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ABSTRACT

Osteoporosis is a common human complex disease. It is mainly characterized 
by low bone mineral density (BMD) and low-trauma osteoporotic fractures (OF). 
Until now, a large proportion of heritability has yet to be explained. The existing 
large-scale genome-wide association studies (GWAS) provide strong support for the 
investigation of osteoporosis mechanisms using pathway analysis. Recent findings 
showed that different risk pathways may be involved in BMD in different tissues. 
Here, we conducted multiple pathway analyses of a large-scale lumbar spine BMD 
GWAS dataset (2,468,080 SNPs and 31,800 samples) using two published gene-
based analysis software including ProxyGeneLD and the PLINK. Using BMD genes from 
ProxyGeneLD, we identified 51 significant KEGG pathways with adjusted P<0.01. Using 
BMD genes from PLINK, we identified 38 significant KEGG pathways with adjusted 
P<0.01. Interestingly, 33 pathways are shared in both methods. In summary, we 
not only identified the known risk pathway such as Wnt signaling, in which the top 
GWAS variants are significantly enriched, but also highlight some new risk pathways. 
Interestingly, evidence from further supports the involvement of these pathways in 
MBD.

INTRODUCTION

Osteoporosis is a common human complex disease 
[1–2]. It is mainly characterized by low bone mineral 
density (BMD) and/or low-trauma osteoporotic fractures 
(OF), both of which have strong genetic determination 
[1–2]. However, the specific genes influencing these 
phenotypic are largely unknown [1–2]. Much effort has 
been put into identifying the genetic determinants of this 
disease, especially the genome-wide association studies 
(GWAS), which have recently provided rapid insights into 
genetics of osteoporosis [1–3].

In 2012, Estrada et al. performed the largest meta-
analysis to date on lumbar spine BMD (LS-BMD; n = 
31,800 cases) and femoral neck BMD (FN-BMD; n = 
32,961), including 17 GWAS datasets from individuals 
of European and East Asian ancestry [3]. They replicated 
the top BMD-associated markers in 50,933 independent 
subjects and the risk of low-trauma fracture in 31,016 
individuals with a history of fracture (cases) and 102,444 
controls [3]. They identified 56 loci (32 new) associated 
with BMD at genome-wide significance [3]. In 2015, 
Zheng et al. reported novel non-coding genetic variants 
with large effects on BMD (n = 53,236) and fracture 
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(n = 508,253) individuals of European ancestry from the 
general population, and identified EN1 as a determinant 
of bone density and fracture by whole-genome sequencing 
[4]. However, these newly identified susceptibility loci 
exert very small risk effects and cannot fully explain the 
underlying genetic risk. A large proportion of heritability 
has yet to be explained.

Pathway analyses of GWAS have been widely 
conducted in human complex diseases or phenotypes, 
such as Alzheimer’s disease [5–8], rheumatoid arthritis 
[9–10] and body mass index [11]. The existing large-
scale GWAS datasets provide strong support for the 
investigation of osteoporosis mechanisms using pathway 
analysis methods. Zhang et al. used a novel pathway-based 
analysis approach in wrist ultradistal radius BMD GWAS, 
examining approximately 500,000 single nucleotide 
polymorphisms (SNPs) from 984 unrelated whites [12]. 
They identified the regulation-of-autophagy pathway to 
be the most significant signal for association with wrist 
ultradistal radius BMD. They confirmed the regulation-of-
autophagy pathway to be significantly associated with arm 
BMD in the Framingham Heart Study sample containing 
2187 subjects [12].

Lee et al. performed a pathway analysis of 
hip BMD GWAS in 5,715 Europeans [13]. They 
identified eight significant pathways including gamma-
hexachlorocyclohexane degradation, regulation of the 
smoothened signaling pathway, transmembrane activator 
and CAML-interactor and B cell maturation antigen 
stimulation of B cell immune response, endonuclease 
activity, regulation of defense response to virus, serine 
type endopeptidase inhibitor_activity, endoribonuclease 
activity, and myeloid leukocyte differentiation.

