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ABSTRACT

Epstein-Barr virus (EBV) infection and chronic inflammation are closely 
associated with the development and progression of nasopharyngeal carcinoma 
(NPC) and gastric cancer (GC), and the infiltration of inflammatory cells, including 
tumor-associated macrophages (TAMs), is often observed in these cancers. EBV 
encodes 44 mature micro RNAs (miRNAs), but the roles of only a few EBV-encoded 
miRNA targets are known in cancer development, and here, our aim was to elucidate 
the effects of EBV-miR-BART11 on FOXP1 expression, and potential involvement in 
inflammation-induced carcinogenesis. We constructed an EBV miRNA-dependent 
gene regulatory network and predicted that EBV-miR-BART11 is able to target 
forkhead box P1 (FOXP1), a key molecule involved in monocyte to macrophage 
differentiation. Here, using luciferase reporter assay, we confirmed that EBV-miR-
BART11 directly targets the 3′-untranslated region of FOXP1 gene, inhibits FOXP1 
induction of TAM differentiation, and the secretion of inflammatory cytokines into 
the tumor microenvironment, inducing the proliferation of NPC and GC cells. FOXP1 
overexpression hindered monocyte differentiation and inhibited NPC and GC cells 
growth. Our results demonstrated that EBV-miR-BART11 plays a crucial role in the 
promotion of inflammation-induced NPC and GC carcinogenesis by inhibiting FOXP1 
tumor-suppressive effects. We showed a novel EBV-dependent mechanism that 
may induce the carcinogenesis of NPC and GC, which may help define new potential 
biomarkers and targets for NPC and GC diagnosis and treatment.

INTRODUCTION

Chronic inflammation is an important mediator 
of nasopharyngeal carcinoma (NPC) [1-3] and gastric 
cancer (GC) [4]. A large number of inflammatory cells, 
including tumor-associated macrophages (TAMs), are 
found in NPC and GC biopsies. TAM infiltration is tightly 
associated with poor prognosis in NPC [5, 6]. TAMs were 

shown, together with tumor-derived FasL, to serve as a 
barrier against the infiltration of CD8+ T cells into GC 
[7, 8]. Furthermore, our previous studies demonstrated 
that TAM-derived inflammatory factors, such as IL-6, 
stimulate NPC cell proliferation [9, 10].

Epstein-Barr virus (EBV) infection is closely 
associated with the development and progression of NPC 
and GC [11-13]. EBV encodes 44 mature microRNAs 
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(miRNAs), divided into two clusters, BHRFs and 
BARTs [14-16]. BART miRNAs were shown to affect 
the malignant phenotype of some lymphomas [17], GC 
[18], and NPC [19-22], including viral latency [23-25], 
immune escape [26], cell proliferation [27], cell apoptosis 
[28, 29], cell cycle regulation, and cancer metabolism [27-
30]. These findings suggest that EBV miRNAs may exert a 
variety of important regulatory functions in EBV-mediated 
tumorigenesis and cancer progression. Nevertheless, the 
functions of most EBV-encoded miRNAs remain to be 
elucidated.

We previously profiled all 44 EBV-encoded 
mature miRNAs in NPC biopsies and non-cancerous 
nasopharyngeal tissues, and found that EBV miRNAs 
located in the BART region were highly expressed in 
NPC biopsies [31-33]. Additionally, we constructed an 
EBV miRNA-dependent gene regulatory network and 
determined that both the 3′- and 5′-arms of the mature 
EBV-miR-BART11 hairpin precursor may specifically 
target forkhead box P1 (FOXP1) mRNA. FOXP1 has 
been reported to be involved in monocyte differentiation 
to macrophage, where its downregulation represents a 
key molecular event [34, 35]. However, the biological 
functions of both EBV-miR-BART11 and FOXP1 in 
EBV-associated carcinogenesis have not been defined 
yet. We hypothesized that EBV may participate in TAM 
differentiation and promote inflammation-induced EBV-
associated carcinogenesis via EBV-miRNA-BART11 
expression and subsequent FOXP1 downregulation.

