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ABSTRACT

Thalidomide, a drug known for its teratogenic side-effects, is used successfully to 
treat a variety of clinical conditions including leprosy and multiple myeloma. Intense 
efforts are underway to synthesize and identify safer, clinically relevant analogs. Here, 
we conduct a preliminary in vivo screen of a library of new thalidomide analogs to 
determine which agents demonstrate activity, and describe a cohort of compounds 
with anti-angiogenic properties, anti-inflammatory properties and some compounds 
which exhibited both. The combination of the in vivo zebrafish and chicken embryo 
model systems allows for the accelerated discovery of new, potential therapies for 
cancerous and inflammatory conditions.

INTRODUCTION

Thalidomide was first marketed in Germany in 1957 
as a non-barbiturate, non-addictive, non-toxic sedative 
which was also used to treat morning sickness in pregnant 
women [1–4]. It was withdrawn from the world market 
in late 1961 after it was found to be a potent teratogen 
[2–4] having caused birth defects in over 10,000 children. 
These children showed similar anatomical limb reduction 
malformations including phocomelia, an absence or 
reduction of the long bones in the forelimb, or amelia, a 
complete absence of the forelimb [2, 4, 5]. Other commonly 
seen phenotypic malformations were also documented 
including eye, ear, heart, gastrointestinal and kidney 
defects [2, 6–8]. The thalidomide disaster emphasized the 
importance of thorough drug screening and the potential for 
drug species specificity, as rodents were not susceptible to 
thalidomide. As a direct result new candidate drugs are now 
tested in at least two animal species (one of which must be 
non-rodent) before clinical testing [9].

Thalidomide possesses anti-angiogenic actions in the 
rabbit corneal micropocket assay [10], the rat aortic ring assay 
(in the presence of human liver microsomes), and in in vitro 
cultures of human umbilical vein endothelial cells (HUVECs), 
[6, 11–15]. This action has been linked to the damage to 
embryos following thalidomide exposure [3, 6, 8, 10]. 
Thalidomide also possesses immunomodulatory characteristics 
[16, 17]. The immunological basis for the clinical efficacy of 
thalidomide lies in its ability to inhibit the synthesis of tumor 
necrosis factor alpha (TNF-α), a major inflammatory cytokine 
[17, 18]. Thalidomide’s combined anti-angiogenic and anti-
inflammatory properties likely lead to its anti-cancer effects 
and efficacy in the treatment of multiple myeloma [19, 20] as 
well as documented activity in other cancers [21].

Given the efficacy of thalidomide analogs and 
expanding clinical use, developing safer thalidomide 
analogs with improved activity and less toxicity is a 
continuing research effort. The novel analogs used in 
the current study were designed around the tricyclic ring 
structure of thalidomide. A library of 81 structural analogs 
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were chemically synthesized and screened in the zebrafish 
embryo and chicken embryo model systems. Our study 
utilizes two established transgenic zebrafish reporter lines, 
fli1:EGFP and Tg(mpo::EGFP)114, to identify potential 
anti-angiogenic and anti-inflammatory compounds, 
respectively [12, 22-25]. Here we describe the 13 lead 
compounds that exhibit either anti-angiogenic, anti-
inflammatory, or both, properties. The multiple zebrafish 
assays, used in conjunction with the in ovo chicken 
embryo assay, also help to provide a potential teratogenic 
profile for each lead compound.

RESULTS

Anti-angiogenic thalidomide analogs disrupt 
vessel formation in fli1:EGFP zebrafish embryos

To determine if our novel thalidomide analogs 
(Figure 1) had any effect on in vivo angiogenesis, 
we used fli1:EGFP embryos which express green 
fluorescent protein (GFP) on endothelial cells throughout 
development [22]. Embryos were allowed to develop for 
24 hours, then exposed to either vehicle or a compound 
of interest at the concentration range of 1 to 200 μg/mL. 
During this time the vasculature is rapidly expanding and 
developing new, naive intersegmental vessels (ISVs). 
The embryos were imaged after 24 hours of incubation 

with the drug (Figure 2A). Compounds C4, C18, C81, 
C82, C83 and C84 exhibited anti-angiogenic activity, as 
indicated by loss of ISVs or inhibition of ISV outgrowth 
in fli1:EGFP zebrafish embryos (Figure 2B–2C). We 
also observed that the potency of each compound varied. 
Table 1  shows the lowest effective concentration of each 
compound exhibiting a response. For example, C4 was 
anti-angiogenic at 1.5 μg/mL (4.9 μM), as determined by 
inhibition of vessel outgrowth and number. In contrast C81 
only showed inhibitory activity at 50 μg/mL (161.07 μM).

