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ABSTRACT

Genome-wide association studies (GWASs) have primarily focused on the 
association between individual genetic markers and risk of disease. We applied a novel 
approach that integrates skin expression-related single-nucleotide polymorphisms 
(eSNPs) and pathway analysis for GWAS of basal cell carcinoma (BCC) to identify 
potential novel biological pathways. We evaluated the associations between 70,932 
skin eSNPs and risk of BCC among 2,323 cases and 7,275 controls of European 
ancestry, and then assigned them to the pathways defined by KEGG, GO, and BioCarta 
databases. Three KEGG pathways (colorectal cancer, actin cytoskeleton, and BCC), 
two GO pathways (cellular component disassembly in apoptosis, and nucleus 
organization), and four BioCarta pathways (Ras signaling, T cell receptor signaling, 
natural killer cell-mediated cytotoxicity, and links between Pyk2 and Map Kinases) 
showed significant association with BCC risk with p-value<0.05 and FDR<0.2. These 
pathways also ranked at top in sensitivity analyses. Two positive controls in KEGG, 
the hedgehog pathway and the BCC pathway, showed significant association with 
BCC risk in both main and sensitivity analyses. Our results indicate that SNPs that 
are undetectable by conventional GWASs are significantly associated with BCC when 
tested as pathways. Biological studies of these gene groups suggest their potential 
roles in the etiology of BCC.

INTRODUCTION

Basal cell carcinoma (BCC), a major type of non-
melanoma skin cancer, is the most common malignancy 
among populations of European ancestry [1-3]. Though 
rarely fatal, the tumor may be locally invasive and cause 
clinically significant destruction of surrounding tissue if 
not treated adequately [4, 5]. In addition, subsequent skin 
cancers and other malignancies are more common among 
BCC patients in comparison to the general population [6].

Both environmental and genetic factors contribute 
to the genesis of BCC. Though exposure to ultraviolet 
(UV) radiation is generally accepted as the most 
important environmental risk factor for BCC, other 

known risk factors include family history of skin cancer 
and pigmentary characteristics, such as fair complexion, 
red or blond hair, and light eye color [7-9]. Most recently, 
genome-wide association studies (GWAS) have identified 
several genetic loci (including 1p36, 1q42, 5p15, 7q32, 
and 9q21, among others) associated with risk of BCC 
[10-12]. Despite the advances that have been made in 
understanding the etiology of BCC, the genetics of this 
complex disease is still largely unknown.

Although GWASs have revolutionized our ability to 
identify disease susceptibility loci or markers associated 
with them, they usually yield only the most significant 
SNPs, and the percentage of genetic variation explained 
by GWAS signals has generally been modest [13, 14]. One 
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of the potential explanations for this “missing” heritability 
is that most common DNA variants with moderate effect 
size have not yet been identified by GWAS because of a 
lack of power [15]. Given this limitation of conventional 
association analysis, new approaches are emerging to 
enhance the information extracted from current GWAS 
data. Pathway analysis, which jointly considers multiple 
variants with moderate signals in related genes, is a good 
complement to single-locus GWAS [16]. There is growing 
evidence that complex molecular networks and cellular 
pathways are often involved in disease susceptibility and 
disease progression [17, 18]. Thus, by taking into account 
prior biological knowledge about genes and pathways, we 
may have a better chance to identify disease-relevant loci 
[19], even though the signals individually do not meet the 
GWAS significance threshold [16].

Borrowing ideas from gene set enrichment analysis 
(GSEA) in the gene expression microarray field [20], 
Wang et al. first proposed pathway-based analysis of 
GWAS data in 2007 [16]. They used SNPs that are 
physically located in the gene region as the representative 
SNPs for that particular gene. However, SNPs within a 
gene region may not be the functional variants of the gene, 
and a gene may be regulated in trans by genetic variants 
that are physically distant [21]. Having realized this major 
shortcoming of conventional pathway analysis, as well 
as the importance of genetic variants that regulate gene 
transcription in mapping human disease genes [22], Zhong 
et al. suggested integration of expression-related SNPs 
(eSNPs) into conventional pathway analysis [23]. Two 
main aspects of this new approach are appealing: first, it 
further improves the power to detect genetic associations, 
because eSNPs can be considered functionally relevant 
variants [24]; secondly, it improves the interpretation 
of results, because variants that cluster within common 
biological pathways are taken into account jointly. 
This method has recently shown its potential strength 
in the context of type 2 diabetes GWAS [25]; however, 
applications to cancer have rarely been reported.