RESULTS

FOXP1 is a target of EBV-miR-BART11

Bioinformatic analysis identified three putative 
EBV-miR-BART11 binding sites (two for EBV-miR-
BART11-3p and one for EBV-miR-BART11-5p) in the 
FOXP1 3′-untranslated region (UTR) (Figure 1A). To 
determine the effect of EBV-miR-BART11 on FOXP1 
expression, EBV-miR-BART11 precursor vector 
expressing both mature EBV-miR-BART11-3p and EBV-
miR-BART11-5p was constructed and transfected into 
three different EBV-negative cancer cell lines (5-8F, HK-1, 
and AGS). The expression of mature EBV-miR-BART11-
3p and EBV-miR-BART11-5p was measured using qRT-
PCR (Figure 1B). These results demonstrated that the 
EBV-miR-BART11 precursor vector can successfully 
express mature EBV-miR-BART11-3p and EBV-miR-
BART11-5p in EBV-negative cancer cell lines. Further 
analysis revealed that EBV-miR-BART11 significantly 
inhibited FOXP1 expression at the mRNA and protein 
levels when compared with empty vector controls in 5-8F, 
HK-1, and AGS cells (Figure 1C–1D).

To elucidate if FOXP1 is a direct target of EBV-
miR-BART11-3p and EBV-miR-BART11-5p, three 

pairs of luciferase reporter vectors containing either 
wild-type (WT-I, WT-II, and WT-III) EBV-miR-BART11 
binding or mutant sequences of the FOXP1 3′-UTR were 
co-transfected with the EBV-miR-BART11 precursor 
expression vector in 5-8F cells. EBV-miR-BART11 
significantly attenuated the luciferase activity of FOXP1-
WT vectors II and III, but exhibited no effects on the 
FOXP1-WT-I vector or the FOXP1-mutant vectors (Figure 
1E). These results suggested that EBV-miR-BART11 is 
able to inhibit FOXP1 expression by targeting the binding 
sites II and III in the FOXP1 3′-UTR.

To explore the relationship between EBV-miR-
BART11 and FOXP1, EBV-miR-BART11-(3p and 5p) 
and FOXP1 mRNA expression was assessed in 30 NPC 
biopsies and 10 non-tumor nasopharyngeal epithelial 
tissues. As expected, EBV-miR-BART11-3p and EBV-
miR-BART11-5p expression levels were significantly 
higher in NPC samples than in normal nasopharyngeal 
epithelial samples, and these levels were negatively 
correlated with FOXP1 expression (p < 0.05, Figure 1F).

EBV-miR-BART11 promotes monocyte 
differentiation by attenuating FOXP1 expression

In order to define the relationship between EBV-
miR-BART11 and FOXP1 in monocyte to macrophage 
differentiation further, we monitored temporal FOXP1 
expression in THP-1 monocytes subjected to PMA-
induced macrophage differentiation. This revealed that 
FOXP1 is dramatically downregulated during monocyte 
to macrophage transformation (Figure 2A), which is 
consistent with the previous reports [34, 35]. Therefore, 
we hypothesized that EBV-miR-BART11 may stimulate 
monocyte differentiation. To test this theory, THP-1 
cells were infected with lentivirus encoding FOXP1 or 
EBV-miR-BART11, and treated with PMA to induce 
differentiation. The results revealed that EBV-miR-
BART11 downregulated both FOXP1 mRNA and protein 
expression (Figure 2B). In addition, we found that FOXP1 
expression hindered PMA-induced THP-1 differentiation, 
whereas EBV-miR-BART11 overexpression was shown to 
induce this process, compared with the negative control 
(Figure 2C).

EBV-miR-BART11-expressing macrophages are 
hyperresponsive to LPS

Macrophages play a key role in chronic 
inflammation and can trigger a pro-inflammatory response 
by secreting inflammatory factors [36, 37]. The expression 
of several prototypical pro-inflammatory cytokines (IL-1β, 
IL-6, and IL-8) markedly increased in PMA-induced THP-
1 monocytes (D-THP-1), compared with the untreated 
controls (Figure 3A). In order to investigate the effects 
of FOXP1 and EBV-miR-BART11 on LPS-induced pro-
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inflammatory cytokine production in D-THP-1 cells, the 
investigated cells were infected with lentivirus encoding 
FOXP1 or EBV-miR-BART11. Notably, IL-1β, IL-6, and 
IL-8 mRNA expression in FOXP1-overexpressing cells 

was significantly lower than in controls. Elevated cytokine 
levels were detected in both the control and FOXP1-
overexpressing cells stimulated with LPS (1 μg/mL) 
for 24 h; however, the levels in FOXP1-overexpressing 

