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ABSTRACT

Purpose: This study demonstrated the ability of quantitative ultrasound (QUS) 
parameters in providing an early prediction of tumor response to neoadjuvant 
chemotherapy (NAC) in patients with locally advanced breast cancer (LABC).

Methods: Using a 6-MHz array transducer, ultrasound radiofrequency (RF) data 
were collected from 58 LABC patients prior to NAC treatment and at weeks 1, 4, 
and 8 of their treatment, and prior to surgery. QUS parameters including midband 
fit (MBF), spectral slope (SS), spectral intercept (SI), spacing among scatterers 
(SAS), attenuation coefficient estimate (ACE), average scatterer diameter (ASD), 
and average acoustic concentration (AAC) were determined from the tumor region of 
interest. Ultrasound data were compared with the ultimate clinical and pathological 
response of the patient’s tumor to treatment and patient recurrence-free survival.

Results: Multi-parameter discriminant analysis using the k-nearest-neighbor 
classifier demonstrated that the best response classification could be achieved using 
the combination of MBF, SS, and SAS, with an accuracy of 60 ± 10% at week 1, 77 ± 
8% at week 4 and 75 ± 6% at week 8. Furthermore, when the QUS measurements 
at each time (week) were combined with pre-treatment (week 0) QUS values, the 
classification accuracies improved (70 ± 9% at week 1, 80 ± 5% at week 4, and 81 
± 6% at week 8). Finally, the multi-parameter QUS model demonstrated a significant 
difference in survival rates of responding and non-responding patients at weeks 1 
and 4 (p=0.035, and 0.027, respectively).

Conclusion: This study demonstrated for the first time, using new parameters 
tested on relatively large patient cohort and leave-one-out classifier evaluation, 
that a hybrid QUS biomarker including MBF, SS, and SAS could, with relatively high 
sensitivity and specificity, detect the response of LABC tumors to NAC as early as 
after 4 weeks of therapy. The findings of this study also suggested that incorporating 
pre-treatment QUS parameters of a tumor improved the classification results. This 
work demonstrated the potential of QUS and machine learning methods for the early 
assessment of breast tumor response to NAC and providing personalized medicine 
with regards to the treatment planning of refractory patients.
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INTRODUCTION

Conventional methods of clinical tumor response 
assessment involve tracking changes in tumor size, using 
the guidelines provided by Response Evaluation Criteria 
in Solid Tumors (RECIST) [1]. Such measurements are 
ascertained using anatomical-based imaging modalities 
such as X-ray imaging, magnetic resonance imaging 
(MRI), or conventional diagnostic ultrasound. However, 
tumor size typically provides late indications of response 
as measurable changes in tumor size do not occur until 
several weeks to months after the initiation of the NAC 
treatment, despite positive response [2]. Currently, no 
routine clinical imaging is carried out to assess tumor 
size or response during breast NAC administration in a 
neoadjuvant setting. Thus, the introduction of a non-
invasive functional imaging system that can be used to 
monitor the early response of a tumor to anticancer therapy 
can potentially help facilitate personalized treatment 
for cancer patients, thereby optimizing their therapeutic 
outcome and recurrence-free survival.

Several imaging methods have been developed 
in research to assess early therapeutic responses of 
breast tumors, including diffuse optical spectroscopy 
(DOS) [3], fluoro-deoxyglucose positron emission 
tomography (FDG-PET) [4], and diffusion-weighted 
magnetic resonance imaging (DW-MRI) [5]. Despite a 
favorable sensitivity in detecting breast tumor response 
at 4 weeks, DOS has limited tissue penetration depth, 
thereby limiting its application to superficial tumors. 
DW-MRI requires substantial capital investment and 
PET requires the injection of radioactive tracer isotopes, 
limiting repeated usability and imparting potential long-
term health complications. On the other hand, ultrasound 
is relatively inexpensive and safe and its imaging methods 
with respect to QUS rely on the inherent changes in tissue 
microstructure to generate tissue contrast, requiring no 
external contrast agents.

Quantitative ultrasound (QUS) is a tissue 
characterization technique which examines the frequency 
content of the radiofrequency (RF) backscatter ultrasound 
signals from tissues. According to the theory of ultrasound 
scattering, the power spectrum of the tissue backscatter 
signal is affected by parameters such as the size and 
number density of the ultrasound scatterers. In 1987, Lizzi 
et al. [6] demonstrated that parameters related to the linear 
regression of the tissue power spectrum are directly linked 
to the tissue microstructure. These parameters include 
spectral slope (SS), spectral intercept (SI), and midband 
fit (MBF). The parameter SS is inversely related to the 
scatterer size [6], SI is related to scatterer size, scatterer 
concentration, and the acoustic impedance difference 
between the scatterer and the background [6], and MBF is 
related to ultrasound integrated backscatter [7], a measure 
of the energy efficiency of the acoustic backscatter from 
a tissue sample [8]. By taking into account differences 

