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ABSTRACT
Breast cancer (BC) is one of the most common malignancies that could threaten 

female health. As the molecular mechanism of BC has not yet been completely 
discovered, identification of related genes of this disease is an important area of 
research that could provide new insights into gene function as well as potential 
treatment targets. Here we used subnetwork extraction algorithms to identify novel 
BC related genes based on the known BC genes (seed genes), gene co-expression 
profiles and protein-protein interaction network. We computationally predicted seven 
key genes (EPHX2, GHRH, PPYR1, ALPP, KNG1, GSK3A and TRIT1) as putative genes 
of BC. Further analysis shows that six of these have been reported as breast cancer 
associated genes, and one (PPYR1) as cancer associated gene. Lastly, we developed 
an expression signature using these seven key genes which significantly stratified 
1660 BC patients according to relapse free survival (hazard ratio [HR], 0.55; 95% 
confidence interval [CI], 0.46–0.65; Logrank p = 5.5e−13). The 7-genes signature 
could be established as a useful predictor of disease prognosis in BC patients. Overall, 
the identified seven genes might be useful prognostic and predictive molecular markers 
to predict the clinical outcome of BC patients.

INTRODUCTION

Breast cancer (BC) is the most common invasive 
cancer in females both in the developed and developing 
countries, with an estimated 234,190 new cases and 
40,730 deaths expected in the United States in 2015 [1]. 
Risk factors for developing BC include obesity, lack of 
physical exercise, drinking alcohol, hormone replacement 
therapy during menopause, older age, first menstruation 
at early age, and so on. A familial history of BC also 
increases the risk of developing BC. Several mutations in 
BRCA1, BRCA2 and TP53 involve in a very high risk of 
BC. However, these mutations account for only a small 
portion of the total BC burden.

Most BCs are derived from the epithelial lining of 
the ducts or lobules. BC has been traditionally classified 
based on clinical and histopathologic characteristics such 
as histologic grade, stage of disease, and receptor status [2].  
The classifications can affect the prognosis and the 

response to treatment. For example, poorly differentiated 
cancers often have the worst prognosis [3]. Since BC 
leads to high mortality, the early diagnosis especially 
the molecular diagnosis is particularly important for the 
therapy. Traditionally, treatment decisions have been based 
on tumor histology and three receptor biomarkers including 
ER (estrogen receptor 1), PR (progesterone receptor), 
and HER2 (erb-b2 receptor tyrosine kinase 2) [2].  
Cancers that do not have any of these three receptor 
types are called triple-negative BC. They usually express 
receptors for other hormones [4]. Despite significant 
improvements in the treatment of BC, new therapies and 
treatment strategies are still needed.

So far, numerous genes have been found involved 
in breast tumorigenesis which can be acted as biomarkers 
for the early diagnosis and further clinical application. 
Although dozens of related genes have been found, they 
are insufficient to elucidate the tumorigenesis of BC 
unless more relevant genes being identified. Therefore, it 
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is an extremely crucial task to discover novel candidate 
genes. It is time-consuming and cost-spending to discover 
disease related genes by experiment alone, because the 
search space is very large. Computational approach is 
an alternative method which can help investigators to 
cope with various biological problems, such as analyzing 
complex biological network [5–9] and identifying novel 
genes [10–11]. For example, Zhu et al. developed a 
robust geometric approach for modeling protein-protein 
interaction networks [8]. Huang et al. presented a model for 
predicting protein-protein interactions based on protein-
protein correlation using least squares regression [9].  
Deng et al. proposed a method to predict novel 
genes associated with cervical cancer through gene  
co-expression networks [10]. In addition, several studies 
have reported prognostic gene expression signatures for 
BC [12–14]. However, these studies have generally been 
limited by specific BC subtypes. Hence, development of 
a more robust molecular predictor that overcomes BC 
subtype variability is necessary as well as identification 
of novel genes.

In this study, a computational method was built to 
discover BC candidate genes based on known BC related 
genes retrieved from BCGD (the Breast Cancer Gene 
Database, http://www.tumor-gene.org/tgdf.html). After 
applying the subnetwork extraction algorithms with gene 
co-expression and protein-protein interaction (PPI) data, 
we obtained three networks containing the known BC 
related genes (denoted as seed genes) and the candidate 
genes (denoted as linker genes). Through comparing these 
three subnetworks, we found seven common candidate 
genes. Further analysis suggests that all of these seven 
genes are consistent with previous reports that they 
have relationship with BC or cancer. Using this 7-genes 
signature, we observed significant differences in relapse-
free survival between low-risk and high-risk BC patients in 
Kaplan–Meier analyses. This analysis provides important 
insight into the subnetwork biomarkers associated with 
BC and the identified seven genes may be readily utilized 
for prognostication and risk-stratification of BC patients.