Figure 1: FOXP1 is a direct target of EBV-miR-BART11. A. Three binding sites of EBV-miR-BART11-3p and 
EBV-miR-BART11-5p were predicted in the FOXP1 3’-UTR, including 3082 bp-3106 bp (I), 3917 bp-3998 bp (II), and 5943 bp-5970 
bp (III). Wild-type (FOXP1-WT) and mutant (FOXP1-mutant) sequences were used to validate these predictions. B. The expression of 
exogenous EBV-miR-BART11-3p (left) and EBV-miR-BART11-5p (right) was detected by qRT-PCR. FOXP1 C. mRNA and D. protein 
expression levels in 5-8F, HK-1, and AGS cells after EBV-miR-BART11 treatment. β-actin served as loading control. (Continued )
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cells were shown to be significantly lower than those in 
controls. Together, these data demonstrated that FOXP1 
attenuates spontaneous and LPS-stimulated IL-1β, IL-6, 
and IL-8 expression in D-THP-1 cells, whereas EBV-miR-
BART11 has the opposite effect (Figure 3B).

EBV-miR-BART11 enhances the local 
inflammatory response in carcinoma

TAMs are a major component of the immune 
infiltrates present in the NPC microenvironment, where 

they produce cytokines, growth factors, and angiogenic 
inducers that amplify the inflammatory response and 
promote tumor survival and growth [38]. The respective 
contributions of FOXP1 and EBV-miR-BART11 to this 
process in nasopharyngeal epithelial cells remain unclear. 
Therefore, we examined IL-1β, IL-6, and IL-8 production in 
EBV-negative cell lines (5-8F, HK-1, and AGS) following 
LPS treatment. Naïve EBV-negative cells were treated with 
conditioned media collected from LPS-treated D-THP-1 
cells, in order to mimic the tumor microenvironment. 
IL-1β, IL-6, and IL-8 mRNA expression increased in 

Figure 1: (Continued ) FOXP1 is a direct target of EBV-miR-BART11. E. Luciferase reporter assay, using reporter vectors 
containing either wild-type (FOXP1-WT) or mutant (FOXP1-mutant) FOXP1 3′-UTR, and EBV-miR-BART11 or non-targeting control, 
was performed in order to identify the direct binding of EBV-miR-BART11 to the FOXP1 3′-UTR in 5-8F cells. F. EBV-miR-BART11 and 
FOXP1 expression levels in NPC and control specimens were detected by qRT-PCR. N, non-tumor nasopharyngeal epithelium (n = 10); 
T, NPC (n = 30). Representative images or data expressed as mean ± SD of the measurements obtained in three separate experiments are 
presented (ND: not detected; *p < 0.05; **p < 0.01;***p < 0.001).
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Figure 2: EBV-miR-BART11 promotes monocyte differentiation of THP-1 cells by attenuating FOXP1 
expression. A. FOXP1 expression at mRNA (left) and protein (right) levels, during the PMA-induced differentiation of monocytic 
THP-1 cells. B. The expression of EBV-miR-BART11 (left) and FOXP1 (middle, mRNA; right, protein) was examined by qRT-PCR 
and western blotting, respectively, in THP-1 cells infected with lentivirus encoding EBV-miR-BART11. C. The effects of EBV-miR-
BART11 and FOXP1 on monocyte differentiation. Morphological changes were monitored in PMA-induced THP-1 cells following FOXP1 
overexpression vector or EBV-miR-BART11 precursor vector transfection. THP-1 cell differentiation was determined by the viability 
of adherent cells, using MTT assay. Data represent mean ± SD of OD values obtained in three separate experiments (ND: not detected; 
**p < 0.01; ***p < 0.001).
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EBV-negative epithelial cells following LPS treatment, 
which was potentiated after culturing in conditioned 
media. Consistent with our earlier findings [6], exogenous 
expression of FOXP1 or EBV-miR-BART11 was shown 
to significantly reduce or potentiate the local inflammatory 
response, respectively (Figure 4A–4B).

