(1.36 – 5.69) 0.005

Tumor stage 0.40
(0.21 – 0.78) 0.01 0.42

(0.21 – 0.84) 0.02 0.38
(0.20 – 0.71) 0.003 0.34

(0.18 – 0.63) 0.001

Tumor grade 2.01
(1.04 – 3.89) 0.04 1.58

(0.92 – 2.74) 0.1

Age at 
diagnosis

1.06
(1.02 – 1.09) 0.001 1.04

(1.01 – 1.08) 0.01 1.02
(0.99 – 1.05) 0.21

TNBC status 0.99
(1.16 – 3.29) 0.98 0.84

(0.45 – 1.55) 0.58

HR = Hazards ratio; CI = Confidence interval
Table 1. Univariate and multivariate Cox analysis results for OS (left panel) and RFS (right panel) in case–control approach 
is represented. Patients belonging to high–risk group were associated with poor prognosis (HR > 1) and the risk score 
showed promise as potential independent prognostic factor (p < 0.05).

Figure 3: Kaplan-Meier plots for constructed risk scores (Discovery cohort). Risk scores were constructed using piRNAs 
significant in univariate Cox analysis with permuted p-value ≤ 0.1. For both case-control and case-only paradigms in the discovery cohort, 
samples were dichotomized into low and high risk groups based on ROC estimation of optimal cut-off point (indicated in parenthesis). In 
all the comparisons, patients belonging to high risk group were associated with shorter survival periods (OS and RFS), with log-rank p 
value < 0.05. A. (case–control) and B. (case–only) represent Kaplan Meier plots for Overall survival. C. (case–control) and D. (case–only) 
represent Kaplan Meier plots for Recurrence free survival corresponding to discovery cohort.
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multivariate analysis (Table 5). For both OS (Figure 5A) 
and RFS (Figure 5B), patients belonging to the high–risk 
group were found to have shorter survival.

piRNAs inhibit gene expression

Recent evidence suggests that piRNAs, in a 
mechanism similar to miRNAs, may regulate gene 
expression through base pair complementarity. However, 
very few studies have identified the corresponding gene 
targets for specific piRNAs [19, 20]. For this study, we 

only considered prognostically significant piRNAs (eight 
non–redundant piRNAs in total from OS and RFS) and 
focused on the inverse correlations between piRNA and its 
targets. Of the eight piRNAs, only six were differentially 
expressed (all were more than 1.5 FC) and were of 
immediate interest for target predictions. Since all six 
were up-regulated in tumors, relative to normal tissues, we 
extracted the 3’UTR sequences of all the down–regulated 
genes (n = 2,735) identified in our gene expression dataset. 
Using miRanda algorithm v3.3a and applying the cut–offs, 
we identified a total of 306 non–redundant gene targets 

Table 2: Univariate and multivariate results of piRNAs identified in case–only method (Discovery cohort)

Parameter

Overall Survival Recurrence free Survival

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR
(95% CI) p-value HR

(95% CI) p-value HR
(95% CI) p-value HR

(95% CI) p-value

Risk score 2.36
(1.31 – 4.26) 0.004 2.09

(1.15 – 3.79) 0.02 3.08
(1.84 – 5.16) <0.0001 3.07

(1.84 – 5.14) <0.0001

Tumor 
stage

0.40
(0.21 – 0.78) 0.01 0.38

(0.20 – 0.71) 0.003 0.39
(0.21 – 0.72) 0.003

Tumor 
grade

2.01
(1.04 – 3.89) 0.04 2.01

(1.03 – 3.92) 0.04 1.58
(0.92 – 2.74) 0.1

Age at 
diagnosis

1.06
(1.02 – 1.09) 0.001 1.06

(1.02 – 1.09) 0.001 1.02
(0.99 – 1.05) 0.21

TNBC 
status

0.99
(0.50 – 1.95) 0.98 0.84

(0.45 – 1.55) 0.58

HR = Hazards ratio; CI = Confidence interval
Table 2. Univariate and multivariate Cox analysis results for OS (left panel) and RFS (right panel) in case–only approach 
are represented. Patients belonging to high–risk group were associated with poor prognosis (HR > 1) and the risk score 
showed promise as potential independent prognostic factor (p < 0.05).