In 2012, Zhang et al. applied this novel pathway 
analysis to the GWAS of basal cell carcinoma for the first 
time [26]. Though that study provided novel insights into 
the biology underlying BCC, the false discovery rates of 
the identified pathways are of only marginal significance. 
Moreover, they used eSNPs discovered in two GWASs of 
global gene expression in lymphoblastoid cell lines (LCL) 
[22], which is not a tissue relevant to BCC. Because tissue 
dependency seems to be an important feature of disease 
susceptibility variants that regulate gene expression 
[27], ideally skin eSNPs should be used in BCC studies. 
Recently, the Multiple Tissue Human Expression 
Resource (MuTHER) project published detailed genomic 
and transcriptome data on three disease-relevant tissues 
(adipose, LCLs, and skin) originating from a cohort of 
856 deeply phenotyped twins [28]. In the current study, 
we conducted a skin eSNPs-integrated pathway analysis 

for GWAS on BCC using MuTHER resources and sought 
to provide more insights into the underlying mechanisms 
of BCC.

RESULTS

From the MuTHER data, we identified 70,932, 
87,481, and 97,903 eSNPs in skin tissue using the 
threshold of 10-5 (main analysis), 5×10-5 (sensitivity 1), 
and 10-4 (sensitivity 2) respectively. Among them, 69,988, 
86,325, and 96,603 are available in our BCC GWAS, 
respectively. Because all these eSNPs have MAF >1% and 
imputation R-square >0.4 in our BCC GWAS, they were 
used for further analysis.

In our main analysis, 2,049 genes with surrogate 
eSNPs were assigned to the pathways defined in the 
KEGG database. Using the cut-off of containing 3 to 200 
genes, 143 pathways were tested for their associations with 
BCC risk using our GWAS data. Eleven pathways reached 
a nominal p value < 0.05, which was 1.54-fold higher 
than the number expected by chance (0.05×143 = 7.15; 
this is a conservative estimate, because pathways may 
be correlated due to overlapping genes, and the effective 
number should be smaller than 143). Three out of the 11 
pathways had a FDR <0.2: the colorectal cancer pathway 
(p-value<0.00001, FDR =0.005), the regulation of actin 
cytoskeleton pathway (p-value=0.03, FDR =0.073), and 
the basal cell carcinoma pathway (p-value=0.002, FDR 
=0.069). In sensitivity 1 analysis, the numbers of genes 
that can be represented by eSNPs increased to 2,649 when 
we used the threshold of 5×10-5 for eSNP identification. 
A total of 151 KEGG pathways that contain between 3 
and 200 genes were examined for their associations with 
BCC. Twelve reached a nominal p<0.05, which was 1.59-
fold higher than the number expected by chance. Five out 
of the 12 pathways had a FDR <0.2. Besides the three 
that have already been found in the main analysis, the 
other two pathways are the adherens junction pathway 
(p-value=0.028, FDR =0.145) and the pancreatic cancer 
pathway (p-value=0.023, FDR =0.189). In sensitivity 
2 analysis, 3,158 genes were included, and 164 KEGG 
pathways were tested. Fifteen reached a nominal p<0.05, 
which was 1.83-fold higher than the number expected by 
chance. Only one out of the 15 pathways had a FDR < 
0.2 -- the colorectal cancer pathway (p-value<0.00001, 
FDR =0.175). In total, five KEGG pathways have shown 
significant associations with risk of BCC in either main 
analysis or sensitivity analysis. Results of main and 
sensitivity analyses for the five significant pathways are 
listed in Table 1. We also used GO and BioCarta databases 
for pathway construction. The results are shown in 
Tables 2 and 3.

For certain pre-defined pathways identified through 
the pathway databases, only some of the genes could be 
represented by eSNPs. Therefore, more attention should 
be given to the genes and eSNPs that were included in 
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the gene set enrichment analysis rather than to the entire 
pathway. For significant pathways, we summarized 
information on such genes and their corresponding eSNPs 
in Table 4. Because no BioCarta pathway appeared to be 

significantly associated with BCC risk in main analysis 
(Table 3), we reported the results of sensitivity analysis 
2 for BioCarta in Table 4. On the other hand, some genes 
belong to more than one of the significant pathways. 