EBV-miR-BART11 accelerates cell proliferation 
by attenuating FOXP1 expression

Cytokines stimulated by the local inflammatory 
response promote epithelial cell carcinogenesis through the 
induction of cell proliferation [5, 9]. In order to understand 
the roles of EBV-miR-BART11 and FOXP1 in epithelial cell 

proliferation, EBV-negative cell lines were transfected with 
EBV-miR-BART11, FOXP1, or FOXP1 siRNAs (siFOXP1), 
and cell proliferation was examined by the MTT assay. 
siFOXP1 was demonstrated to induce FOXP1 knockdown 
specifically, at both mRNA and protein levels (Supplementary 
Figure S1). Both EBV-miR-BART11 overexpression and 
FOXP1 silencing enhanced cell proliferation, while FOXP1 
overexpression had the opposite result (Figure 5A). These 
findings were validated using the colony formation assay 
as well, which showed that FOXP1 expression significantly 
reduced colony forming potential, in terms of both colony 
number and size. Similarly, EBV-miR-BART11 and 
siFOXP1 exhibited the opposite effects on colony formation 
potential (Figure 5B). Furthermore, flow cytometric analysis 

Figure 3: EBV-miR-BART11-transfected macrophages are hyperresponsive to LPS. A. Pro-inflammatory cytokine (IL-1β, 
IL-6, and IL-8) expression in PMA-treated THP-1 cells. B. Differentiated THP-1 (D-THP-1) cells, stimulated with LPS in the presence 
of exogenous FOXP1 overexpression (upper panel) or EBV-miR-BART11 (lower panel). Data are expressed as mean ± SD of the results 
obtained from each group of cells in three separate experiments (*p < 0.05; **p < 0.01; ***p < 0.001).
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Figure 4. Effect of FOXP1 and EBV-miR-BART11 expression on the local inflammatory response in epithelial cells. 
The expression of inflammatory factors (IL-1β, IL-6, and IL-8) , measured in 5-8F and HK-1 NPC and AGS GC epithelial cells transfected 
with FOXP1 overexpression vector A. or EBV-miR-BART11 precursor vector B. and treated with LPS or conditioned media collected from 
the untreated differentiated-THP-1 cells (D-THP) or LPS-treated D-THP-1 cells (D-THP-LPS). Data are represented as mean ± SD of three 
independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 5: Effect of EBV-miR-BART11 and FOXP1 on cancer cell proliferation. The effect of FOXP1 or EBV-miR-BART11 
overexpression, or FOXP1 siRNA knockdown (siFOXP1) on cell proliferation was investigated by the A. MTT assay and B. colony 
formation assay in 5-8F, HK-1, and AGS cells. (Continued )
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revealed that FOXP1 overexpression results in a higher 
percentage of cell accumulation in G0/G1 phase, compared 
with the non-transfected controls (Figure 5C).

EBV-miR-BART11 promotes inflammation-
induced cell proliferation by suppressing FOXP1 
expression

Our previous study indicated that LPS-stimulated 
TAMs can promote epithelial cell proliferation [5]. In 
order to understand the functions of EBV-miR-BART11 
and FOXP1 in inflammation-induced cell proliferation, 
5-8F, HK-1, and AGS cells with exogenous EBV-miR-
BART11 or FOXP1 expression, or FOXP1 knockdown 
cells were cultured in conditioned media obtained from 
LPS-stimulated D-THP-1 cells. These results showed that 
EBV-miR-BART11 overexpression (Figure 6A) or FOXP1 
knockdown (Figure 6B) can promote inflammation-
induced cell proliferation, whereas FOXP1 overexpression 
inhibited this effect (Figure 6C).

EBV-miR-BART11 activates NF-κB signaling 
through FOXP1

Nuclear factor κB (NF-κB) orchestrates the 
inflammatory response by regulating the expression of 

numerous genes [5, 36]. Therefore, we investigated the 
effects of FOXP1 and EBV-miR-BART11 on NF-κB p65 
expression in THP-1, 5-8F, HK-1, and AGS cells. FOXP1 
overexpression markedly decreased NF-κB p65 protein 
expression, while EBV-miR-BART11 overexpression 
or FOXP1 knockdown led to an increase in NF-κB p65 
expression (Figure 7A). The analysis of NF-κB transcriptional 
activity using the reporter assay in 5-8F cells revealed that 
exogenous FOXP1 expression led to the inhibition of NF-κB 
transcriptional activity, while EBV-miR-BART11 or FOXP1 
siRNA had the opposite effect (Figure 7B).