RESULTS AND DISCUSSION

Strategy for prediction of breast cancer 
candidate genes

Our goal is to use seed genes and a common 
biological network between gene co-expression and PPI 
networks with the subnetwork extraction algorithms 
to identify candidate genes that are related to the 
pathogenesis of BC. The method was based on three steps 
(Figure 1). 

(1) We obtained a PPI network derived from 
STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins, http://string-db.org/), which is a database 
of known and predicted protein interactions [15]. 

Gene expression data of 531 BC tumor samples were 
collected from The Cancer Genome Atlas (TCGA, http://
cancergenome.nih.gov) [16]. The co-expression network 
was constructed using R software package “WGCNA” 
[17]. Through comparing the PPI network and the gene 
co-expression network, a common biological network 
containing both co-expression and PPI information was 
generated. Table 1 illustrated the number of nodes and 
edges in PPI network, co-expression network and their 
common network, respectively.

(2) 57 seed genes were collected from BCGD, 
after removing 11 genes which are not included in the 
common network (Table 2). Seed genes and the common 
network were then imported into GenRev [18], a software 
developed to explore the functional relevance genes. We 
used the subnetwork extraction algorithms in GenRev 
for extracting three subnetworks (see more details in the 
Materials and Methods section).

(3) There were 7 common genes found in the three 
subnetworks, which were considered as key candidate 
genes related to BC. Then we analyzed these genes by 
retrieving existing literature and assessed the prognostic 
value of this 7-genes signature using the transcriptomic 
data by Kaplan Meier plotter, an online survival analysis 
software [19].

A summary workflow for identifying genes critical 
to BC is illustrated in Figure 1.

Subnetwork

As described in the Materials and Methods section, 
proteins in a PPI network or genes in a co-expression 
network may share some common or similar features. 
Therefore, after importing seed genes and the common 
network which represented both gene co-expression and 
PPI information into GenRev software, we searched the 
subnetworks connecting known BC related genes by 
three methods: not-weighted Klein-Ravi algorithm [20],  
not-weighted limited k-walk algorithm and edge-weighted 
limited k-walk algorithm [21].

In this work, the linker genes were considered as the 
candidate genes related to BC that we found in the three 
obtained subnetworks. The whole linker genes were listed 
in Table S1. Numbers of edges, seeds and linkers in each 
network from different methods were showed in Table 3.  
As an example, Figure 2 illuminated the subnetwork 
extracted by not-weighted Klein-Ravi algorithm which 
contained 136 edges and 79 nodes (57 seed and 22 linker 
genes). The subnetworks extracted by not-weighted and 
edge-weighted limited k-walk algorithm were illuminated 
in Figures S1 and S2, respectively. Cytoscape software 
was used for visualizing subnetworks [22].

Analysis of candidate genes

After comparing the genes from the three extracted 
subnetworks, we obtained 7 overlapping genes which 
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Figure 1: Summary workflow for identifying BC related candidate genes. The approach was based on three steps: (1) We 
obtained a PPI network derived from STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) and constructed a co-expression 
network using gene expression data from The Cancer Genome Atlas (TCGA). A common network was generated through comparing the 
two networks. (2) Seed genes and the common network were imported into GenRev which was used to extract three subnetworks with 
different extraction algorithms. (3) 7 common genes were found in the obtained subnetworks which were considered as key candidate genes 
related to BC.
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might have a strong relationship with BC. Subsequent 
analysis indicates that six of these seven key genes 
(EPHX2, GHRH, ALPP, KNG1, GSK3A and TRIT1) have 
been shown as BC associated genes, and one (PPYR1) as 
cancer associated gene based on the existing literature. In 
the following we will discuss them one by one.

The EPHX2 is the gene encodes a member of the 
epoxide hydrolase family which is found in both the 
cytosol and peroxisomes. It binds to specific epoxides and 
converts them to the corresponding dihydrodiols. Previous 
study has revealed that it can be targeted by tamoxifen in 
the treatment of BC [23] and downregulated by GW9662, 
a potent antagonist of PPARgamma that inhibits growth of 
breast tumor cells [24]. The protein encoded by GHRH is 
a member of the glucagon family of proteins. The encoded 
preproprotein is cleaved to generate somatoliberin, 
which acts to stimulate growth hormone release from the 
pituitary gland. Antagonists of this gene inhibit growth of 

various human cancers including BC. Splice variants of 
GHRH receptors could mediate the responses to GHRH 
and GHRH antagonists in BC through Ca2+-, cAMP- 
and PKC-dependent mechanisms [25]. The PPYR1 gene 
encodes a member of neuropeptide Y family which is 
one of the most relevant neuropeptides related to tumor 
progression [26–27]. The protein encoded by ALPP is an 
alkaline phosphatase, a metalloenzyme that catalyzes the 
hydrolysis of phosphoric acid monoesters. Overexpression 
of this enzyme has been detected at the surface of various 
solid tumors [28]. Particularly, this gene is significantly 
higher expressed in the trastuzumab treated than in the 
untreated human HER2-amplified breast cancer cell line 
BT474 and can be an indicator for drug sensitivity [29]. 
The gene KNG1 uses alternative splicing to generate two 
different proteins, low molecular weight kininogen and 
high molecular weight kininogen which is essential for 
blood coagulation. It has been reported that this gene is 