Table 1: KEGG Pathways with significant enrichment (p<0.05, FDR <0.2) in BCC GWAS & Hedgehog Signaling 
Pathway

Pathway Gene 
countd

Main analysisa Sensitivity analysis 1b Sensitivity analysis 2c

Size%
Pathway 

enrichment 
p-valuee

FDRf Size%
Pathway 

enrichment 
p-valuee

FDRf Size%
Pathway 

enrichment 
p-valuee

FDRf

Colorectal 
Cancer 114 7 <0.00001 0.005 10 0.003 0.172 12 <0.00001 0.175

Regulation 
of Actin 
Cytoskeleton

276 14 0.03 0.073 18 0.03 0.183 27 0.529 0.952

Basal Cell 
Carcinoma 73 3 0.002 0.069 4 0.001 0.169 4 <0.00001 0.269

Adherens 
Junction 110 7 0.346 1 10 0.028 0.145 11 0.02 0.253

Pancreatic 
Cancer 115 3 0.054 0.163 5 0.023 0.189 7 <0.00001 0.213

Hedgehog 
Signaling 
Pathway

74 3 0.008 0.657 5 0.031 0.464 5 0.036 0.404

a eSNPs were selected at significance level of 10-5.
b eSNPs were selected at significance level of 5×10-5.
c eSNPs were selected at significance level of 10-4.
d The number of genes in the pathway according to the KEGG database.
e&f Based on 1,000 permutations.
f Based on 143, 151, and 164 pathways in main, sensitivity 1, and sensitivity 2, respectively.
% The number of genes that have surrogate eSNPs in the pathway.

Table 2: GO Pathways with significant enrichment (p<0.05, FDR <0.2) in BCC GWAS

Pathway# Gene 
countd

Main analysisa Sensitivity analysis 1b Sensitivity analysis 2c

Size%
Pathway 

enrichment 
p-valuee

FDRf Size%
Pathway 

enrichment 
p-valuee

FDRf Size%
Pathway 

enrichment 
p-valuee

FDRf

GO0006921 42 3 0.007 0.179 4 0.042 0.932 5 0.137 0.941

GO0006997 70 4 0.025 0.120 5 0.099 0.717 7 0.166 0.902

a eSNPs were selected at significance level of 10-5.
b eSNPs were selected at significance level of 5×10-5.
c eSNPs were selected at significance level of 10-4.
d The number of genes in the pathway according to the GO database.
e&f Based on 1,000 permutations.
f Based on 407, 456, and 506 pathways in main, sensitivity 1, and sensitivity 2, respectively.
# Annotation: GO0006921 – cellular component disassembly involved in apoptosis; GO0006997 – nucleus organization: a 
process at the cellular level which results in the assembly, arrangement of constituent parts, or disassembly of the nucleus.
% The number of genes that have surrogate eSNPs in the pathway.
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For example, SOS1 and RAC1 were included in four 
significant pathways and PIK3R1 and CYCS were in 
three significant pathways. Nine eSNPs associated with 
BCC risk at a nominal P < 0.05 are worth noting. These 
gene-eSNP pairs are CYCS-rs39454 (PBCC = 0.025), 
SOS1-rs12473092 (PBCC = 0.029), ARHGEF7-rs7984371 
(PBCC = 0.039), ITGA2-rs3212544 (PBCC = 0.040), VCL 
– rs12360087 (PBCC = 0.002), BMP2-rs6054443 (PBCC 
= 0.0006), BIRC7-rs1075557 (PBCC = 0.014), PIK3R1-
rs9291926 (PBCC = 0.016), and RAC1-rs2689420 (PBCC = 
0.013).

Moreover, we chose two established BCC-related 
pathways in the KEGG database as positive controls – the 
basal cell carcinoma pathway and the hedgehog signaling 
pathway. The gene set enrichment p-value for these two 
pathways reached nominal significance in both the main 
and sensitivity analyses, though the FDRs of the hedgehog 
signaling pathway are above 0.2 (Table 1).