DISCUSSION

Chronic, non-resolving inflammation plays an 
important role in the initiation of a variety of tumors, 
including NPC [38, 39] and GC [40-42]. While various 
immune cells are involved in chronic inflammation, TAMs 
represent the key mediators of chronic inflammation within 
the tumor microenvironment [37]. We previously found 
that TAM infiltration promotes NPC cell proliferation 
by the secretion of inflammatory factors, such as IL-6 
[5, 9], and induce NF-κB and STAT3 transcription factor 
activation [39, 43], ultimately resulting in poor disease 
prognosis.

Figure 5: (Continued ) Effect of EBV-miR-BART11 and FOXP1 on cancer cell proliferation. C. Cell cycle analysis of cell 
cycle progression by flow cytometric analysis. All data were normalized to the vector-only control cell proliferation rate, and the results are 
expressed as mean ± SD of the results obtained in three independent experiments (*p < 0.05; **p < 0.01; ***p < 0.001).
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Figure 6: Effect of EBV-miR-BART11 and FOXP1 on inflammation-induced cancer cell proliferation. The proliferation 
of 5-8F, HK-1, and AGS cells transfected with EBV-miR-BART11 precursor vector A. FOXP1 siRNA B. or FOXP1 overexpression vector 
C. cultured in the conditioned media collected from LPS-treated differentiated THP-1 cells (D-THP-LPS). Data are expressed as mean ± 
SD of cell growth following different treatments, of three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001.

EBV-infected macrophages induce an inflammatory 
response in EBV-related human tumors [44-46], but the 
relationships between EBV-encoded miRNAs and TAMs 
in EBV-associated solid tumors have not been reported. In 
our previous study [2], we constructed an EBV miRNA-
dependent gene regulatory network and predicted that the 
EBV-encoded miRNAs, BART11-3p and BART11-5p, 
may regulate FOXP1 expression [2]. FOXP1 belongs to the 
FOX transcription factor family, which includes a variety 
of ‘winged helix’ transcription factors that play crucial roles 
in immune homeostasis [47]. Several members of the FOX 
family, for example FOXF1, FOXP3, FOXN1, FOXO1, 

and FOXO3, were shown to execute diverse functions 
during the regulation of inflammation and adaptive immune 
response [48-51]. The FOXP1 locus is located on 3p14.1 
[47], a region known for its high-frequency allele imbalance 
[52-54], and it is a defined genetic susceptibility region [55, 
56] in NPC. Generally, FOXP1 acts as a transcriptional 
repressor that regulates the differentiation of B [57] and T 
lymphocytes [58], monocytes [34, 59], and other immune 
cells. Therefore, we speculated that EBV may alter immune 
cell differentiation and the inflammatory process, in order 
to promote inflammation-induced carcinogenesis in EBV-
associated cancers by inhibiting FOXP1 expression.
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We confirmed FOXP1 as a target of EBV-miR-
BART11 in both monocytes and epithelial cells, and 
showed that FOXP1 downregulation was necessary for 
monocyte differentiation. We further investigated the 
effects of EBV-miR-BART11 and FOXP1 on macrophage 
cytokine secretion. EBV-miR-BART11 overexpression 
in TAMs resulted in LPS hyperresponsiveness and 

the increased secretion of cytokines, chemokines, and 
growth factors that support tumor survival, proliferation, 
and invasion. Taken together, our results indicate 
that EBV-miR-BART11 is sufficient to maintain and 
potentiate the inflammatory environment by enhancing 
macrophage differentiation and responsiveness through 
the downregulation of FOXP1.

Figure 7: EBV-miR-BART11-mediated NF-κB activation via FOXP1 inhibition. A. The expression of FOXP1 and NF-κB 
in 5-8F, HK-1, and AGS epithelial cancer cells and THP-1 monocytes, transfected with FOXP1, EBV-miR-BART11, or siFOXP1, and 
determined by western blotting and densitometry. B. NF-κB transcriptional activity, assessed by luciferase reporter assay in 5-8F cells 
transfected with the FOXP1 overexpression vector, EBV-miR-BART11 precursor vector, or siFOXP1. Data shown are representative 
images or expressed as mean ± SD of different groups of cells from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001.
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Under certain conditions, tumor cells can induce 
their own inflammatory factor secretion, in order to 
intensify the local inflammatory microenvironment, 
resulting in further TAM and lymphocyte infiltration 
[60]. Therefore, we investigated the effects of EBV-miR-
BART11 and FOXP1 on the local inflammatory response 
in epithelial cells. Our results showed that LPS stimulation 
significantly enhances cytokine secretion in both 
macrophages and epithelial cells, and that the conditioned 
media collected from LPS-treated macrophages is able to 
stimulate epithelial cells to produce an even higher level 
of cytokines.