All these above findings show different risk 
pathways may be involved in BMD in different tissues. 
Here, we conducted multiple pathway analyses of a large-
scale lumbar spine BMD GWAS using two published 
gene-based analysis methods including roxyGeneLD [14] 
and PLINK [15].

RESULTS

Pathway analysis of BMD genes from the 
ProxyGeneLD

Using ProxyGeneLD, these 2,468,080 SNPs are 
assigned to 16898 genes, which include at least one 
adjusted SNP. Using the 1236 significant genes (unadjusted 
P<0.05), we performed a pathway analysis. We identified 
51 significant KEGG pathways (adjusted P<0.01). Based 
on the classifications of the KEGG pathways, these 51 
pathways can be mainly divided into immune system and 
diseases (n=10), environmental information processing 
(n=10), cellular processes (n=8), cancers (n=6), and 
infectious diseases (n=3). These significant pathways 
were described in Table 1. All p-values of individual gene 

from ProxyGeneLD are described in Supplementary Table 
1. The detailed gene information in significant KEGG 
pathways is described in Supplementary Table 2.

Pathway analysis of BMD genes from the PLINK

Using PLINK, these 2,468,080 SNPs are assigned 
to 16543 genes, which include at least one SNP. Using the 
824 significant genes (unadjusted P<0.05), we performed 
a pathway analysis and identified 38 significant KEGG 
pathways (adjusted P<0.01). These 38 pathways can be 
mainly divided into immune system and diseases (n=10), 
cellular processes (n=8), environmental information 
processing (n=7), genetic and environmental information 
processing (n=3), infectious diseases (n=4). These 
significant pathways were described in Table 2. All 
p-values of individual gene from PLINK are described in 
Supplementary Table 3. The detailed gene information in 
significant KEGG pathways is described in Supplementary 
Table 4.

Shared KEGG pathways using both 
ProxyGeneLD and PLINK

We identified 33 pathways shared in pathway 
analyses of BMD genes using the “best SNP per gene” 
method and the meta-analysis method. These 33 pathways 
are related with immune system and diseases (n=9), 
cellular processes (n=7), environmental information 
processing (n=7), infectious diseases (n=3), genetic and 
environmental information processing (n=2). These shared 
pathways are highlighted in Table 2.

DISCUSSION

Osteoporosis is a major public health problem. 
However, the specific genes or pathways influencing these 
phenotypic are largely unknown. Recently, two pathway 
analyses of MBD GWAS datasets have been conducted in 
wrist ultradistal radius and hip. Zhang et al. highlighted 
the regulation-of-autophagy pathway in wrist ultradistal 
radius BMD GWAS dataset [12]. Lee et al. identified eight 
significant pathways in hip BMD GWAS [13]. However, 
no shared pathway was identified in both studies. We think 
that different risk pathways may be involved in BMD in 
different tissues. Here, we conducted multiple pathway 
analyses of a large-scale lumbar spine BMD GWAS using 
the BMD genes from ProxyGeneLD [14] and PLINK [15]. 
Using BMD genes from ProxyGeneLD, we identified 51 
significant KEGG pathways. Using BMD genes from 
PLINK, we identified 38 significant KEGG pathways. 
Interestingly, 33 pathways are shared in both methods.