DISCUSSION

Conventional GWASs have primarily focused on 
the associations between individual genetic markers 
and risk of diseases. In the current study, we applied a 
novel approach that integrates skin eSNPs and pathway 
analysis for GWAS of BCC. Three KEGG pathways 
(colorectal cancer, regulation of actin cytoskeleton, 
and basal cell carcinoma), two GO pathways (cellular 
component disassembly involved in apoptosis, and 
nucleus organization), and four BioCarta pathways (Ras 
signaling pathway, T-cell receptor signaling pathway, Ras-
independent pathway in natural killer (NK) cell-mediated 

cytotoxicity, and links between Pyk2 and Map Kinases) 
showed significant associations with BCC risk. Our results 
demonstrate that SNPs and genes of moderate effect that 
are undetectable by conventional GWASs are significantly 
associated with risk of BCC as groups. These gene sets 
might be implicated in the etiology of BCC.

Some well-known cancer-related pathways have 
been mapped in both the colorectal cancer pathway and 
the BCC pathway in KEGG, including the p53 signaling 
pathway, the Wnt signaling pathway, the PI3K-Akt 
signaling pathway, the TGF-β signaling pathway, and 
other pathways related to cell cycle and survival. Studies 
have shown that a personal history of non-melanoma skin 
cancer was significantly associated with a higher risk of 
other primary cancers [6, 29]. Certain genetic components 
may act systemically and play a role in both cutaneous and 
internal carcinogenesis. The actin cytoskeleton pathway 
mainly regulates cell motility, which is required for many 
biological processes, such as embryonic morphogenesis, 
immune surveillance, and tissue repair and regeneration. 
Aberrant regulation of cell migration drives progression of 
many diseases, including cancer invasion and metastasis 
[30, 31]. In the GO database, GO0006921 is defined as 
the breakdown of structures such as organelles, proteins, 
or other macromolecular structures during apoptosis; 
GO0006997 is defined as a process that is carried out at 
the cellular level that results in the assembly, arrangement 
of constituent parts, or disassembly of the nucleus, all 
of which are highly related to cancer development. The 
RAS signaling pathway is a key regulator of normal cell 
growth and malignant transformation. Mutations in RAS 
genes or alterations in upstream or downstream signaling 

Table 3: BioCarta Pathways with significant enrichment (p<0.05, FDR <0.2) in BCC GWAS

Pathway# Gene 
countd

Main analysisa Sensitivity analysis 1b Sensitivity analysis 2c

size
Pathway 

enrichment 
p-value

FDR size
Pathway 

enrichment 
p-value

FDR Size%
Pathway 

enrichment 
p-valuee

FDRf

rasPathway 23 NA+ NA+ 3 0.008 0.109

tcrPathway 45 NA+ NA+ 6 0.014 0.189

nkcellsPathway 20 NA+ NA+ 4 0.024 0.188

Pyk2Pathway 27 NA+ NA+ 4 0.048 0.199

a eSNPs were selected at significance level of 10-5.
b eSNPs were selected at significance level of 5×10-5.
c eSNPs were selected at significance level of 10-4.
d The number of genes in the pathway according to the BioCarta database.
e&f Based on 1,000 permutations.
f Based on 60, 71, and 114 pathways in main, sensitivity 1, and sensitivity 2, respectively.
+ These four pathways were not tested in main and sensitivity 1 analyses because their sizes are not between 3 and 200.
# Annotation: rasPathway – Ras signaling pathway; tcrPathway – T cell Receptor signaling pathway; nkcellsPathway -- 
Ras-Independent pathway in NK cell-mediated cytotoxicity; Pyk2Pathway -- Links between Pyk2 and Map Kinases.
% The number of genes that have surrogate eSNPs in the pathway.
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Table 4: Genes and eSNPs in significant pathways identified in main analysis&