Anti-inflammatory thalidomide analogs reduce 
neutrophil migration in response to injury in the 
Tg(MPO::EGFP)114 zebrafish

To assess the immunomodulatory effects of the 
thalidomide analogs across the concentration range 
used in the previous assay, the transgenic zebrafish line 
Tg(MPO::EGFP)114 was used. These embryos express GFP 
tagged myeloperoxidase, marking neutrophils during the 
inflammatory response, for example following injury [23, 
24]. The inflammatory response in zebrafish embryos is 
active from 3 days post fertilization [24] and can clearly 
be demonstrated following removal of the dorsal third of 
the tail fin. This allowed us to subsequently assess the anti-
inflammatory activity of each compound by immersing 
embryos in the test drug or vehicle. The embryos were 

Figure 1: Structures of compounds of interest. Structures of lead thalidomide analogs of interest identified in our models.
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examined for migration of neutrophils to the wound site. 
In comparison to control embryos (Figure 3A) compounds 
with anti-inflammatory properties had reduction of at 
least 50% of neutrophils recruited to the wound site 
(Figure 3). Compounds C2, C7, C24, C29, C58, C59 and 
C86 reduced neutrophil migration. We also screened the 
previously identified six anti-angiogenic compounds of 
interest in the Tg(MPO::EGFP)114 line. C18 and C82 were 
seen to significantly reduce neutrophil migration, and thus 
were classified as having both anti-angiogenic and anti-
inflammatory properties in these assays (Figure 3B).

All anti-angiogenic and some anti-inflammatory 
compounds are teratogenic in the developing 
chicken and zebrafish model systems

Compounds of interest were screened in chicken 
and/or zebrafish embryos (Figure 4), to determine if 
these compounds are teratogenic. The chicken embryo 
is well established as a model to determine the action 
of compounds upon development [6, 12, 23, 25–27].All 
the identified anti-angiogenic compounds (Structures 
in Supplementary Table S1) caused defects to the 
embryos. Teratogenicity in the chicken embryo included 
microphthalmia (compound C81), reduced body size 
compared to control embryos (compound C18), limb 

and digit defects (compound C82), and hemorrhaging 
(compounds C4, C81, C83, C84, C24) (Table 2, Figure 4). 
Chicken embryos treated with these compounds often had 
abnormal blood vessels and necrotic-like regions in the 
surrounding yolk sac membrane (compounds C4, C18, 
C83, C24).

To determine the effects of the lead candidate 
compounds on embryonic development, compounds were 
tested in the developing zebrafish model during a stage 
of rapid organogenesis (24 hpf) [23]. Anti-angiogenic 
compounds caused developmental issues in the zebrafish 
embryo, including reducing eye diameter (Figure 4C, 
Figure 4G), pectoral fin outgrowth malformations (Figure 
4D, Figure 4H) and twisted spines (Figure 4C).

Of the lead anti-inflammatory compounds, compounds 
C24 and C29 exhibited developmental defects in chicken 
embryos causing hemorrhaging and necrotic-like damage in 
the YSM. Compounds C2, C7, C58, C59 and C86 had no 
effect on chicken embryo development.

DISCUSSION

Thalidomide and its analogs are currently under 
investigation for the treatment of a range of auto-immune 
and inflammatory conditions, as well as certain cancers 
[28]. The continued use of thalidomide has emphasized 

