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ABSTRACT:
It is widely believed that aging results from the accumulation of molecular 

damage, including damage of DNA and mitochondria and accumulation of molecular 
garbage both inside and outside of the cell. Recently, this paradigm is being replaced 
by the “hyperfunction theory”, which postulates that aging is caused by activation of 
signal transduction pathways such as TOR (Target of Rapamycin). These pathways 
consist of different enzymes, mostly kinases, but also phosphatases, deacetylases, 
GTPases, and some other molecules that cause overactivation of normal cellular 
functions.  Overactivation of these sensory signal transduction pathways can cause 
cellular senescence, age-related diseases, including cancer, and shorten life span. 
Here we review some of the numerous very recent publications on the role of signal 
transduction molecules in aging and age-related diseases. As was emphasized by the 
author of the “hyperfunction model”, many (or actually all) of them also play roles in 
cancer.  So these “participants” in pro-aging signaling pathways are actually very well 
acquainted to cancer researchers. A cancer-related journal such as Oncotarget is the 
perfect place for publication of such experimental studies, reviews and perspectives, 
as it can bridge the gap between cancer and aging researchers. 

Sirtuins

Sirtuins are NAD+-dependent protein deacetylases, 
which regulate metabolism, stress responses, and aging 
processes. Mammalians possess seven Sirtuin isoforms, 
Sirt1-7, which differ in their subcellular localization and 
in the substrate proteins they deacetylate [1-6]. Sirtuins 
remain the most investigated proteins in the field of aging 
research. In the last several years numerous findings have 
extended our knowledge on their roles in aging and age-
related diseases and cancer [7-22].

Not only there are at least seven unique isoforms 
with different regulators and substrates, but they can exert 
opposite effects, including extension and shortening of life 
span, depending on the isoform, environmental conditions 
and animal species [1, 14, 23-34]. The biochemical 
functions of sirtuins are numerous [26, 35, 36]. As one 

of many examples, SIRT3-mediated deacetylation of 
cyclophilin D (CypD) on lysine 166 suppressed age-
related cardiac hypertrophy [37]. The class III histone 
deacetylase SIRT1 has been implicated in extension of 
lifespan. In the vasculature, SIRT1 was demonstrated 
to improve endothelial function.  SIRT1 prevented 
endothelial superoxide production, inhibited NF-kappaB 
signaling, and diminished expression of adhesion 
molecules [38]. Treatment of  hypercholesterolemic ApoE-
/- SIRT1+/- mice with lipopolysaccharide to boost NF-
kappaB signaling, led to a more pronounced endothelial 
expression of ICAM-1 and VCAM-1. Thus as emphasized 
by Stein et al, endogenous SIRT1 diminished endothelial 
activation in ApoE-/- mice [38]. The atheroprotective 
effects of SIRT1 observed in atherogenesis highlighted 
the need for additional translational research from 
bench-to-bedside on this topic [39]. Not coincidentally, 
modulators of sirtuins are considered as very promising 
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targets for drug development [26, 40-44]. Virtual docking 
of a compound library into the peptide binding pockets 
of the crystal structures of Sirt2, 3, 5 and 6 yielded the 
compounds potentially discriminating between these 
isoforms. Further characterization in activity assays 
revealed two compounds with micromolar potency and 
high specificity for Sirt2 [4]. Sirtuins are also involved 
in cancer as one  example  of many age related diseases. 
For example, SIRT6 overexpression induced massive 
apoptosis in cancer  but not  normal cells [45].

Target of rapamycin

Sirtuins may exert different and sometimes opposite 
effects on longevity depending on the organism and 
environmental conditions. It was discussed recently 
that sirtuins could serve as modulators of the mTOR 
(mammalian target of rapamycin) pathway, by modulating 
and predominantly antagonizing mTOR activity, both 
upstream and downstream [46]. In 2009, Harrison, 
Miller and co-workers demonstrated that rapamycin, an 
inhibitor of mTOR, prolonged lifespan in mice [47]. This 
result was confirmed further by additional independent 
experiments and in different types (strains) of mice 
[48-56]. Furthermore, partial genetic inactivation of 
the mTOR pathway was known to prolong life span in 
different species from yeast to humans [57-61] . Based on 
the roles of mTOR in both cellular and organismal aging, 
as well as in age-related diseases, Mikhail Blagosklonny 
has predicted that rapamycin might extend lifespan, by 
slowing aging and delaying age-related diseases [62].  In 
2003, he proposed that active growth-promoting pathways 
that increase cellular size must in fact cause the senescent 
phenotype, when the cell cycle was blocked and actual 
cellular growth was not possible [63-64]. Inappropriate 
activation of some signaling pathways such as mTOR 
caused cellular hyperfunctions, and contributed to age-
related diseases [62]. The theory that aging is a quasi-
programmed aimless continuation of developmental 
growth [62, 65-72], was named the hyperfunction 
theory by Gems and coworkers, and was experimentally 
supported by studies in C elegans [73, 74]. 