Pathway 
database Pathway

Number 
of Genes 

with 
eSNP

Pathway 
enrichment 

p-value
FDR Genes 

with eSNP Chr&& Surrogate 
eSNP+

eSNP 
PBCC

#
Chr_

position##

KEGG

Colorectal 
Cancer 7 <0.00001 0.005

BIRC5 17 rs4789559 0.1304 17:76218857

CYCS 7 rs39454 0.0253 7:25135783

FZD3 8 rs12678890 0.0746 8:28451002

FZD8 10 rs11815242 0.1011 10:35995340

MAPK9 5 rs3812067 0.1035 5:179709154

SMAD3 15 rs7176870 0.0970 15:67388553

SOS1 2 rs12473092 0.0291 2:39204040

Regulation 
of Actin 

Cytoskeleton
14 0.03 0.073

ACTG1 17 rs12952655 0.7171 17:80421139

ARHGEF7 13 rs7984371 0.0385 13:111958666

BAIAP2 17 rs4969387 0.3086 17:79081724

C3orf10 3 rs279545 0. 0513 3:9972493

CYFIP2 5 rs11744003 0.0853 5:156806993

FGFR4 5 rs422421 0.0994 5:176517326

GNA12 7 rs7790322 0.0511 7:2830498

ITGA2 5 rs3212544 0.0404 5:52358887

ITGAX 16 rs11150612 0.1029 16:31357760

MYL2 12 rs16941319 0.5931 12:111646853

PAK2 3 rs7646247 0.4314 3:196519209

SOS1 2 rs12473092 0.0291 2:39204040

TIAM1 21 rs2833271 0.2804 21:32487749

VAV3 1 rs11185131 0.6043 1:108078183

VCL 10 rs12360087 0.0023 10:76373904

Basal Cell 
Carcinoma 3 0.002 0.069

BMP2 20 rs6054443 0.0006 20:6647580

FZD3 8 rs12678890 0.0746 8:28451002

FZD8 10 rs11010260 0.0513 10:35995340

GO

GO0006921 3 0.007 0.179

BIRC7 20 rs1075557 0.0143 20:61870465

CYCS 7 rs39454 0.0253 7:25135783

DFFB 1 rs4074709 0.8019 1:3796948

GO0006997 4 0.025 0.120

BIRC7 20 rs1075557 0.0143 20:61870465

CYCS 7 rs39454 0.0253 7:25135783

DFFB 1 rs4074709 0.8019 1:3796948

PML 15 rs11072463 0.1986 15:74303349
(Continued)



Oncotarget36890www.impactjournals.com/oncotarget

components have been found in most human tumors [32] 
including basal cell carcinoma, although with a relatively 
low mutation rate [33]. T cell receptor (TCR) activation 
promotes a number of signaling cascades that ultimately 
determine cell survival, proliferation, and differentiation. 
High levels of intratumor infiltration of T cells is correlated 
with prolonged survival in cancer patients [34]. NK cells 
are large granular lymphocytes with natural cytotoxicity 
against tumor cells [35]. An 11-year follow-up study has 
shown that low NK cell activity in peripheral blood is 
associated with increased cancer risk [36].

In the current study, we made a major improvement 
by using high-quality eSNPs data on disease-relevant 
tissue. Although detailed gene-expression studies have 
profiled transcripts and genotyped SNPs across the 
human genome in several population-based cohorts, gene 
expression data in skin tissue from a fairly large cohort 

was not accessible until the publication of the MuTHER 
project. In that study, the GWAS data and expression data 
had undergone stringent quality controls before testing 
the association of expression levels with probabilities 
of imputed genotypes. Also, skin eSNP identified in 
the MuTHER study had been replicated in independent 
cohorts [12]. Other strengths of our study include 
involvement of multiple pathway databases and design of 
sensitivity analysis as well as positive controls to validate 
our findings.

The main limitation of our study is that the 
proportion of genes that could be represented by eSNPs 
within a predefined pathway is too small, because only 
69,988 SNPs that were significantly associated with 
expression of 2,049 genes at significance level of 10-

5 had been included in the main analysis. For example, 
the colorectal cancer pathway in the KEGG database is 