Figure 2: The effect of novel thalidomide analogs on vessel length. fli1:EGFP zebrafish were incubated with vehicle or 
compounds for 24 hours, at which point vessel outgrowth and number were measured. A. Images of zebrafish exposed to the vehicle or test 
compounds. Zebrafish with the vehicle (0.1% DMSO) show normal patterning of the ISVs, zebrafish exposed to CPS49 show reduction in 
vessel outgrowth (white arrow), loss of vascular connectivity and a decrease in the number of forming blood vessels. Treatment with C4 
(1.5 μg/mL), C18 (50 μg/mL), C81 (50 μg/mL), C82 (5 μg/mL), C83 (20 μg/mL) and C84 (50 μg/mL) show reduction in vessel out growth 
(white arrow) and in some cases loss of vessel (white asterisks). B. Stalk length & C. stalk number are reduced. Compounds are shown at 
the lowest concentration producing an effect. The data represent the mean + the standard error of the mean.
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the need for an alternative form of the drug with increased 
clinical potency and bioactivity, but with reduced side 
effects. This need is further magnified by a recent 
resurgence of children born in Brazil with thalidomide-

induced defects, which has increased efforts to design and 
synthesize a non-teratogenic thalidomide analog [29–32].

We have assessed the in vivo actions of novel 
thalidomide analogs in zebrafish and chicken embryo 

Figure 3: The effect of thalidomide analogs on the inflammatory response to wound healing. A. Zebrafish (72 hpf) embryos 
transgenic for a fluorescently tagged neutrophil marker Tg(MPO::EGFP)114 were fin clipped to induce an inflammatory response and 
exposed to vehicle or a test compound. Broken line indicates the tail fin with cut and area of the wound site. B. The percentage of 
neutrophils within the wound site was quantified and shows the extent of the inflammatory response to injury. The data represent the mean 
+ the standard error of the mean.

Table 1: Lowest effective concentration determined for the 11 lead thalidomide analogs screened in each assay

Compound Assay

fli1:EGFP TG(MPO::EGFP)114 WT Zebrafish Chicken

Activity (μg/mL) (μg/mL) (μg/mL) (μg/mL)

Anti-angiogenic 4 1.5 10 10 100

81 50 50 10 100

83 20 20 10 100

84 50 10 10 100

Anti-inflammatory 2 10 10 10 100

7 10 10 10 100

24 50 50 50 100

29 10 5 nd 100

58 10 5 5 100

59 10 100 100 50

86 10 100 nd 100

Both 18 50 50 50 100

82 5 5 5 100

Compounds were screened across a range of concentrations (1-200 μg/mL) to determine the lowest effective concentration. 
Where no activity was seen the concentration shown is the lowest screened.
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model systems. Utilizing these assays we have screened 81 
compounds and shown that a subset of analogs displayed 
desirable actions at low concentrations in vivo. We have 
selected 13 lead candidate compounds from these cohorts 
based on their activity profiles.

Compounds C4, C18, C81, C82, C83 and C84 were 
found to decrease vessel length or the number of sprouting 
vessels at relatively low concentrations (1.5 μg/mL - 100 μg/
mL), similar to concentration ranges used in other screening 
studies [23, 25, 33]. Some compounds with anti-angiogenic 
actions were found to induce death and defects within the 
treated embryos, reflecting the importance of vascular 
development for embryogenesis. This complements other 
studies that suggest a primary cause of thalidomide-induced 
birth defects may be incorrect patterning of the vasculature 
in affected tissues [6, 12].

We identified several analogs with potent activity 
against the inflammatory response in vivo at low 
concentrations compared to previous studies of other 
thalidomide analogs [23]. Of these compounds, C2, C7, 
C58, C59 and C86 were found to be anti-inflammatory 
without anti-angiogenic activities and were non-
teratogenic in these assays, and thus may be acting 
independently of the mechanism that induces defects 
in the developing embryo. Importantly, we cannot rule 
out that at higher concentrations, or in other animal 
models, they could be teratogenic. C58 was the most 
effective analog at inhibiting the inflammatory response, 
decreasing the migration of neutrophils to 10% of the 
control (Figure 3). Interestingly, the structure of C58 
(5-Aza-thalidomide) is very similar to pomalidomide, a 
derivative of thalidomide with potent immunomodulatory 
actions [34, 35]. However, unlike pomalidomide, C58 
includes a pyridine ring. Whether this analog shares a 
similar mechanism of action to pomalidomide remains to 
be determined. Of additional note, C2 (2,3-dihydro-2-(2-
oxo-6-thioxo-3-piperidinyl)-3-thioxo-1H-isoindol-1-one) 
also possessed significant anti-inflammatory action. This 
agent, also known as 3,6′-dithiothalidomide, has been 
shown to potently lower lipopolysaccharide (LPS)-
induced elevations in TNF-α in cultured RAW 264.7 cells 