Table 3: Univariate and multivariate results for Overall Survival (External validation/TCGA dataset)

Parameter

Overall Survival

Univariate analysis Multivariate analysis

HR
(95% CI) p-value HR

(95% CI) p-value

Risk score 3.02
(1.21 – 7.59) 0.02 3.22

(1.22 – 8.52) 0.02

Tumor stage 0.32
(0.13 – 0.78) 0.01 0.34

(0.14 – 0.88) 0.03

Age at diagnosis 1.03
(1.003 – 1.06) 0.03 1.04

(1.01 – 1.07) 0.006

TNBC status 0.63
(0.19 – 2.12) 0.46

HR = Hazards ratio; CI = confidence interval
Table 3. Risk score constructed using four piRNAs (identified as significant for OS in discovery cohort) was adjusted for 
tumor stage and age at diagnosis and was found to be significant with p < 0.05 in TCGA dataset (external validation set).
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for six piRNAs (Supplementary Tables S5A–S5F). We 
did not consider matched samples (between the piRNA 
data and the mRNA data) alone for target prediction, but 
instead utilized all the samples from our gene expression 
dataset since our previous study on miRNA-mRNA target 
identifications using the same mRNA dataset did not reveal 
profound differences between matched and unmatched 
datasets in the overall functional terms identified for the 
targets [28]. The identified gene targets were enriched for 
angiogenesis, transcription, cell signaling, cytoskeleton 
organization, membrane transport and organization 
(Supplementary Table S6).

DISCUSSION

In this study, we have identified eight non-redundant 
piRNAs as novel prognostic markers for breast cancer. 
Four and six piRNAs were found to be associated with OS 
and RFS, respectively, among which two piRNAs were 
common for OS and RFS. We also successfully validated 
the prognostic significance of piRNAs associated with OS 
in an external dataset (TCGA). Gene targets for possible 
regulation by candidate piRNAs have also been identified. 
Although PIWI proteins have been studied by others as 

prognostic/diagnostic markers for other cancer types, their 
prognostic relevance in breast cancer has not been examined. 
In our study, we demonstrate the association of PIWI genes 
(as a proxy for PIWI proteins) with OS and RFS for breast 
cancer. Overall, this is the first study to comprehensively 
understand the significance of piRNAs and PIWI genes 
as prognostic markers for breast cancer using large and 
independent datasets with complete clinical annotation and a 
long follow–up period. In all, we have successfully captured 
the pathway of events and individual entities up-stream and 
down-stream of the piRNA biogenesis.

A new class of small non-coding RNAs called 
piRNAs was discovered in mouse testes in 2006 [2–5]. 
They were found to be involved in maintaining genome 
stability by regulating the expression of transposons in 
germ cells [6], and for a long time, their roles beyond 
germ cells remained uncertain. However, with increasing 
focus on these molecules, their presence in somatic cells 
has been observed and their functional roles are beginning 
to be uncovered. Using a sequencing platform to profile 
piRNAs, we observed the presence of 676 piRNAs in 
breast tissues, confirming their existence in somatic 
tissues. In contrast to their occurrence as clusters in germ 
cells, they were found to map to known transcripts in 

Figure 4: Kaplan–Meier plot for constructed risk score (External validation/TCGA dataset). Risk score for Overall 
survival was constructed using piRNAs significant in univariate Cox analysis with permuted p-value ≤ 0.1, as identified in the discovery 
cohort. Further, samples were dichotomized into low and high risk groups based on ROC estimation of optimal cut-off point (indicated 
in parenthesis). Patients belonging to high risk group were associated with shorter survival period (OS), with log-rank p value < 0.05, 
confirming the results obtained in the discovery cohort.
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somatic cells. In breast tissues alone, we noted that around 
85% (576 of the 676 total piRNAs profiled in our dataset) 
of the piRNAs mapped to exons and introns of known 
protein coding and non-coding transcripts (Figure 1C). 
Since piRNAs abundantly map to known genes, it remains 
to be determined if they are dependent on the host gene’s 
promoter for their transcription or if they carry their own 
promoter.

