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Figure 5: Overlapping of genes from different data sources and statistics. A. Shared GC-associated genes across multiple 
data sources. The length of circularly arranged segments is proportional to the total genes in each regenerative process group. The ribbons 
connecting different segments represent the number of shared genes between regenerative process groups. The outer ring has stacked 
bar plots that represent the relative contribution of other regenerative process group to the regenerative process group totals. Ribbons 
connecting different segments represent the number of shared genes between regenerative tissues; B. statistics for number of genes with 
various pieces of literature evidence.
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interactomes. The reconstructed GC interactome contains 
76 genes and 152 gene-gene interactions based on current 
evidence from known biological pathways (Figure 3A). 
Of the 76 nodes, 65 are among the 100 top-ranked GC-
associated genes. The remaining 11 are genes that may 
potentially bridge the top-ranked GC-associated gene 
to fully implement its cellular function. The majority of 
GC genes are linked to each other in a highly modular 
structure. This finding not only supports the accuracy 
of our data but also shows that the GC genes are highly 
interconnected and form a high-density cellular modulus.

Further network topological analysis also revealed 
that most molecules in our map are closely connected. The 
degrees of connection of all nodes in our reconstructed GC 
map follow a power law distribution P(k)~k-b, where P(k) 
is the probability that a molecule has connections with 
other k molecules and b is an exponent with an estimated 
value of 1.207 (Figure 3B). Thus, our GC map is different 
from all the human PPI networks in which most nodes are 
sparsely connected, with an average b value of 2.9 [22]. 
We developed this feature to map the distribution of the 
shortest pathways throughout the entire network. This map 
revealed smaller pathway degrees (2 to 4), which means 
that majority of the node connections can be reached in 
only three steps on average (Figure 3C).

With dense interactions, the highly connected nodes 
in this network may have prominent roles as common 
connections that mediate information transduction in 
the short pathways. In total, we identified 9 genes with 
at least 10 connections: SRC (17), TP53 (15), MYC (14), 
JAK2 (12), STAT3 (11), FOS (11), RHOA (10), MYB (10), 
and ITGB1 (10). Interestingly, SRC is the most connected 
node. Notably, only MYB has not been reported to be 
involved in GC in these 9 genes.

We performed a survival analysis based on 
published TCGA mutational data using the cBio portal. 
Patients with genetic mutations in any of the 9 genes 
are significantly correlated with overall survival (Figure 
4A). Further survival analyses using gene expression 
data also confirmed the importance of the 9 genes [23]. 
We found that lower expression of 8 genes (upper quartile 
vs. remaining samples) except STAT3 is significantly 
correlated with longer relapse-free survival (P ≤ 0.05) 
(Figure 4B-4D, Figures S1-S6). In particular, the MYB 
is mutated in 2% of the TCGA GC cohort, and it is also 
associated with survival (Figure 4D). Taken together, 
these results highlight the potential role of MYB in GC 
progression. In summary, our reconstructed map not only 
reveals multiple hubs related to survival but also provides 
a broader context for the previously unconnected GC 
genes.

Conclusions

In conclusion, our systematic curation of genetic 
information related to GC yielded 1,815 putative human 

genes (1,678 protein-coding and 137 non-coding genes) 
for inclusion in the GCGene database. A user-friendly 
web interface was developed to provide access to all 
the genes, with additional gene annotation and literature 
information. As the first literature-based gene database for 
GC, GCGene provides a novel resource for researchers 
performing high-throughput genetic and clinical tests to 
identify GC-associated genetic variants.

To facilitate subsequent literature updates, we 
constructed an automatic literature search scheme using 
the “My NCBI” tool, which will return the relevant 
literature every two weeks. We will use the document 
similarity clustering method in Entrez to group the 
newly available articles to assist with literature curation. 
Additionally, to keep pace with the rapid growth of cancer 
genome data, we have built an automated system capable 
of importing functional information from various public 
data sources, which will enable us to integrate more 
annotations quickly. Once the data is updated, the web 
page will be updated accordingly on an annual basis.