Recently, the role of mTOR in cellular senescence 
has been further investigated in a process named 
geroconversion [75, 76] and was further experimentally 
supported by studies at the cellular level [77-88].  Besides 
nutrients, mTOR is also activated by insulin, IGF-1, 
Ras, PI3K, Raf and other signal transduction molecules 
[89-93].  All of these signaling molecules are both pro-
aging and oncoproteins, making mTOR a central player 
in both aging and cancer. Rapamycin and other rapalogs 
such as everolimus and temsirolimus and inhibitors of 
PI3K (upstream activator of TOR) are being prescribed 
or undergoing clinical trials for various cancer treatments 
[94-115]. 

Insulin and IGF

Reduced insulin and IGF-1 signaling has been 
associated with animal and human longevity [116-121].
On the other hand, inhibition of insulin/IGF-1 signaling 
is one anti-cancer strategy under intensive investigation 
[122-129]. 

Ras and PI3K

Ras and PI3K are potent inducers of cellular 
senescence, especially when cells cannot respond by 
increased proliferation [130-138]. Ras also participates in 
activities related to aging such as increased metabolism 
and autophagy [139]. The link between Ras and lifespan 
was further elucidated in a RasGrf1-deficient mouse model 
[140].  RasGRF1 is a Ras-guanine nucleotide exchange 
factor implicated in a variety of physiological processes.  
In aged RasGrf1(-/-) mice, increases in average and 
maximal lifespan, were associated with lower IGF-I levels 
and increased SIRT1 levels. Life extension was not due to 
the role of Ras in cancer or a protection against oxidative 
stress. In addition, cardiac glucose consumption was 
changed by aging in the mutant mouse model, indicating 
that RasGrf1-deficient mice displayed elevated aging 
[140-142]. Additional work supporting the role of Ras in 
organismal aging, demonstrated that Ras can accelerate 
aging [118, 143, 144], consistent with ‘the hyperfunctional 
model’ of aging driven by growth-promoting activators of 
the mTOR global network. Needless to say, Ras, Raf, PI3K 
and Akt are some of most important players in cancer and 
therefore targets for therapy. Recently clear progress in 
therapeutic applications of inhibiting these targets has 
been demonstrated [98, 104, 107,112,  [144-155]

p53

The p53 tumor suppressor is one of the most 
famous inducers of cellular senescence [134, 137, 156-
161]. Moreover, this outcome was demonstrated to be 
ensured when p53 caused cell cycle arrest but failed to 
inhibit the mTOR pathway [162]. By inhibiting mTOR 
[163], p53 can suppress the senescence program, the 
senescent phenotype and associated morphology, resulting 
in reversible arrest [164]. Since p53 can inhibit mTOR 
under certain conditions in various cells, it may cause 
quiescence instead of senescence [165-171]. p53 was 
demonstrated to inhibit geroconversion (a conversion 
from quiescence or simple arrest to senescence [76]) and, 
importantly, it did not cause senescence in quiescent cells 
[79]. Not surprisingly, the effects of p53 on longevity may 
vary [33, 172-180]. On the other hand, since p53 is the 
most frequently mutated tumor suppressor gene, p53 is 
under further investigations for various cancer therapies 
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to characterize and develop new drugs and approaches for 
targeting both mutated and WT p53 [181-194].

HIF-1 is often induced in cancer in response to 
hypoxic conditions, which by the way inhibit senescence 
in a HIF-1-independent fashion. Interestingly, HIF-1alpha 
protects against drug-induced apoptosis by antagonizing 
the functions of p53 [195]. HIF-1alpha upregulation 
induced proteasomal degradation of homeodomain-
interacting protein kinase-2 (HIPK2), a p53 apoptotic 
activator [195]. Agents that target HIF-1 are under further 
development [196-202].

Another strategy is induction of p53 for protection 
of normal cells from cycle-dependent chemotherapy, 
currently known as chemo-cyclo-therapy or cyclo-therapy 
[203-209].

p63 and p73

p63 and p73, relatives of p53, play even more 
diverse role in aging [210-215]. One unusual pro-aging 
role of p73 has been recently demonstrated. Female 
reproductive aging is often associated with increases 
in egg aneuploidy [216]. It was observed that TAp73 
isoforms were down regulated in oocytes from women 
older than 38 years. TAp73 down regulation in oocytes 
from women of advanced reproductive age could explain 
both the reduction of fertility and the increase in frequency 
of newborns with chromosomal abnormalities [216]. p63 
and p73 are also important targets for anti-cancer therapies 
[204, 217-230].
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