We further searched the PubMed and Google 
Scholar databases to verify our findings. Interestingly, 
evidence further supports the involvement of these 
pathways in MBD. Take the Wnt signaling (hsa04310) 
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Table 1: Significant pathways with P<0.01 by pathway analysis of BMD genes using the “best SNP per gene” method

Classifications Pathway 
ID Pathway Name C O E R rawP adjP

Immune diseases hsa05323 Rheumatoid 
arthritis 91 16 2.61 6.14 6.45E-09 3.50E-07

Environmental 
Information 
Processing

hsa04310 Wnt signaling 
pathway 150 20 4.3 4.66 1.26E-08 4.16E-07

Immune diseases hsa04940 Type I diabetes 
mellitus 43 11 1.23 8.93 2.52E-08 6.24E-07

Environmental 
Information 
Processing

hsa04350 TGF-beta signaling 
pathway 84 14 2.41 5.82 1.14E-07 1.88E-06

Cardiovascular 
diseases hsa05416 Viral myocarditis 70 12 2 5.99 6.63E-07 9.38E-06

Immune diseases hsa05330 Allograft rejection 37 9 1.06 8.49 7.60E-07 9.41E-06

Endocrine system hsa04916 Melanogenesis 101 14 2.89 4.84 1.17E-06 1.29E-05

Cellular Processes hsa04510 Focal adhesion 200 20 5.73 3.49 1.46E-06 1.45E-05

Immune diseases hsa05332 Graft-versus-host 
disease 41 9 1.17 7.67 1.93E-06 1.74E-05

Cancers: Specific 
types hsa05217 Basal cell 

carcinoma 55 10 1.57 6.35 3.24E-06 2.47E-05

Infectious 
diseases: Bacterial hsa05150 Staphylococcus 

aureus infection 55 10 1.57 6.35 3.24E-06 2.47E-05

Cellular Processes hsa04114 Oocyte meiosis 112 14 3.21 4.37 4.10E-06 2.71E-05

Environmental 
Information 
Processing

hsa04340 Hedgehog signaling 
pathway 56 10 1.6 6.24 3.85E-06 2.71E-05

Infectious 
diseases: Parasitic hsa05140 Leishmaniasis 72 11 2.06 5.34 6.21E-06 3.84E-05

Cardiovascular 
diseases hsa05412

Arrhythmogenic 
right ventricular 
cardiomyopathy 

(ARVC)

74 11 2.12 5.19 8.15E-06 4.75E-05

Environmental 
Information 
Processing

hsa04060 Cytokine-cytokine 
receptor interaction 265 22 7.59 2.9 9.53E-06 5.18E-05

Cancers: Specific 
types hsa05210 Colorectal cancer 62 10 1.78 5.63 9.94E-06 5.18E-05

Immune diseases hsa05320 Autoimmune 
thyroid disease 52 9 1.49 6.04 1.53E-05 7.57E-05

Immune diseases hsa05310 Asthma 30 7 0.86 8.15 1.77E-05 8.01E-05

Nervous system hsa04722 Neurotrophin 
signaling pathway 127 14 3.64 3.85 1.78E-05 8.01E-05

(Continued )
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Classifications Pathway 
ID Pathway Name C O E R rawP adjP

Immune system hsa04062 Chemokine 
signaling pathway 189 17 5.41 3.14 3.48E-05 1.00E-04

Infectious 
diseases: Parasitic hsa05145 Toxoplasmosis 132 14 3.78 3.7 2.75E-05 1.00E-04

Immune system hsa04672
Intestinal immune 
network for IgA 

production
48 8 1.37 5.82 6.03E-05 2.00E-04

Cellular Processes hsa04520 Adherens junction 73 10 2.09 4.78 4.33E-05 2.00E-04

Circulatory system hsa04270 Vascular smooth 
muscle contraction 116 12 3.32 3.61 1.00E-04 3.00E-04

Cardiovascular 
diseases hsa05410

Hypertrophic 
cardiomyopathy 

(HCM)
83 10 2.38 4.21 1.00E-04 3.00E-04

Cellular Processes hsa04530 Tight junction 132 13 3.78 3.44 1.00E-04 3.00E-04

Cellular Processes hsa04145 Phagosome 153 14 4.38 3.2 1.00E-04 3.00E-04

Genetic 
Information 
Processing

hsa03040 Spliceosome 127 13 3.64 3.57 7.62E-05 3.00E-04

Cancers: Specific 
types hsa05221 Acute myeloid 

leukemia 57 8 1.63 4.9 2.00E-04 6.00E-04

Cellular Processes hsa04110 Cell cycle 124 12 3.55 3.38 2.00E-04 6.00E-04

Immune system hsa04612 Antigen processing 
and presentation 76 9 2.18 4.14 3.00E-04 8.00E-04