MATERIALS AND METHODS

Data integration from existing bioinformatics 
recourses

The gene collection related to GC was mainly 
based on 10 data sources: the OMIM (Online Mendelian 
Inheritance in Man, download on January 25, 2015) [24], 
GAD (The Genetic Association database, latest version 
updated on August 18, 2014) [25], gene manually curation 
from GeneRIF (Download on January 25, 2015) [26], 
genome-wide association studies from GWASCatalog 
(Download on January 25, 2015) [27], and 6 candidate 
gene lists produced by a large-scale genome-wide 
methylation and genetic mutation study on GC [28] 
(Figure 5A). As the most authoritative compendium of 
human disease-associated genes, OMIM does not include 
many genes. We obtained only 4 genes (IL1B, IL1RN, 
KRAS, and CDH1) associated with hereditary diffuse 
GC from OMIM. The GAD database is an archive of 
published human genetic association studies that contains 
curated information on candidate genes. In total, we 
collected 279 unique human genes from GAD from 637 
published studies. In addition, 11 candidate genes were 
downloaded from 3 genome-wide association studies in 
the GWASCatalog database. In 2014, a whole-genome 
sequencing and comprehensive molecular profiling of 
GC identified numerous new driver mutations, including 
recently mutated genes of the microsatellite instability 
type (91 genes) and microsatellite-stable type (53 genes), 
Sanger sequencing was used to validate driver mutations 
(18 genes), genes within driver copy number variation 
regions (102 genes), as well as genes in hypermethylated 
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(91 genes) and hypomethylated (92 genes) regions. 
We combined these publically available resources and 
harvested a list of 590 nonredundant human genes.

Literature collection and gene curation

To assemble a detailed and precise GC gene 
resource with literature evidence, we performed an 
extensive literature query of GeneRIF database on 
January 10, 2015, using Perl regular expression to identify 
sentences with both gastric and cancer keywords: [(gastric 
OR stomach) AND (cancer OR tumor OR carcinoma)]. 
In total, we retrieved 2,904 PubMed abstracts. GeneRIF 
(Gene Reference Into Function) is a collection of short 
descriptions of gene functions in the Entrez Gene database 
[29]. However, GeneRIF records do not provide full 
abstracts for further curation. Thus, we downloaded all 
2,904 PubMed abstracts in Medline format for manual 
review.

The curation of GC genes from literature in this 
study was conducted in three major steps: (1) grouping 
all 2,904 retrieved abstracts based on their semantic 
similarity using the “Related Articles” function in Entrez; 
(2) extracting contents related to GC from grouped 
abstracts; and (3) manually collecting gene names from 
the descriptions of the text and mapping the gene names 
to Entrez gene IDs. These curation steps allowed us 
to quickly and easily cross-check whether and how the 
curated abstract was related to GC. To provide a unified 
functional annotation, we used Entrez gene IDs as the key 
in all the tables of our GCGene database to cross-link the 
same genes from different public bioinformatics databases. 
To ensure the accuracy of our literature evidence, we 
collected the species information and the gene alias 
and manually mapped them to the official HUGO gene 
symbol. For example, in the sentence “Results suggest 
that the COX-2/microsomal prostaglandin E synthase-1 
pathway contributes to the Helicobacter-associated 
gastric tumorigenesis,” [30] the gene COX-2 was one 
of the synonyms for the murine gene Ptgs2 in the Entrez 
gene database. After careful manual cross-checking, 
we mapped all the curated genes to their corresponding 
human homologous groups using the NCBI HomoloGene 
database using the same method we implemented in a 
previous analysis [9, 31, 32]. In total, we identified 1,369 
human homologous genes using Entrez. By integrating 
590 genes from other public databases, we consolidated 
1,815 human genes, 1,678 protein-coding and 137 non-
coding genes (Table S1). The overlapping relationship 
among different data sources revealed that ~70% of genes 
from our literature content curation are also recorded 
in the GAD database (Figure 5A). These comparisons 
validated the high quality of our literature curation as 
well as multiple items of supporting evidence. Based on 
the curated references, we identified 18 genes with ≥30 
supporting references (Figure 5B). The majority of the 

genes from literature curation (820 of 1,369 GC-associated 
genes; 59.90%) had only a single literature reference 
(Figure 5B), which may indicate the need for further 
experimental validation for these 820 candidate genes.