The clinical relevance of piRNAs was first 
apparent when they were reported to be associated with 
clinicopathological factors such as lymph node status [23], 
and TNM stage [24]. Nonetheless, our understanding of 
their contribution as prognostic markers is rudimentary 
and warrants further exploration. We identified eight 
piRNAs as novel prognostic markers for breast cancer. 
To date, there has only been one study that has utilized 

sequencing data to interrogate piRNAs for breast cancer 
prognosis [26]. In the study by Martinez et al., piRNAs 
associated with OS were identified for eleven cancer types, 
including breast cancer. Our study is therefore the first to 
identify piRNAs associated with RFS as well as OS. We 
compared our eight prognostically significant piRNAs 
with their study findings and found that hsa_piR_009051 
and hsa_piR_017061 were prognostically significant for 
renal clear cell carcinoma and colon adenocarcinoma, 
respectively. hsa_piR_021032 was significantly associated 
with renal clear cell carcinoma and lung squamous cell 
carcinoma prognoses. Significance of the remaining five 
piRNAs in cancer prognosis remains unknown till date.

An important observation from our study is that we 
may obtain a holistic picture of piRNAs associated with 
outcomes if we adopt a case–only approach. Case-control 

Table 4: Differential expression of PIWI genes

PIWI gene Fold change Direction of expression p-value

PIWIL1 1.56 Up-regulated in tumor 0.06

PIWIL2 -2.51 Down-regulated in tumor 6.97E-5

PIWIL3 1.44 Up-regulated in tumor 0.12

PIWIL4 -1.95 Down-regulated in tumor 0.0044

Table 4. Of the four human homologs of PIWI gene, PIWIL1 and PIWIL3 were up-regulated but were not statistically 
significant. PIWIL2 and PIWIL4 genes were down-regulated and were statistically significant with p < 0.05.

Table 5: Univariate and multivariate results of PIWI genes

Parameter

Overall Survival Recurrence Free Survival

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR
(95% CI) p-value HR

(95% CI) p-value HR
(95% CI) p-value HR

(95% CI) p-value

Risk score (for OS)
PIWIL3
(for RFS)

2.82
(1.49 – 5.33) 0.002 2.19

(1.14 – 4.22) 0.02 2.07
(1.17 – 3.64) 0.01 2.09

(1.18 – 3.71) 0.01

Tumor stage 0.62
(0.24 – 1.57) 0.31 0.56

(0.28 – 1.11) 0.09

Tumor grade 2.31
(1.1 – 4.83) 0.03 1.75

(1.06 – 2.9) 0.03

Age at diagnosis 1.04
(1.02 – 1.07) 0.001 1.04

(1.02 – 1.07) 0.001 1.01
(0.99 – 1.03) 0.22

TNBC status 3.33
(1.77 – 6.26) 0.0002 2.35

(1.15 – 4.79) 0.02 1.72
(1.07 – 2.79) 0.03

HR = Hazards ratio, CI = Confidence interval
Table 5. Univariate analysis was performed, considering PIWI genes as continuous variables. Two PIWI genes were 
significant for OS with p ≤ 0.15 and were used for constructing a risk score, PIWIL3 alone was significant for RFS with p 
≤ 0.15. Risk score for OS and PIWIL3 for RFS were considered as categorical variables and were found to be significant in 
univariate and multivariate analyses using Cox proportional hazards regression model.
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approach focuses on identifying prognostic markers 
which are differentially expressed [29, 30]. However, 
case-only approach interrogates the entire dataset in 
an unbiased manner [31–33] and may thus yield higher 
number of prognostic markers. We observed the same in 
our study, where, with the case–only method, we obtained 
four and six piRNAs for OS and RFS, respectively as 
opposed to three piRNAs each for OS and RFS. The 
piRNAs identified in the case–only approach included the 
ones identified from the case–control approach as well 
(Supplementary Tables S4A and S4B). Therefore, adopting 

a case–only approach may provide a more comprehensive 
understanding of the markers under investigation.