Pathway 
database Pathway

Number 
of Genes 

with 
eSNP

Pathway 
enrichment 

p-value
FDR Genes 

with eSNP Chr&& Surrogate 
eSNP+

eSNP 
PBCC

#
Chr_

position##

BioCarta

rasPathway 3 0.008 0.109

PIK3R1 5 rs9291926 0.0163 5:67599656

RAC1 7 rs2689420 0.0130 7:6410321

RALGDS 9 rs482670 0.3617 9:136007358

tcrPathway 6 0.014 0.189

CALM3 19 rs973679 0.4014 19:47061564

NFATC2 20 rs231583 0.4901 20:49346881

NFATC3 16 rs13338993 0.2890 16:67515312

PIK3R1 5 rs9291926 0.0163 5:67599656

RAC1 7 rs2689420 0.0130 7:6410321

SOS1 2 rs12473092 0.0291 2:39204040

nkcellsPathway 4 0.024 0.188

PIK3R1 5 rs9291926 0.0163 5:67599656

PTK2B 8 rs472865 0.8824 8:26698471

RAC1 7 rs2689420 0.0130 7:6410321

SYK 9 rs914925 0.7664 9:93584793

Pyk2Pathway 4 0.048 0.199

CALM3 19 rs973679 0.4014 19:47061564

PTK2B 8 rs472865 0.8824 8:26698471

RAC1 7 rs2689420 0.0130 7:6410321

SOS1 2 rs12473092 0.0291 2:39204040

& For the BioCarta database, results of sensitivity analysis 2 are presented in this table, because no significant pathway has 
been identified in main and sensitivity 1 analysis.
&& Chromosome of genes.
+ If a gene’s expression is associated with multiple eSNPs, we used the eSNP that was most significantly associated with 
BCC risk as the gene’s surrogate eSNP.
# PBCC represents P values of the association between eSNPs and risk of BCC.
## Chromosome and position of eSNPs.



Oncotarget36891www.impactjournals.com/oncotarget

composed of 114 genes, whereas only 7 genes (6%) were 
involved in the gene set enrichment analysis. Specifically, 
we found that a subgroup of seven genes – BIRC5, 
CYCS, FZD3, FZD8, MAPK9, SMAD3, and SOS1 
– that belong to the KEGG colorectal cancer pathway 
showed significant association with risk of BCC. Similar 
conclusions could be drawn for other significant pathways, 
with the subgroups presented in Table 4. Given that the 
identified subgroups could hardly represent the original 
KEGG, GO, and BioCarta pathways, some may argue 
the necessity of using these pathway resources. However, 
these pre-defined pathways are important in two ways: on 
the one hand, they provide us prior knowledge on how 
to assign genes into different groups in order to conduct 
a pathway-based analysis; on the other hand, genes 
have been carefully selected, organized, and mapped in 
these established pathways based on multiple sources of 
evidence. With high-quality pre-collected information, we 
could interpret a gene’s role and its relationship with other 
genes in the same pathway more easily, despite the limited 
size of identified subgroups.

A further limitation is that no replication was 
conducted for the identified gene groups, because we used 
all our BCC GWAS at the discovery stage to maximize 
statistical power. However, the significant gene groups 
in the main analysis also ranked top among all pathways 
being tested in sensitivity analyses. Besides, the positive 
controls – the Hedgehog signaling pathway and the BCC 
pathway – were significantly associated with risk of BCC 
(p<0.05) in both main and sensitivity analyses.

We also acknowledge the limitation that the 
expression data from the MuTHER project might not 
be very broadly representative as this project only 
included female participants. Gene expressions differ 
between females and males, but the vast majority of these 
differences is attributable to genes that are expressed in 
reproductive tissues [37]. Though less is known about 
the sex-specific gene expression pattern in human skin 
tissue, a study on human blood shows that the genes which 
express with a significant gender bias tend to locate on 
the X or Y chromosome [38]. Because only autosomal 
genes were considered in our study and skin tissue does 
not belong to reproductive system, using eSNPs identified 
among female individuals may be acceptable, but not 
perfect.

Moreover, BCC cases were self-reported without 
further pathological confirmation in the current study. 
However, the validity of self-reported BCC in these 
medically sophisticated populations has been assessed 
in previous studies [39]. Colditz et al. [39] evaluated the 
validity of self-reported illnesses including skin cancer 
in the NHS. Among 33 random samples of women who 
had reported non-melanoma skin cancer, medical records 
indicated that 30 (91%) had correctly reported their skin 
cancer. Also, Hunter et al. [40] previously examined the 
risk factors of BCC in the NHS using the self-reported 

cases. As expected, they found that lighter pigmentation 
and higher tendency to sunburn were associated with an 
increased risk of BCC. In addition, using the self-reported 
BCC cases, our group identified the previously well-
documented genetic variant in the MC1R gene as the top 
risk locus in our GWAS for BCC [12]. These data support 
the validity of self-report of BCC in our study.