Cardiovascular 
diseases hsa05414 Dilated 

cardiomyopathy 90 10 2.58 3.88 3.00E-04 8.00E-04

Genetic 
Information 
Processing

hsa03013 RNA transport 151 13 4.32 3.01 4.00E-04 1.10E-03

Cellular Processes hsa04810 Regulation of actin 
cytoskeleton 213 16 6.1 2.62 5.00E-04 1.30E-03

Environmental 
Information 
Processing

hsa04514 Cell adhesion 
molecules (CAMs) 133 12 3.81 3.15 5.00E-04 1.30E-03

Endocrine system hsa04910 Insulin signaling 
pathway 138 12 3.95 3.04 6.00E-04 1.50E-03

Environmental 
Information 
Processing

hsa04512 ECM-receptor 
interaction 85 9 2.43 3.7 7.00E-04 1.60E-03

Cancers: Specific 
types hsa05213 Endometrial cancer 52 7 1.49 4.7 7.00E-04 1.60E-03

Cellular Processes hsa04144 Endocytosis 201 15 5.76 2.61 7.00E-04 1.60E-03

Environmental 
Information 
Processing

hsa04010 MAPK signaling 
pathway 268 18 7.67 2.35 8.00E-04 1.80E-03

(Continued )
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Classifications Pathway 
ID Pathway Name C O E R rawP adjP

Cancers: Specific 
types hsa05215 Prostate cancer 89 9 2.55 3.53 1.00E-03 2.30E-03

Cancers: Specific 
types hsa05220 Chronic myeloid 

leukemia 73 8 2.09 3.83 1.10E-03 2.40E-03

Development hsa04380 Osteoclast 
differentiation 128 11 3.67 3 1.20E-03 2.60E-03

Genetic 
Information 
Processing

hsa03050 Proteasome 44 6 1.26 4.76 1.50E-03 3.20E-03

Environmental 
Information 
Processing

hsa04070 Phosphatidylinositol 
signaling system 78 8 2.23 3.58 1.80E-03 3.70E-03

Immune diseases hsa05322 Systemic lupus 
erythematosus 136 11 3.89 2.82 1.90E-03 3.80E-03

Neurodegenerative 
diseases hsa05016 Huntington’s 

disease 183 13 5.24 2.48 2.50E-03 5.00E-03

Endocrine system hsa04914
Progesterone-

mediated oocyte 
maturation

86 8 2.46 3.25 3.30E-03 6.40E-03

Environmental 
Information 
Processing

hsa04150 mTOR signaling 
pathway 52 6 1.49 4.03 3.60E-03 6.90E-03

Environmental 
Information 
Processing

hsa04020 Calcium signaling 
pathway 177 12 5.07 2.37 5.20E-03 9.70E-03

C, the number of reference genes in the category; O, the number of genes in the gene set and also in the category; E, 
expected number in the category; R, the ratio of enrichment, rawP, the p value from hypergeometric test; adjP, the p value 
adjusted by the multiple test adjustment.

for example. We identified it to be the most significant 
pathway (P = 3.26E-09) and 7th significant pathway (P 
= 1.00E-04) using genes from the “best SNP per gene” 
method and the meta-analysis method, respectively. It is 
reported that Wnt signaling plays major roles in almost 
all aspects of skeletal development and homeostasis. 
Promising effective therapeutic agents for bone diseases 
are being developed by targeting the Wnt signaling 
pathway [16]. Wnt signaling regulates BMD through the 
lipoprotein receptor-related protein 5 (LRP5), a receptor of 
this signaling. Genetic variations at the LRP5 gene locus 
are associated with osteoporosis, which suggests that 
genetic variations in Wnt signaling genes may affect the 
pathogenesis of osteoporosis [17].