as well as in the plasma and brain of rats challenged with 
systemic LPS [33, 36]. The compound also dramatically 
mitigates neuroinflammation and improves outcome 
measures in animal models of traumatic brain injury [37], 
stroke [38], Alzheimer’s disease [33, 39, 40] and aneurysm 
[41]. Together, these prior studies cross-validate the anti-
inflammatory actions evident within the present study. 
While most anti-inflammatory compounds did not induce 
embryonic defects, C24 and C29 caused some effects in 
the developing chicken embryo including twisted spinal 
cords, necrotic-like damage in the YSM and high death 
rates. Thalidomide inhibits TNF-α expression which is 
vital for the induction of an inflammatory response [42].
Given that TNF-α can be protective to rodent embryos 
exposed to teratogenic insults [43] it may also be that a 
reduction of TNF-α somehow impedes the development 
of the chicken and zebrafish embryos. Further studies 
elucidating this developmental mechanism would aid in 
the use of chicken and zebrafish embryos for the screening 
of developmental toxicity and embryotoxic potency of 
compounds (e.g. other TNF-α inhibitors) during early drug 
development. Reports on the risk of birth defects after 
embryonic exposure to TNF-α inhibitors are contradictory, 
with some indicating they may be teratogenic [44] and 
other studies reporting their safety [45, 46]. It is important 
to point out that thalidomide exerts its anti-inflammatory 
effects through multiple pathways including TNF-α 
and COX-2 inhibition. The fact that our current study 
identified some anti-inflammatory thalidomide analogs 
that produced mild defects (compared with thalidomide 
embryopathy in humans) suggests that the effects of 
thalidomide and its analogs on the embryos may involve 
multiple targets. Using our screening models, we can 
identify those that are potently anti-inflammatory analogs 
but are non-teratogenic. Given the species specificity 
of thalidomide and that animal studies do not always 
correlate to human responses, extrapolation of this data 
should be carried out with caution.

Several compounds from our library, such as C18 
and C82, exhibited both anti-inflammatory and anti-
angiogenic properties in our assays (structures found in 

Table 2: Damage seen in HH stage 17-18 chicken embryos when exposed to compounds of interest at 100 μg/mL

Compound Damage observed Survival (n)

C4 Necrotic YSM, hemorrhaging 1/10

C18 Necrotic YSM, stunted growth 4/6

C81 Hemorrhaging, microopthalmia, 3/12

C82 Limb reduction defect 3/8

C83 Necrotic YSM, hemorrhaging 2/4

C84 Hemorrhaging 2/4

C24 Necrotic YSM, hemorrhaging 2/4

C29 Twisted spines, hemorrhaging 7/11
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Supplementary Table 3). Tumors require a blood supply 
to survive [47] and the tumor microenvironment includes 
a high level of cytokine activity (including COX-2, TNF-α 
and interleukins). Therefore, compounds inhibiting both 
vessel formation and the inflammatory response may be 
beneficial for anti-cancer therapy [48, 49].

The effects of novel thalidomide analogs in this 
study provide primary data as evidence for their clinical 

potential. Studies are underway in our laboratory for 
further testing in in vitro cellular and in vivo animal 
models of various disease states as well as to delineate 
the molecular mechanisms of the lead compounds. In 
particular, if the compounds act by binding to cereblon, 
a recently established molecular target of thalidomide, 
lenalidomide and pomalidomide [50, 51]. Given that 
these compounds could be divided into distinct cohorts 