FOXP1 acts as a transcriptional repressor in 
lymphocytes where its downregulation plays important 
roles in immune cell differentiation. It is also frequently 
downregulated in solid tumors, including breast cancer [61-
63], non-small cell lung cancer [64], oral squamous cell 
carcinoma [65], ovarian cancer [66, 67], renal cell carcinoma 
[68, 69], hepatocellular carcinoma [70] and prostate cancer 
[71-73], which suggests that FOXP1 may act as a tumor 
suppressor. However, its role in EBV-associated solid tumors, 
such as NPC and GC, is yet to be completely understood. Our 
results demonstrate that tumor-suppressive effects of FOXP1 
inhibit epithelial cell proliferation, which can be counteracted 
with EBV-miR-BART11 expression.

NF-κB transcriptional regulation plays a critical 
role in tumorigenic inflammation. FOXP1 and NF-
κB interact through a complex regulatory mechanism 
involved in several biological processes that vary in a 
cell type-dependent manner. In lymphocytes, FOXP1 
is able to inhibit directly apoptotic gene transcription 
and cooperate with NF-κB, promoting human B cell 
survival, while FOXP1 expression is dependent on 
NF-κB transcriptional activity and plays a synergistic 
role in NF-κB self-activation [74]. NF-κB activation 
in malignant B cells can increase FOXP1 expression 
[75], but some results indicate that full-length FOXP1 
may function as a NF-κB transcriptional repressor in 
follicular lymphoma [76, 77]. Conversely, NF-κB has 
also been shown to downregulate FOXP1 in monocyte 
differentiation and macrophage function [34], and 
therefore, downregulation of the NF-κB signaling 
pathway is an effective mechanism of FOXP1-mediated 
inhibition of monocyte differentiation and macrophage 
function. The regulatory relationships between EBV-
miR-BART11, FOXP1, NF-κB, and their downstream 
signaling pathways, and their detailed biological 
functions, require further investigations.

In conclusion, we revealed EBV-miR-BART11 plays 
an important role in the inflammatory microenvironment and 
inflammation-induced carcinogenesis in EBV-associated 
cancers through the direct inhibition of FOXP1 and NF-κB 
activation. Collectively, these data demonstrate that EBV-
miR-BART11 or FOXP1 may serve as potential diagnostic 
or prognostic markers in NPC or GC, and may represent 
important targets for EBV-related cancer immunotherapy.

MATERIALS AND METHODS

Cell lines and reagents

Two EBV-negative human NPC cell lines (5-8F and 
HK-1), AGS GC cells, and THP-1 monocytes were grown 
in RPMI-1640 medium supplemented with 10% fetal calf 
serum (FCS) at 37°C in the atmosphere with 5% CO2. 
THP-1 cells were treated with 10 nM phorbol 12-myristate 
13-acetate (PMA, Sigma, St Louis, MO, USA) to induce 
monocyte differentiation. Lipopolysaccharide (LPS) from 
Escherichia coli 0111:B4 was obtained from Sigma (10 
ng/mL). 293T cells used to produce the lentiviral stock 
were grown in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% FCS, at 37°C in the 
atmosphere containing 5% CO2.

siRNAs, EBV-miR-BART11 and FOXP1 
overexpression vectors, and cell transfection

FOXP1-specific siRNAs and their corresponding 
controls were synthesized by Ruibo (Guangzhou, China) 
(Supplementary Table S1). EBV-miR-BART11 precursor 
sequence was synthesized (Invitrogen, Shanghai, China) 
and cloned into the pSUPER.neo/GFP vector (Invitrogen, 
Shanghai, China). The FOXP1 full-length coding sequence 
(CDS, NM_032682) was amplified and cloned into the 
pIRESneo3 vector (Invitrogen). Cell transfection was 
performed in 70-80% confluent cells using Lipofectamine 
3000 (Invitrogen) according to the manufacturer’s 
protocol.