We further compared our results with previous 
GWAS [3, 18]. In 2008, Styrkarsdottir et al. also reported 
the involvement of RANK-RANKL-OPG pathway in 

BMD [18]. In 2012, Estrada et al. identified 56 loci 
associated with BMD at genome-wide significance (P 
< 5.00E-08) [3]. They applied the Gene Relationships 
Across Implicated Loci (GRAIL) text-mining 
algorithm to investigate connections between genes 
in 55 autosomal BMD-associated loci, and revealed 
significant (P < 0.01) connections between genes in 
18 loci in three key biological pathways: the RANK-
RANKL-OPG pathway (TNFRSF11A, TNFSF11 and 
TNFRSF11B); mesenchymal stem cell differentiation 
(RUNX2, SP7 and SOX9); and Wnt signaling (LRP5, 
CTNNB1, SFRP4, WNT3, WNT4, WNT5B, WNT16 
and AXIN1) [3].

In addition to the Wnt signaling, there is also some 
literature evidence supporting the involvement of other 
risk pathways in BMD. More detailed information is 
described in Table 3.



Oncotarget31434www.impactjournals.com/oncotarget

Table 2: Significant pathways with P<0.01 by pathway analysis of BMD genes using the meta-analysis method

Classifications Pathway 
ID

Pathway 
Name C O E R rawP adjP Shared

Immune 
diseases hsa05323 Rheumatoid 

arthritis 91 12 1.61 7.45 7.60E-08 2.43E-06 Y

Environmental 
Information 
Processing

hsa04060

Cytokine-
cytokine 
receptor 

interaction

265 19 4.69 4.05 3.31E-07 5.30E-06 Y

Immune 
diseases hsa04940 Type I diabetes 

mellitus 43 8 0.76 10.52 7.77E-07 9.95E-06 Y

Immune 
diseases hsa05320 Autoimmune 

thyroid disease 52 8 0.92 8.7 3.50E-06 3.73E-05 Y

Environmental 
Information 
Processing

hsa04010
MAPK 

signaling 
pathway

268 17 4.74 3.59 7.08E-06 6.47E-05 Y

Cellular 
Processes hsa04145 Phagosome 153 12 2.71 4.43 1.97E-05 1.00E-04 Y

Cellular 
Processes hsa04510 Focal adhesion 200 14 3.54 3.96 1.50E-05 1.00E-04 Y

Environmental 
Information 
Processing

hsa04310 Wnt signaling 
pathway 150 12 2.65 4.52 1.61E-05 1.00E-04 Y

Cardiovascular 
diseases hsa05416 Viral 

myocarditis 70 8 1.24 6.46 3.32E-05 2.00E-04 Y

Cellular 
Processes hsa04810

Regulation 
of actin 

cytoskeleton
213 14 3.77 3.72 3.03E-05 2.00E-04 Y

Immune 
diseases hsa05330 Allograft 

rejection 37 6 0.65 9.17 4.38E-05 2.00E-04 Y

Infectious 
diseases: 
Parasitic

hsa05140 Leishmaniasis 72 8 1.27 6.28 4.08E-05 2.00E-04 Y

Immune 
diseases hsa05332 Graft-versus-

host disease 41 6 0.73 8.27 7.98E-05 3.00E-04 Y

Infectious 
diseases: 
Parasitic

hsa05145 Toxoplasmosis 132 10 2.34 4.28 1.00E-04 4.00E-04 Y

Immune 
diseases hsa05310 Asthma 30 5 0.53 9.42 2.00E-04 6.00E-04 Y

Immune system hsa04672

Intestinal 
immune 

network for 
IgA production

48 6 0.85 7.07 2.00E-04 6.00E-04 Y

Immune system hsa04062
Chemokine 
signaling 
pathway

189 12 3.34 3.59 2.00E-04 6.00E-04 Y

(Continued )
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Classifications Pathway 
ID