Biological functional annotations

Information regarding comprehensive biological 
functional was retrieved from public resources for the 
annotation of the 1,815 human GC-associated genes in 
our database. The basic gene information and sequences 
were collected for each gene from the following databases: 
NCBI Entrez gene (downloaded on February 28, 2015) 
[33], UniProt (released February 2015) [34], Ensembl 
(version 78) [35], and Gene Ontology (downloaded on 
February 28, 2015) [36]. From BioGPS (downloaded on 
February 28, 2015) [14], the mRNA expression profiling 
data from both normal and tumor tissues were acquired 
from BioGPS (downloaded on February 28, 2015) [14]. 
The comprehensive pathway-associated information was 
annotated for GC-associated genes from the following 
databases: the transporter substrate database (version 1.0) 
[37], BioCyc (downloaded on February 28, 2015) [38], 
KEGG Pathway (downloaded on February 28, 2015) 
[39], the rate-limiting enzyme database (version 1.0) 
[40], PANTHER (downloaded on February 28, 2015) 
[41], PID Curated (downloaded on February 28, 2015) 
[42], the pathway localization database (version 1.0) [43], 
and Reactome (downloaded on February 28, 2015) [44, 
45]. Disease information was imported from GAD (gene 
association database), KEGG Disease, Fundo (downloaded 
on February 28, 2015) [46, 47], NHGIR (downloaded on 
February 28, 2015) [48], and OMIM [33].

The original published GC-associated articles in 
PubMed were hyperlinked to their respective genes. 
Using the Perl Script and Swiss knife modules, functional 
information was integrated from Gene annotations [49], 
Gene Ontology annotations [36], HPRD/BIND/BioGRID 
interaction annotations, KEGG LIGAND/BioCarta 
(downloaded on February 28, 2015) signaling event 
annotations [50, 51], and OMIM annotations.

Gene set enrichment analysis

The functional enrichment analysis of disease, 
pathways, and other functional annotations for each gene 
was accomplished using ToppFun [18]. In these analyses, 
the encoding genes of all human proteins were used as 
background, and the statistical significance of enriched 
annotations was calculated using the hypergeometric 
model. Based on the Benjamini-Hochberg multiple 
correction method in ToppFun, the corrected P-values for 
enriched annotations were calculated. Finally, the enriched 
annotations with corrected P-values < 0.01 were identified 
as over-representative annotations for each gene set. The 
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resulting enriched gene ontology terms were further 
summarized and visualized by the REVIGO online server 
[52].

Gene ranking using ToppGene and cancer 
mutation landscape

Using the ToppGene gene ranking tool [18], we 
prioritized the relative importance of each of the 1,815 
GC-associated genes. ToppGene integrates the following 
biological annotation data to rank the input genes: protein 
domain, gene ontology evidence, pathway annotations, 
gene co-expression, sequence features, and data mined 
from the literature. First, ToppGene requires a training set, 
which includes most commonly studied genes associated 
with the biological processes of interest. In the present 
study, the training set consisted of 18 genes, each with ≥30 
literature citations. This training set was used to extract 
features shared by all GC-associated genes.

Next, based on the extracted biological features from 
the training set, ToppGene builds a ranking model. The 
ranking model that contains multiple dimensional data is 
then used to prioritize the remaining 1,797 genes. Finally, 
the ToppGene ranking model combines all of the rankings 
into a global ranking for the 1,815 GC-associated genes 
using order statistics (Table S2). In the present study, the 
100 top-ranked GC-associated genes were then input into 
the cBio portal to obtain a mutation pattern across multiple 
cancers.

Construction of protein-protein interactome for 
the 100 top-ranked GC-associated genes

To study the potential biological mechanisms related 
to GC-associated genes, we extracted protein-protein 
interactions between the 100 top-ranked GC-associated 
genes and other human genes. To accomplish this task, 
we first collected a list of non-redundant pathway-based 
human interactomes from the PathwayCommons database, 
which includes several biological pathway databases such 
as KEGG and Reactome. We then extracted a subnetwork 
containing the 100 top-ranked GC-associated genes from 
the human interactome using an approach similar to the 
one implemented in our previous study [21]. All of the 
input genes were mapped into the human interactome 
using the proposed algorithm, and the subnetwork was 
extracted according to the shortest pathways between the 
input genes and other genes.

If the function of genes is systematically studied 
from the point of view of the network, the complexity and 
interconnectedness of the biological network is revealed. 
In general, biological networks tend to follow some simple 
rules, and the topological properties of the networks may 
be closely related to their function [53]. Therefore, we 
used the NetworkAnalyzer plug-in in Cytoscape 2.8 [54] 

(Figure 3B and 3C) to analyze the extracted subnetworks 
of GC-associated genes. We used degree to represent 
the sum of the number of connections for each node in a 
network [53], and the shortest path represented by the least 
number of steps from one node to another [53]. Cytoscape 
2.8 was used to visualize the network.
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