In conclusion, our study identified novel genes and 
gene sets that may be important for BCC development. 
Genes with moderate effect that are undetectable in 
conventional GWAS were significantly associated with 
risk of BCC as groups. Further pathway analyses that 
integrate more skin eSNPs and/or other functional variants 
are warranted to verify our findings, and additional 
biological studies are needed to better elucidate the roles 
of these genes and pathways in the etiology of BCC.

MATERIALS AND METHODS

Study populations

A BCC GWAS has been established within the 
sub-cohort of participants who provided a blood sample 
in Harvard cohorts. Eight case-control studies nested 
within the Nurses’ Health Study (NHS), the Nurses’ 
Health Study II (NHS2), and the Health Professionals 
Follow-up Study (HPFS) were included in the current 
BCC GWAS: the postmenopausal invasive breast cancer 
case-control study nested within the NHS (BC_NHS), 
the type 2 diabetes case-control studies nested within 
the NHS and the HPFS (T2D_NHS & T2D_HPFS), the 
coronary heart disease case-control studies nested within 
the NHS and the HPFS (CHD_NHS & CHD_HPFS), and 
the kidney stone case-control studies nested within the 
NHS, the NHS2, and the HPFS (KS_NHS, KS_NHS2 & 
KS_HPFS). See Supplementary Material for more detailed 
descriptions of NHS, NHS2, HPFS, and the eight nested 
case-control studies. The study protocol was approved by 
the Institutional Review Boards of Brigham and Women’s 
Hospital and the Harvard T.H. Chan School of Public 
Health.

Inclusion and exclusion

BCC cases who had other common cancers before 
diagnosis of BCC were excluded. Eligible controls were 
free of BCC and other common cancers. According to 
the National Cancer Institute and the American Cancer 
Society, common cancers include melanoma, SCC, breast 
cancer, endometrial cancer, ovarian cancer, colorectal 
cancer, bladder cancer, lung cancer, pancreatic cancer, 
kidney (renal cell) carcinoma, leukemia, non-Hodgkin 
lymphoma, thyroid cancer, and oral cancer. Participants 
with identical genetic information but different cohort IDs 
were removed; participants whose data appeared in more 
than one of the eight case-control studies were included 
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only once. In total, the BCC GWAS comprised 2,323 
BCC cases and 7,275 controls of European ancestry in the 
United States.

Genotyping, quality control (QC), and 
imputation

Samples from BC_NHS were genotyped 
using Illumina HumanHap550 array as part of the 
National Cancer Institute’s Cancer Genetic Markers 
of Susceptibility (CGEMS) Project [41]. We used 
Affymetrix 6.0 arrays for the T2D_NHS, T2D_HPFS, 
CHD_NHS, and CHD_HPFS, and Illumina 610Q for the 
KS_NHS, KS_NHS2, and KS_HPFS. Quality control on 
SNP completion rate, sample completion rate, deviation 
from Hardy–Weinberg equilibrium (HWE), Mendelian 
consistency, minor allele frequency, and duplication 
samples were conducted within each study, although the 
thresholds were chosen slightly differently. Within each 
of the eight studies, we used the MACH program [42] to 
impute genotypes for more than 2.5 million markers, using 
haplotype information in the HapMap phase II data build 
36(CEU) as a reference panel.

BCC ascertainment

Disease follow-up procedures are identical for NHS, 
NHS2, and HPFS. Self-reported BCC case-control status 
is updated every two years without further pathological 
confirmation, however its validity has been assessed in 
previous studies [12, 39, 40]. The latest update was made 
in 2008 for the current analysis.