Pathway 
Name C O E R rawP adjP Shared

Metabolism hsa00250

Alanine, 
aspartate and 

glutamate 
metabolism

32 5 0.57 8.83 2.00E-04 6.00E-04 N

Cellular 
Processes hsa04142 Lysosome 121 9 2.14 4.2 3.00E-04 9.00E-04 N

Immune system hsa04612
Antigen 

processing and 
presentation

76 7 1.34 5.21 4.00E-04 1.10E-03 Y

Infectious 
diseases: 
Bacterial

hsa05150
Staphylococcus 

aureus 
infection

55 6 0.97 6.17 4.00E-04 1.10E-03 Y

Nervous 
system hsa04722

Neurotrophin 
signaling 
pathway

127 9 2.25 4.01 4.00E-04 1.10E-03 Y

Environmental 
Information 
Processing

hsa04514
Cell adhesion 

molecules 
(CAMs)

133 9 2.35 3.82 6.00E-04 1.50E-03 Y

Environmental 
Information 
Processing

hsa04350
TGF-beta 
signaling 
pathway

84 7 1.49 4.71 7.00E-04 1.70E-03 Y

Environmental 
Information 
Processing

hsa04512 ECM-receptor 
interaction 85 7 1.5 4.65 8.00E-04 1.90E-03 Y

Cellular 
Processes hsa04144 Endocytosis 201 11 3.56 3.09 1.00E-03 2.20E-03 Y

Genetic 
Information 
Processing

hsa03050 Proteasome 44 5 0.78 6.42 1.00E-03 2.20E-03 Y

Immune system hsa04670
Leukocyte 

transendothelial 
migration

116 8 2.05 3.9 1.10E-03 2.30E-03 N

Cancers: 
Specific types hsa05220

Chronic 
myeloid 
leukemia

73 6 1.29 4.65 1.90E-03 3.80E-03 Y

Cellular 
Processes hsa04520 Adherens 

junction 73 6 1.29 4.65 1.90E-03 3.80E-03 Y

Development hsa04380 Osteoclast 
differentiation 128 8 2.26 3.53 2.10E-03 4.10E-03 Y

Cellular 
Processes hsa04530 Tight junction 132 8 2.34 3.43 2.50E-03 4.70E-03 Y

Infectious 
diseases: Viral hsa05160 Hepatitis C 134 8 2.37 3.37 2.70E-03 4.90E-03 N

Cancers: 
Specific types hsa05217 Basal cell 

carcinoma 55 5 0.97 5.14 2.90E-03 5.20E-03 Y

(Continued )
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Classifications Pathway 
ID

Pathway 
Name C O E R rawP adjP Shared

Environmental 
Information 
Processing

hsa04340
Hedgehog 
signaling 
pathway

56 5 0.99 5.05 3.10E-03 5.40E-03 Y

Cellular 
Processes hsa04114 Oocyte meiosis 112 7 1.98 3.53 3.90E-03 6.60E-03 Y

Genetic 
Information 
Processing

hsa03013 RNA transport 151 8 2.67 2.99 5.60E-03 9.00E-03 Y

Genetic 
Information 
Processing

hsa03010 Ribosome 92 6 1.63 3.69 5.90E-03 9.20E-03 N

C, the number of reference genes in the category; O, the number of genes in the gene set and also in the category; E, 
expected number in the category; R, the ratio of enrichment, rawP, the p value from hypergeometric test; adjP, the p value 
adjusted by the multiple test adjustment. Y, this pathway is shared in pathway analysis of BMD genes using the “best 
SNP per gene” method; N, this pathway is not shared in pathway analysis of BMD genes using the “best SNP per gene” 
method;

Table 3: Literature evidences supporting that genes in measles pathway are associated with bone mineral density or 
osteoporosis

Pathway Supporting evidence Ref

Rheumatoid 
arthritis

BMD data of patients with low to moderately active RA demonstrated an association 
between high radiological RA damage and low BMD at the hip, which suggests an 
association between the severity of RA and the risk of generalised bone loss, which also 
occurred in corticosteroid naive patients [27]. There is a significant negative relationship 
between femoral neck BMD and disease duration in RA. The value of OR increases 
proportionately with lengthening of disease duration which can be reduced significantly 
by methotrexate therapy [28].