Table 1: Numbers of nodes and edges in PPI network, co-expression network and their common 
network were illustrated

PPI Network Co-expression Network Common Network
Nodes 17460 17325 9534
Edges 4850628 2303648 148182

Table 2: Seed genes were collected from the breast cancer gene database (BCGD)
Gene Names

NCOA3 COL18A1 FGF4 PLAU
AKT2 TSG101 TP53 VIM

TFAP2C FGFR4 PHB APC
ATM NME1 PLAT BCL2
ESR1 GRB7 PRL THRA

BRCA1 PTPRF SRC EGFR
BRCA2 HRAS TGFA ERBB3
CCND1 IGF1R PTPN1 NF2

CDKN2A FGF3 PGR FGFR1
CDKN2B KRAS RB1 KIT
CDKN2C MYCL CTTN MDM2
CDKN2D IGF2R SSTR2 MET

CTSD MCC SSTR3 MYC
PLG MLH1 SSTR5 ERBB2

MSH2

Table 3: Numbers of edges, seeds and linkers in the subnetworks obtained from different methods 
Algorithm Edges Seeds Linkers

Steiner 136 57 22
Kwalk (not-weighted) 268 57 87
Kwalk (edge-weighted) 348 57 83

Linkers refer to the novel genes. Steiner and Kwalk refer to the Klein-Ravi algorithm and the limited k-walk algorithm, 
respectively.
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up-regulated by proteasome inhibitor in BC [30]. The 
protein encoded by GSK3A is a multifunctional Ser/Thr 
protein kinase that is implicated in the control of several 
regulatory proteins and transcription factors. It also plays 
a role in the WNT and PI3K signaling pathways which 
are closely associated with cancer. Induced expression of 
PTEN in PTEN deficient BC cells, was associated with a 
marked decrease in the basal phosphorylation of GSK3A 
and other downstream components of the PI3K signaling 
cascade, and then suppressed cell cycle progression [31].  
The TRIT1 encodes an isopentenyltransferase that is 
located to the mitochondrion and modifies tRNAs by 
adding a dimethylallyl group onto the adenine at position 
37 which is considered a tumor suppressor [32]. The 
product of this enzyme, isopentenyladenosine significantly 
inhibited the BC cell lines MDAMB-361 and MCF7. The 
mechanism of tumor suppressor activity is associated with 
inhibition of cell proliferation, blocking DNA synthesis 
and morphological changes [33]. Overall, these seven 
key genes are shown to play a direct or indirect role in 
BC according to previous reports and merits further 
investigation with respect to their application against BC.

We then developed an expression signature consisting 
of the seven genes by the Kaplan Meier plotter online 

survival analysis software [19]. This 7-genes signature 
could significantly stratify 1660 BC patients according 
to relapse free survival (HR, 0.55; 95% CI, 0.46 − 0.65;  
Logrank p = 5.5e−13). As seen in Figure 3, the low-risk 
group had significantly better relapse free survival than 
the high-risk group. The 7-genes signature could be 
established as a useful predictor of disease prognosis in 
BC patients.

Finally, we identified the smallest subnetwork 
connecting seven key genes derived from the common 
network representing both PPI and gene co-expression 
information (Figure 4). The other six genes in this 
subnetwork are all cancer related: five of them are seed 
genes and one is MITF gene [34]. Paired t-test analysis 
showed statistically significant differences in these  
13 gene expression levels between BC and normal samples 
(p-value = 0.049) using the gene expression data of 531 
BC and 62 normal tissue samples from TCGA.

In summary, the identified seven candidate genes 
may help to reveal the underlying molecular mechanisms 
of BC and provide guidance orientation on possible 
personalized therapeutic regimen selection. It has not 
escaped our notice that the approach of this study may give 
a new insight to understand BC as well as other cancers. 

Figure 2: The subnetwork extracted by not-weighted Klein-Ravi algorithm.
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Figure 3: Kaplan–Meier plot of relapse free survival using the 7-genes signature.

Figure 4: The smallest subnetwork connecting seven key genes derived from the common network.
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Besides the PPI and gene co-expression information used 
in this study, epigenetic and mutation level information 
also play an important role in BC. In the future work, 
we will identify driver mutations that have direct effect 
on a selective growth advantage of BC cells using these 
multidimensional data sets.