Multiple tissue human expression resource 
(MuTHER) project and eSNPs in skin tissue

A detailed description has been published previously 
[28]. Briefly, the MuTHER project included 856 female 
individuals of European ancestry recruited from the 
TwinsUK Adult twin registry [43]. Skin tissues were 
obtained from a photo-protected area adjacent to the 
umbilicus by punch biopsies. RNA from skin samples 
was extracted using TRIzol Reagent (Invitrogen), 
followed by RNA quality assessment and concentration 
measurement. Illumina Human Ht-12 V3 BeadChip 
(48,804 probes) was used for expression profiling of 
each sample, with either two or three technical replicates. 
After quality control, expression profiling of skin tissue 
was performed on 705 individuals, and 23,596 probes 
were kept for further analysis. The TwinsUK study was 
genotyped by a combination of Illumina HumanHap300, 
HumanHap610Q, 1M-Suo, and 1.2M Duo 1M chips. 
Genetic imputation was carried out using IMPUTE 
software package and two reference panels: P0 [HapMap 
2, release 22, combined Utah residents of Northern and 
Western European ancestry (CEU), Yoruba from Ibadan, 

Nigeria (YRI) and Asian (ASN) panels] and P1 (610k+, 
including the combined HumanHap610k and 1M arrays). 
Association of expression levels with probabilities of 
imputed genotypes were tested using a two-step mixed 
model-based score test [44, 45] and implemented in the 
GenABEL/ProbABEL package [46, 47] for 2,029,988 
SNPs with MAF of >5% and IMPUTE info value of 
>0.8. In total, 667 skin samples that had both expression 
profiles and imputed genotypes were included in the 
analysis. Results of testing associations between gene 
expression level and SNPs were published and made 
publicly accessible on MuTHER’s website in 2012 (http://
www.muther.ac.uk/Data.html). In their study, eSNPs were 
called with a false discovery rate (FDR) of 1%, which 
corresponds to P-value < 3.8 × 10-5 [28]. We specified 
three thresholds (10-5, 5×10-5, and 10-4) around this p-value 
for eSNPs selection in the current study. We used the 
significance level of 10-5 in main analysis and the other 
two in sensitivity analysis.

Statistical analysis

Association analysis

We used a multivariate logistic regression model, 
adjusted for age, and the first three principal components 
of genetic variation, to evaluate the associations between 
eSNPs and BCC risk in each of the eight nested case-
control studies. The principal components were calculated 
for all individuals on the basis of ca. 10,000 unlinked 
markers using the EIGENSTRAT software [48]. The 
within-study association results for each of the eSNPs 
were combined by implementing inverse variance-
weighted meta-analyses in METAL software [49].
eSNP enrichment analysis

We integrated the eSNP information into pathway-
based GWAS analysis using the method of Zhong et al. 
[23]. For a gene whose expression is associated with 
multiple eSNPs, we chose the eSNP that had the most 
significant association with BCC risk as this gene’s 
representative. Then we assigned these genes into the 
pathway defined by pathway databases. We evaluated 
the association of each pathway with risk of BCC with 
an Enrichment Score (ES), which was calculated from 
the weighted Kolmogorov-Smirnov-like running-sum 
statistic. This ES reflects the overrepresentation of genes 
within this pathway at the top of the entire ranked list of 
genes being tested. We permuted the case-control status 
and re-calculated the statistic values 1,000 times to assess 
the significance of each ES. To allow direct comparison 
of pathways of different sizes, a normalized enrichment 
score (NHS) was computed for each pathway. The FDR 
was calculated to estimate the proportion of false positive 
findings by using NES [50]. We set the significance level 
for the pathway analysis as p-value < 0.05 and FDR < 0.2.
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Pathway databases

We used human biological pathways as defined 
in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG, http://www.genome.jp/kegg/pathway.html/) 
database [51] as the primary pathway collection. Gene 
Ontology (GO, http://geneontology.org/) and BioCarta 
(http://www.biocarta.com/) databases were also included 
as secondary pathway collections. All pathways that 
contain at least 3 but at most 200 genes represented by 
eSNPs were tested.

Sensitivity analysis

Results (p-values) of all tested SNP-gene 
expression pairs are published on the MuTHER website. 
The threshold to identify SNPs that are significantly 
associated with at least one gene’s expression in skin 
tissue is arbitrary. As the threshold becomes less stringent, 
the number of genes that can be represented by eSNPs 
increases and the surrogate eSNP for a particular gene may 
change. Therefore, we changed our threshold for eSNP 
selection to 5×10-5 and 10-4 respectively for the purpose of 
sensitivity analysis.
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