[27–28]

TGF-beta 
signaling 
pathway

TGF-beta is the possible Link between loss of bone mineral density and chronic 
inflammation [29]. TGF-β/BMPs have widely recognized roles in bone formation during 
mammalian development and exhibit versatile regulatory functions in the body [30].

[29–30]

Focal adhesion

Proline-rich tyrosine kinase 2 (PYK2), a member of the focal adhesion kinase family, 
plays a key role in the regulation of bone formation, and so inhibitors of this kinase 
might represent potential bone-building therapies for osteoporotic disease [31]. The focal 
adhesion, the actin cytoskeleton and cell-cycle are connected pathways and their genes 
are implicated in the pathogenesis of low BMD [32].

[31–32]

Type I diabetes 
mellitus

The lower BMD in type 1 versus type 2 diabetic patients and control subjects probably 
results from more rapid bone loss after the onset of type 1 diabetes [33]. patients with 
type 1 diabetes have a 6.9-fold increased incidence of hip fracture compared to controls 
[34].

[33–34]

Regulation 
of actin 
cytoskeleton

The focal adhesion, the actin cytoskeleton and cell-cycle are connected pathways [32]. 
Genes in these three pathways are implicated in the pathogenesis of low BMD [32]. 
Genome-wide linkage studies have highlighted the chromosomal region 3p14-p22 as a 
quantitative trait locus for BMD [35]. The FLNB gene, which is thought to have a role in 
cytoskeletal actin dynamics, is located within this chromosomal region and presents as a 
strong candidate for BMD regulation [35]. Mullin et al. identified significant associations 
between SNPs in the FLNB gene and BMD in Caucasian women [35].

[32, 35]
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Until now, there are kinds of software tools for 
pathway analysis of the GWAS dataset [19]. Some tools 
including SNP ratio test [20], GenGen [21], GRASS 
[22], accept raw genotype datasets as input data. Other 
tools including ProxyGeneLD [14], ALIGATOR 
[19], i-GSEA4GWAS [19], and PLINK set-test [23], 
MAGENTA [24], and GESBAP [19] accept the summary 
results to subsequent pathway analysis. Here, we 
selected ProxyGeneLD and PLINK for gene-based test, 
as we did not have access to raw BMD genotype data. 
Both the ProxyGeneLD and PLINK have different 
approaches, assumptions regarding genomic architecture 
of risk variants in pathways, and different methods for 
the correction of LD and gene size effects. ProxyGeneLD 
produces a gene-wide p-value using the lowest p-value 
of the SNPs (the best SNP), or the lowest p-value in a 
cluster with multiple SNPs and clusters that fall within 
the gene boundaries [25]. The P value was adjusted for 
the LD patterns in the human genome and gene length. 
PLINK SET SCREEN TEST is a meta-analysis method 
that combines P values across all the SNPs in genes and 
adjusts for the LD [15].

Based on these different software tools for 
pathway analysis, we recognize some limitations using 
ProxyGeneLD and PLINK. First, the multiple testing 
corrections may not be sufficient to account for all biases 
in pathway analysis. The results from the BMD GWAS 
should be adjusted using a permutation test. However, the 
original SNP genotype data for each individual are not 
available to us now. When we get the SNP genotype data, 
we will further perform a pathway analysis using some 
available software such as SNP ratio test [20], GenGen 
[21], and GRASS [22]. These pathway analysis methods 
or software can be used to analyze the SNP genotype data, 
and can conduct a permutation test. Future replication 
studies using genotype data are required to replicate our 
findings.