MATERIALS AND METHODS

Protein-protein interaction network

Protein-protein interaction (PPI) networks provide a 
lot of valuable information to understand cellular function 
and biological processes. Numerous studies have shown 
that proteins in the same interaction, that is, they are 
adjacent in the constructed PPI network, always have some 
common features [21, 35–38]. It can be further deduced 
that proteins in the subnetwork connecting known BC 
related genes are most likely to share similar biological 
functions as shown in many studies [39–40]. In this study, 
the PPI network was constructed based on the protein 
interaction information retrieved from STRING (Search 
Tool for the Retrieval of Interacting Genes/Proteins, http://
string-db.org/) (9606.protein.links.v9.1) [15], a well-
known online interaction repository which include direct 
(physical) and indirect (functional) associations.

Gene co-expression network

Recently, gene co-expression network has emerged 
as a new tool for microarray analysis [41–42]. The 
transcript levels of two co-expressed genes rise and fall 
together across samples. It is showed that functionally 
related genes are frequently co-expressed constituting 
conserved transcription modules [43–44]. Here, gene 
expression microarray and RNA-Seq data of 531 BC 
tumor samples were collected from The Cancer Genome 
Atlas (TCGA, http://cancergenome.nih.gov) which aims 
to generate comprehensive, multi-dimensional maps of the 
key genomic changes in major types and subtypes of cancer 
[16]. Then a gene co-expression network was constructed 
using R software package “WGCNA” (Weighted 
correlation network analysis) which is a comprehensive 
collection of R functions for performing various 
kinds of weighted correlation network analysis [17].  
The similarity was computed to evaluate the distance 
between each pair of genes using the function adjacency(). 
Pearson’s correlation coefficient is used as the  
co-expression measure. The RNA-Seq data were 
transformed into log2 scale after adding a constant +1 as 
described in Meißner [45].

Seed genes

BC related genes were collected from the Breast 
Cancer Gene Database (BCGD) which is a sub-database 

of Tumor Gene Family of Databases (TGFD) (http://www.
tumor-gene.org/tgdf.html). After removing 11 gene which 
are absent in the common network representing both 
PPI and gene co-expression information, we obtained  
57 genes as BC related genes (seed genes) with a high 
level of confidence (Table 2).

Subnetwork extraction

Here, we used a method to discover candidate 
genes related to BC by constructing a common network 
contained both PPI and gene co-expression information. 
So far there are numerous methods that can be used to find 
the subnetworks. In this study, GenRev [18], a standalone 
and platform independent software for exploring 
the functional relevance genes, was used to identify 
subnetwork. The input files were comprised of seed genes 
and the common network. The Pearson’s correlation 
coefficients in co-expression network were used as the 
weights of edges. Since the common network imported 
into GenRev contained only weights of edges but not 
weights of all nodes, we used the not-weighted Klein-Ravi 
algorithm, not-weighted and edge-weighted limited k-walk 
algorithm in GenRev [18]. As a result, GenRev was used 
mapped the genes to the common network and extracted 
three subnetworks. The subnetwork and the linker genes 
were visualized using Cytoscape software [22].

Klein–Ravi algorithm

The Klein–Ravi algorithm is one of the algorithms 
in GenRev, which was proposed to solve the node-
weighted Steiner tree problem [20]. The objective of 
the node-weighted Steiner tree problem was to find a 
subnetwork with a minimum score which connects all the 
seeds. The score of a subnetwork was estimated by the 
sum of the scores of its nodes. We can find more details 
from the original work [20].

Limited k-walks algorithm

The limited k-walks algorithm is another algorithm 
in GenRev, which can run randomly in the network by 
using a Markov chain and build a relevant subnetwork 
connecting seed nodes [21]. The relevance of an edge 
and a node related to the seed genes is assessed by the 
expected times random walk passes starting from one 
seed to any of the others. By default, weights of all edges 
were equal to 1. The Pearson’s correlation coefficients in  
co-expression network were set as weights of edges when 
the edge-weighted limited k-walk algorithm was used. 
More details are available in the original work [21].

Kaplan Meier plotter

In this study, an online survival analysis software, 
Kaplan Meier plotter was used to assess prognosis value 
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of the signature developed by the seven key candidate 
genes [19]. The Kaplan Meier plotter is capable of 
evaluating the effect of 54,675 genes on survival using 
10,188 cancer samples using the log rank test to compare 
the survival curves. To analyze the prognostic value of  
7 genes, the 3557 relapse-free survival samples were split 
into two groups according to various quantile expressions 
of the proposed biomarker. The two patient cohorts were 
compared by a Kaplan-Meier survival plot, and the hazard 
ratio with 95% confidence intervals and logrank p-value 
were calculated.
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