Another major finding of our study was the 
identification of genes coding for PIWI proteins as potential 
prognostic markers for breast cancer. Of the four human 
homologues of PIWI genes, two genes (PIWIL3 and 
PIWIL4) showed associations with OS, and PIWIL3 alone 
showed association with RFS (Table 5, Figure 5A and 5B). 
Reports on the clinical significance of PIWIL3 and PIWIL4 
remain scarce [34–36], and in particular, this is the first 
study to identify the contribution of PIWIL3 and PIWIL4 

Figure 5: Kaplan-Meier plots for PIWI genes. PIWIL3 and PIWIL4 genes were significant for OS and were used for constructing 
a risk score, whereas PIWIL3 alone was significant for RFS. Patients were dichotomized into low and high-risk groups based on ROC 
estimated cut-off point (indicated in parenthesis). Patients belonging to high-risk group were associated with poor OS (A) and RFS (B).
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genes to breast cancer prognosis. Further replication studies 
are warranted to better define their prognostic roles.

The functional importance of PIWI proteins 
and piRNAs is no longer restricted to the regulation of 
transposons or the maintenance and development of stem 
and germ cells. Based on previous studies that piRNAs 
inhibit gene expression, analogous to miRNAs [19, 
20], we identified 306 gene targets (and their roles) for 
six piRNAs using our in-house gene expression dataset 
(Supplementary Tables S5 and S6). We did not restrict 
our analysis to gene ontology terms alone that identified 
terms related to cancer. We looked at the targets identified 
for every piRNA individually and found piRNA-mRNA 
pairs playing important roles in methylation, oxidative 
stress, and cell adhesion, among others (Supplementary 
Tables S5 and S6), the deregulation of which may 
contribute to an imbalance in cellular homeostasis. An 
interesting observation was that hsa_piR_021032 shared 
complementary sequence with PIWIL2. While PIWIL2 
was down–regulated in our gene expression dataset, hsa_
piR_021032 showed up-regulation in the tumor tissues, 
suggesting a possible repression of the PIWI gene by the 
piRNA. This proposed mechanism of PIWI regulation by 
piRNAs is novel and requires further validation.

Using a cohort with complete clinical annotation 
and long–term follow–up, we identified piRNAs and 
PIWI genes as novel prognostic markers for breast cancer. 
Identifying piRNA gene targets from breast tissue datasets 
is rare in the literature, and this study may open up 
research on the characterization of these piRNA–mRNA 
pairs. Deregulation of piRNAs and the involvement 
of the identified targets in key cellular mechanisms 
suggest that piRNAs may be important contributors to 
breast tumorigenesis. This is also the first time that we 
have observed a possible regulatory mechanism of PIWI 
genes by piRNAs, but it remains to be established if this 
regulation is through direct interaction or a complex 
network. Biomarker studies on piRNAs and PIWI genes 
and proteins are promising fields of research. Since 
piRNAs have exhibited stability in body fluids such as 
blood [37], serum and plasma [38], they may also serve as 
effective circulating biomarkers. With improving profiling 
platforms, availability of clinical samples with extensive 
clinical annotations will likely contribute to identification 
of additional piRNAs, furthering our understanding of 
their mechanistic and prognostic contributions to breast 
cancer and other diseases.

MATERIALS AND METHODS

Discovery cohort samples

Breast tumor tissues (stored as formalin fixed 
paraffin embedded blocks, FFPE) from 104 patients 
were obtained from Alberta Cancer Research Biobank 
(http://www.acrb.ca/). A detailed summary of the clinical 
characteristics of these samples, including information 

on tumor cellularity is given in our previous study 
[28]. Briefly, all the samples in our discovery cohort 
showed >70% cellularity in tumors, compared to ~60% 
of the samples from TCGA. Of the samples chosen for 
the study, 46 patients died and 61 patients underwent 
relapse. 11 breast tissues (stored as fresh frozen tissues, 
FF) were obtained from patients undergoing reduction 
mammoplasty and were considered as optimal controls for 
reasons elucidated elsewhere [28]. The number of samples 
used in both the groups were sufficient to conduct the 
study with 80% power, α = 0.05 and to identify piRNAs 
with a fold difference of 2 or more [http://bioinformatics.
mdanderson.org/MicroarraySampleSize/, http://linus.nci.
nih.gov/brb/samplesize/] [39, 40]. The study was approved 
by the local Institutional Research Ethics Committee 
(Health Research Ethics Board of Alberta–Cancer 
Committee) and written informed consent was obtained 
from all the study subjects.