Figure 4: Defects seen in zebrafish and chicken embryos following thalidomide analog treatment A. Embryos with 
exposure to a vehicle control show normal development of the eye (e), and B. pectoral fins (pf). Example of an anti-angiogenic compound 
(C4, Figure 1) causing C. microopthalmia (white arrow; seen in list the compounds) and D. malformation in fin development (white 
arrow). Exposure to an anti-inflammatory compound (C2, Figure 1) resulting in E. normal eye development and F. fin development. G. Eye 
diameter and H. fin length were quantified and show anti-angiogenic compounds causing reductions in eye diameter (C4, C18, C82, C83, 
C84) and pectoral fin length (C18, C81, C82). Compounds of interest were screened in chicken embryos at HH stage 17-18 (Day 2.5 in 
embryonic development). I. Untreated, control images of an embryo in ovo with normal vascular patterns at HH stage 23 (Day 3.5); K. ex 
ovo; M. eye O. forelimb and Q. hindlimb showing cartilage patterning (at day 9 of development). Typical examples of compound treated 
embryos: J. anomaly in vasculature (white arrow) and necrosis (black arrow) of the YSM in a chicken embryo following treatment with 
C23 (Supplementary Table S1). L. embryo exhibiting microopthalmia (asterix), limb reduction (white arrow) and hemorrhaging throughout 
the body following treatment with C80 and (N) C81 (Figure 1) treated embryo with growth reduction and hemorrhaging throughout head 
(white arrow). P. C11 treated limb with reduced elements (Asterisks represents a limb reduction defect). R. Missing digits and reduced 
length of limb cartilage elements (Treated with C11, Supplementary Table S1). Scale bar represents 1000 μm.
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based on their activities we hypothesized there may be 
some correlation between the structural modifications 
and their activity in these assays. To assess this across the 
library of compounds we are conducting structure-activity 
relationship studies. Due to the range of teratogenicity 
seen in the developing chicken model system with some of 
these thalidomide-related compounds, it will be interesting 
to assess whether or not the compounds have a direct effect 
on cells or if the anti-cancer action is purely mediated by 
the inhibition of angiogenesis. While it has been shown in 
previous studies that thalidomide exhibits multiple effects 
[52], the compounds screened here will require additional 
characterization to establish if they also exert sedative or 
neurotoxic effects in addition to their anti-inflammatory 
or anti-angiogenic properties. The iterative process of 
continued synthesis and screening of thalidomide analogs 
increases the chances of finding a form of the drug that 
acts with tissue specificity, increased potency and reduced 
unwanted effects.

MATERIALS AND METHODS

Zebrafish embryology

Zebrafish embryos were treated with analogs as 
previously described [23]. Briefly, fli1:EGFP embryos 
were collected and embryos were allowed to develop 
for 24 hours. Embryos were dechorionated manually 
and exposed to test compounds or vehicle control (0.1% 
DMSO) for a further 24 hours. Embryos were anesthetized 
with 0.05% MS222 (Tricaine) (Sigma Aldrich) and live 
visualization of blood vessels was carried out.

Tg(MPO::EGFP)114 embryos were tail fin clipped 
as previously detailed [23, 24] and incubated with 
test compounds or vehicle control at 72 hpf. Fish 
were imaged at 24 hours and the number of migratory 
neutrophils present at the wound site were counted. 
Compounds inducing an at least 50% reduction of 
neutrophils to the wound site were considered to have 
anti-inflammatory properties in this system.All larvae 
were assessed for viability and morphological integrity. 
A minimum of 10 embryos were used per concentration 
per drug. Error bars represent standard error of the 
mean.

Chicken embryology

Fertilized white leghorn chicken embryos were 
incubated at 38°C and staged according to the Hamburger 
and Hamilton (HH) stages of development [53]. Embryos 
were tested at HH stage 17-18 (day 2.5). Following 
membrane removal test compounds or vehicle control 
solutions were applied over the embryo. The eggs were 
sealed and the development of the embryos was monitored 
up to HH stage 30 (E9). A minimum of 3 embryos were 
used per concentration, per drug.

All embryo work was fully licensed and carried 
out with ethical review permissions and following all 
regulatory guidelines.

Thalidomide analogs

A broad series of novel thalidomide-based 
compounds were chemically synthesized (WL, NHG 
and WDF, NIH), dissolved in DMSO, stored in stock 
concentrations between 10-100 mg/mL, and used at a 
final working DMSO concentration of 0.1%. The chemical 
structures of lead compounds of interest were confirmed 
by chemical characterization (purity >99.5%). Compounds 
were screened across a range of concentrations from 1-200 
μg/mL to determine the lowest effective concentration.

Imaging and analysis

Imaging was performed using a Nikon MZ1500 
fluorescent stereomicroscope with a Nikon DS-5 digital 
camera and analyzed using Adobe photoshop and Image 
J. Analysis was conducted using Prism 6.0 (GraphPad 
Software, La Jolla, CA) and statistical significance was 
assessed using two-tailed Student’s t tests or ANOVA 
analyses. Error bars represent standard error of the mean.
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