Lentiviral vectors and THP-1 cell infection

Lentiviral vector construction was constructed 
using the ViraPower™ Lentiviral Expression System 
(Invitrogen). First, EBV-miR-BART11 precursor or full-
length FOXP1 CDS was subcloned into the pLenti6/
V5-D-TOPO vector. pLenti6/V5-D-TOPO/BART11 or 
pLenti6/V5-D-TOPO/FOXP1 vectors and ViraPower 
Packaging Mix were co-transfected using a gene carrier kit 
(Epoch-Biolabs, Missouri City, TX, USA) into 293T cells 
to produce a lentiviral stock, and 48 h after transfection, 
virus-containing supernatant was collected and used 
to infect THP-1 at a ratio of 1:1 with fresh medium, as 
described previously [78].

Quantitative real time polymerase chain reaction 
(qRT-PCR)

Total RNA was harvested using the TRIzol 
Extraction Kit (Invitrogen) and cDNA samples were 
prepared using a QuantiTect Reverse Transcription Kit 
(Qiagen, Hilden, Germany). Stem-loop real-time qRT-PCR 
for mature miRNAs was done with the Qiagen QuantiTect 
SYBR Green PCR Kits (Qiagen), using RNU6B (U6) as 
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an international control. qRT-PCR for mRNA expression 
was performed using the SYBR Premix Ex Taq II kit 
(Takara, Dalian, China) according to the manufacturer 
instructions with β-actin or GAPDH as the internal 
controls. The primers used are shown in Supplementary 
Table S1.

Western blotting

Whole cell lysates were extracted using RIPA lysis 
buffer (50 mM Tris-HCl pH 7.4, 250 mM NaCl, 0.1% SDS, 
0.5% NP-40, 2 mM DTT, 1 mg/mL protease inhibitors). 
Protein concentration was quantified using a BCA 
protein assay kit (Pierce, Grand Island, NY). Afterward, 
50 μg of protein was resolved by 10% sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and electroblotted onto a PVDF membrane (Millipore, 
Billerica, MA, USA). Immunodetection using antibodies 
against FOXP1 (Cell Signaling, Danvers, MA), NF-κB 
p65 (Abcam, MA, USA), or β-actin (Millipore) was done 
for 1 h at room temperature or overnight at 4°C. Antibody-
antigen complexes were detected using the enhanced 
chemiluminescence (ECL) system (Amersham Bioscience, 
Piscataway, NJ, USA). β-actin served as a loading control.

Methylthiazol tetrazolium assay (MTT) and 
colony formation assay

Cell proliferation was measured using an MTT 
(Millipore) assay. After transfection or treatment, 800 
cells per well were seeded in 96-well plates, and viability 
was assessed in five replicates at designed times. The 
formation of colored formazan dye was measured at 490 
nm on a spectrophotometric plate reader.

For the clonogenic assays, 1000 cells were plated in 
six-well plates at 24 h post-transfection and incubated for 
14 days. The number of colonies was counted with Image-
Pro Plus (Syngene, Frederick, MD, USA) and normalized 
to the control group. The experiments were performed at 
least three times.

Flow cytometry

Cell cycle analysis was performed using flow 
cytometry with propidium iodide (PI) staining (5 μg/mL) 
48 h post-transfection. Events were recorded from samples 
using a FACSCalibur Flow Cytometer (BD Biosciences, 
New Jersey, USA) equipped with Cell Quest 3.3 software 
and analyzed using ModFit software (Verity Software 
House, Topsham, ME).

Luciferase reporter assay

5-8F cells were co-transfected with synthetic EBV-
miR-BART11 and luciferase reporter vectors (FOXP1-WT 
or FOXP1-mutant) along with pRL-TK Renilla luciferase 
vector (Promega, Madison, WI). For NF-κB reporter 

assay, 5-8F cells were transiently co-transfected with the 
pNF-κB-Luc construct (Promega), pRL-TK vector, and 
EBV-miR-BART11 or the FOXP1 expression vector or 
siFOXP1. Luciferase activity was determined by the Dual 
Luciferase Assay Kit (Promega) 48 h after transfection 
[79-81]. Transfections were performed in duplicates and 
repeated in three independent experiments.

Statistical analysis

Statistical analyses were performed using SPSS 13.0 
(SPSS, Chicago, IL) and Graph Pad Prism 5 (GraphPad, 
La Jolla, CA). Data are presented as mean ± standard 
deviation (SD). Comparisons between two groups were 
performed using Student’s t-test or one-way ANOVA, 
unless otherwise indicated. The association between EBV-
miR-BART11-(3p and 5p) and FOXP1 gene expression 
was analyzed using Spearman’s correlation coefficient. p 
< 0.05 was considered statistically significant.
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