Genome-wide profiling of piRNAs

Data generated for the study is deposited in Gene 
Expression Omnibus (GEO accession ID GSE68085). 
Small RNA libraries for next generation sequencing 
experiment (NGS) were generated for all the samples 
individually using their total RNA. We have already 
described in detail the RNA isolation and sequencing 
protocols that we followed [28]. Briefly, 36 cycles single 
end protocol was applied in Illumina Genome analyzer 
IIx platform, followed by base calling and demultiplexing 
using CASAVA 1.8.2 and adapter trimming using cutadapt 
software [41]. Of these 36 nucleotides, 7 belonged to the 
index sequence, leaving behind 29 nt. We had initially 
focused on reads with a length ranging from 17 to 27 
nt. Nevertheless, the piRNAs annotated in this dataset 
(n = 676) included even the longer piRNAs (29-32 nt). 
Reads trimmed of adapters were aligned to hg 19 genomic 
assembly (downloaded from Illumina iGenome repository) 
using Bowtie [42]. In the quality control process, one 
sample was deemed unusable and was removed from 
further processing. Memory efficient .bam files generated 
from .sam files served as input files for further analysis 
using Partek Genomics Suite 6.6 (PGS, Partek® Genomics 
Suite software, version 6.6 beta, Copyright © 2009 Partek 
Inc., St. Louis, MO, USA). piRNAs were annotated using 
piRNA bank (http://pirnabank.ibab.ac.in/index.shtml) 
[27]. For all the analyses (explained below), raw data was 
normalized using reads per kilobase per million (RPKM) 
method [43] and potential sample outliers were removed 
based on principal component analysis clustering.

Identification of piRNAs as prognostic markers 
using two statistical methods

Two statistical approaches were adopted for our 
study: Case-control (CC) and Case-only (CO). The 
difference between the two statistical models lies in the 
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process of selecting piRNAs for survival analysis. The CC 
paradigm is one of the most commonly used methods that 
concentrates on the prognostic potential of differentially 
expressed (DE) piRNAs exhibiting > 2 fold change (FC) 
and a false discovery rate (FDR) cut off of 0.05 (one-way 
ANOVA). In contrast, CO method is unbiased, i.e., it 
includes all of the piRNAs profiled in the tumor samples 
and is not influenced by expression differences between 
normal and tumor samples, thus eliminates the bias 
introduced by the definition of a normal sample.

In both approaches, we applied a stringent threshold 
to select only those piRNAs with ≥ 10 read counts in 90% 
of the samples (tumor and normal inclusive in CC and 
only tumor samples in CO) for downstream analysis; the 
data was also adjusted for potential batch effects. piRNA 
datasets from both the methods (DE piRNAs from CC 
and all the filtered piRNAs from CO) were subjected to 
univariate Cox proportional hazards regression model 
for OS and RFS using SAS (SAS institute Inc., Cary, 
NC) version 9.3, followed by permutation test using R 
statistical program (package - ‘glmperm’). Further, risk 
score was constructed for every sample using piRNAs 
significant with a permuted p-value ≤ 0.1. Receiver 
operating characteristics curve (ROC) was employed for 
estimating optimal cut-off points for both the outcomes 
(two for CC and two for CO) to stratify patients into low 
and high-risk groups. Subsequently, multivariate Cox 
regression model was performed and where appropriate, 
age at diagnosis (continuous variable), tumor stage (I, II 
vs. III and IV), grade (high vs. low) and Triple Negative 
Breast Cancer status (Luminal vs. TNBC, since our 
sample composition is from these two subtypes) were 
considered as potential confounders. Hazards ratio (HR) 
and confidence interval (CI) are reported as univariate 
and multivariate test results. Probability of survival over 
a given length of time was computed using Kaplan-Meier 
method and survival differences between the two risk 
groups were estimated using log-rank test. For all the tests, 
p< 0.05 was considered to be statistically significant. The 
overall workflow of the study was described in detail in 
our previous study [28].