In summary, we not only identified the known risk 
pathway such as Wnt signaling, in which the top GWAS 
SNPs are significantly enriched, but also highlight some 
new risk pathways. Interestingly, evidence from further 
supports the involvement of these pathways in MBD. 
We believe that our results advance our understanding of 
BMD mechanisms and will be very informative for future 
genetic studies in BMD. Further functional evaluation 
of this pathway to determine the mechanism by which it 
regulates BMD should be pursued to provide new insights 
into the pathogenesis of osteoporosis.

MATERIALS AND METHODS

The BMD GWAS dataset

The second lumbar spine BMD GWAS dataset used 
here comes from the summary results of a large-scale 
BMD GWAS conducted by Estrada et al [3], which is 

part of the GEnetic Factors for OSteoporosis consortium 
(GEFOS). Estrada et al. performed a meta-analysis 
of GWAS for BMD of the lumbar spine (LS-BMD; 
n=31,800) including ~2.5 million autosomal genotyped 
or imputed SNPs from 17 GWAS datasets from North 
America, Europe, East Asia and Australia [3]. BMD of 
the lumbar spine (LS-BMD) was measured in all cohorts 
using dual-energy X-ray absorptiometry following 
standard manufacturer protocols [3]. GWAS genotyping 
was followed by imputation to ~2.5 million SNPs from 
HapMap37 Phase II release 22 using Genome Build 36 
[3]. Association between each SNP and BMD in each 
study was analyzed using sex-specific, age- weight- and 
principal components-adjusted standardized residuals 
under an additive genetic model [3]. In the end, we got 
the association results about 2,468,080 SNPs and BMD 
[3]. More detailed information is described in the original 
study [3].

Gene-based testing for GWAS dataset by 
ProxyGeneLD

ProxyGeneLD assigns SNPs to specific genes [14]. 
This software flexibly takes into consideration the complex 
linkage disequilibrium (LD) patterns in the human genome 
and corrects for the inflation of significance caused by 
gene length. The LD information comes from the HapMap 
phase II CEU samples (release 22) [14]. Using the lowest 
p-value of the SNPs (the best SNP), or the lowest p-value 
in a cluster with multiple SNPs and clusters that fall within 
the gene boundaries, ProxyGeneLD produces a gene-wide 
p-value [25]. Intergenic SNPs, which is in high LD with 
the mapped genes, will have been mapped to genes for the 
next analysis.

Gene-based testing for GWAS dataset by PLINK

PLINK is used to test for the GWAS dataset by a 
meta-analysis of all the SNPs in genes [15]. The set screen 
test uses an approximate Fisher’s test to combine P values 
across all the SNPs in genes and adjusts for LD [15]. It 
is reported that Fisher’s method is asymptotically optimal 
to get the overall significance by combining a set of P-
values obtained from independent tests of the same null 
hypothesis (each SNP is not associated with disease) [15]. 
We applied this method to the BMD GWAS dataset using 
the LD information from the HapMap CEU population.

Pathway-based testing for BMD GWAS dataset

The KEGG pathways in WebGestalt were used 
for pathway analysis (June 16, 2015) [26]. For a given 
pathway, a hypergeometric test was used to detect the 
overrepresentation of BMD-related genes among all of the 
genes in the pathway [26]. The p-value of K BMD-related 
genes in the pathway was calculated using
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where N is the total number of genes of interest, S 
is the number of all of the BMD-related genes, m is the 
number of genes in the pathway and K is the number of 
BMD-related genes in the pathway.

In order to avoid testing overly narrow or broad 
pathways, we select WebGestalt KEGG pathways that 
contain at least 20 and at most 300 genes for subsequent 
analysis. The reference gene list is the entire entrez gene 
set. The minimum number of genes for a category is 5. 
The false discovery rate (FDR) method was used to correct 
for multiple testing. KEGG pathways with an adjusted 
P<0.01 are considered to be significantly associated with 
BMD.
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