External validation of piRNA signatures of 
prognostic significance

Following stringent filtering criteria (summarized 
elsewhere [28]), 84 samples were accessed from The 
Cancer Genome Atlas Project (TCGA), which is an 
international consortium that generates genome datasets 
from diverse geographical locations. Alignment (.bam) 
files of 84 samples were analyzed using PGS and similar 
to discovery cohort data, this data was corrected for batch 
ID, plate ID and tissue source site. Analysis for OS was 
conducted with 27 events (deaths). However, the same 
could not be done for RFS since the information on breast 
cancer recurrence was not sufficient in the TCGA dataset. 

RPKM normalized counts of the piRNAs identified for 
OS in the discovery cohort were extracted and utilized 
for constructing risk score. Univariate and multivariate 
Cox regression analyses were performed with available 
clinical information, as explained for the discovery cohort. 
The discovery and validation cohorts differed in several 
aspects, including tumor cellularity and have been reported 
in our previous study [28]. We observed that despite these 
differences, the identified signatures showed similar trends 
in their direction of effects in both the datasets.

PIWI genes as prognostic markers for breast 
cancer

The in-house gene (mRNA) expression dataset 
generated using Agilent microarray platform for 
ten normal breast tissues (obtained from reduction 
mammoplasty) and 141 breast tumor tissues was accessed 
from gene expression omnibus (GSE22820) [44]. The data 
was quantile normalized and log2 transformed using PGS. 
Differential expression analysis was performed using one-
way ANOVA to observe the expression patterns of the four 
human homologues of PIWI genes (PIWIL1 – PIWIL4). 
Survival analysis was performed for OS and RFS since 
we had 42 deaths and 77 recurrence events in our dataset. 
Treating the four genes as continuous variables, univariate 
Cox regression analysis was carried out; PIWI genes 
with p ≤ 0.15 were used for constructing a risk score 
and ROC estimated the optimal cut-off point for patient 
stratification into low and high-risk groups. Risk score 
was then treated as dichotomous variable; univariate and 
multivariate analysis was performed, considering tumor 
stage, grade, age at diagnosis and TNBC status as potential 
confounders.

Identification of gene targets for significant 
piRNAs and their functional roles

Of the eight prognostically significant piRNAs, six 
were DE and were of immediate interest for the gene target 
prediction. Recent evidence has suggested (i) interaction 
between piRNAs and mRNAs through base-pair 
complementarity and (ii) a possible inverse correlation 
between piRNA expression and its corresponding mRNA 
targets [19, 20]. Since all the six piRNAs (selected 
for target prediction) were up-regulated, only down-
regulated genes (mRNAs), with FC > 2.0 and FDR 0.05 
(as determined by one-way ANOVA) were extracted 
from the in-house gene expression dataset. The breast 
tissues (tumor tissue and normal reduction mammoplasty 
specimens) used in both our NGS and mRNA expression 
experiments are from the same clinics in Alberta. We have 
demonstrated earlier utility of these datasets to interrogate 
correlations between miRNA and mRNA expressions [28] 
and focused initially on the putative binding of piRNAs 
to 3’ UTRs of coding genes, even though other possible 
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mechanisms of action have been suggested, viz., coding 
exons and 5’UTRs [20]. Fasta sequences of the 3’UTR of 
all the down-regulated genes were obtained from Ensembl 
database (GRCh37) and fasta sequences of the six piRNAs 
were obtained from piRNA Bank (hg 19). As such, there 
are no target prediction databases available for piRNAs. 
However, predictions based on the list of input genes (in 
our study, down-regulated genes in breast cancer tissues) 
were obtained using miRanda v 3.3a algorithm [45], with 
alignment score ≥ 170 and energy threshold ≤ -20 kcal/
mol [20]. Potential functional insights of the targets (with 
a focus on biological processes) identified were obtained 
using DAVID bioinformatics tool (http://david.abcc.
ncifcrf.gov/) [46] and we report gene ontology (GO) terms 
related to cancer with p < 0.05 in the current study.
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