in tissue microstructure, the aforementioned parameters 
have enabled the characterization of abnormalities of 
different tissues such as those in breast, prostate, liver, eye, 
myocardium, and lymph nodes [9–15]. Alternatively, some 
studies have found higher-order model derived backscatter 
coefficient (BSC) parameters such as average scatterer 
diameter (ASD) and average acoustic concentration 
(AAC) to be useful in studying tissues, including 
differentiating mouse models of breast cancer from benign 
breast masses, grading clinical breast cancer, and detecting 
cancerous human lymph nodes [10, 15, 16]. Recent pre-
clinical studies have demonstrated at high- (>20 MHz) and 
conventional-(<10MHz) frequency ranges that QUS can 
be used to detect and quantify tumor cell death in vivo, 
in response to various treatments including photodynamic 
therapy, radiation therapy, chemotherapy, and anti-
vascular therapy [17–20]. Furthermore, pilot clinical 
studies by Sadeghi-Naini et al. [21, 22] has demonstrated 
the effectiveness of QUS and texture analysis methods 
in the assessment of patients’ breast tumor responses 
to NAC as early as 1 week into their several-month 
treatment. In those studies, Sadeghi-Naini et al. posited 
that at a clinically relevant frequency range (<10 MHz), 
spectral parameters such as MBF, SI, and SS are sensitive 
to changes in tumor microstructure which occur as a 
result of therapeutic effects, and therefore can correlate 
to early signatures of tumor response. Furthermore, 
statistical texture analysis of the QUS images using the 
gray-level co-occurrence matrices (GLCM) considering 
the heterogeneity of the tumor response was suggested 
to improve the discrimination of responsive patients 
from non-responsive ones [22]. However, those studies 
were limited to only statistical significance tests and 
the use of a simple classifier (Fisher linear discriminant 
(FLD)) applied on a small patient database (N=25) and 
performance measures were obtained without cross-
validation (training and testing sets were identical), 
resulting in over-optimistic values. More recently, 
Tadayyon et al. [23] compared tumor response prediction 
sensitivity and the specificity of the MBF when the power 
spectrum was corrected for attenuation and vice versa. 
They demonstrated that estimating the acoustic attenuation 
of the patient’s tumor and correcting the power spectra 
accordingly, not previously done [21, 22], increased the 
sensitivity of MBF to response detection by 12% and 
specificity by 17%.

Here, we propose a new and improved approach 
for the QUS prediction of breast tumor response to 
neoadjuvant chemotherapy. Specifically, we have made the 
following five improvements compared to similar previous 
works [22, 24]:

1. We have used the largest population size (N = 58) 
studied to date on QUS characterization of LABC 
tumor response to NAC, which is double the size of 
the most recent study [24]. This represents over 200 
volumetric ultrasound scans of patient tumours.
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2. We have included new QUS features not investigated 
previously for this application, including attenuation 
coefficient estimate (ACE), attenuation-corrected 
QUS features, as well as spacing among scatterers 
(SAS).

3. We have performed leave-one-patient-out cross-
validation in order to evaluate the performance of the 
classifier when subjected to unseen data.

4. We have used a new classifier, the KNN classifier, 
to perform discriminant analysis. Since the search 
radius can be tuned, the KNN classifier can learn the 
local structure of a feature space more effectively 
than a linear classifier. This is important especially 
in a tumor response classification task such as this, 
since tumor response is not discrete but rather 
heterogeneous, with many variations in degrees of 
response.

5. The study here found, for the first time, that including 
pre-treatment QUS features in the QUS model 
improves the discrimination of response.

RESULTS

Patient characteristics, including age, initial tumor 
size, tumor subtypes, and bulk tumor shrinkage for 
responders and non-responders are summarized in Table 
1. All patients were females aged between 29 and 67 years 
with a mean age of 49 years. Tumor size ranged from 2 
to 13 cm, with a mean size of 6.3 cm. The tumors were 
mainly of the invasive ductal carcinoma type not otherwise 
specified (90% of cases). The remaining 10% of cases 
were comprised of invasive lobular carcinoma (5%) and 
other types of breast cancer (5%). The ultimate clinical 
response rate to NAC in the sample population was 72% 
and responders demonstrated a mean tumor shrinkage 
of 68 ± 47% whereas the non-responders demonstrated 
mean bulk shrinkage of -16 ± 57%. Bulk tumor shrinkage 
was defined as the relative reduction in the sum of tumor 
diameters from pre-treatment to pre-operation. Size 
measurements were ascertained using breast DCE-MRI 
obtained at these two times. Detailed individual patient 
characteristics and responses are provided in Tables A.1 
and A.2.

Representative images of a responding breast tumor 
and a non-responding breast tumor before treatment 
initiation and 4 weeks after treatment initiation (1-2 
cycles of NAC) are presented in Figures 1 and 2. For 
each tumor, B-mode images, MBF images overlaid on 
the B-modes, power spectra before and 4 weeks after 
the start of treatment, and magnified hematoxylin and 
eosin (H&E) stained histology sections of whole-mount 
breast specimens obtained post-surgery (mastectomy/
lumpectomy) are shown. These data were selected for 
illustration as MBF was a parameter, which demonstrated 
statistically significant changes at early weeks (1 and 4). 
Whereas B-mode images showed no appreciable changes 

in the tumor 4 weeks into treatment, a marked increase in 
MBF could be observed in the responding tumor region 
as a result of 4 weeks of NAC (1-2 cycles). The non-
responding tumor, on the other hand, demonstrated no 
change or decrease in MBF. The before/after superimposed 
power spectra demonstrated the same concept graphically, 
where MBF is marked by a circle in the middle of the 
regression line (Figure 1 and 2 (C left)). The histology 
image of the responding tumor indicates a stroma-filled 
tissue (pink staining) with small isolated patches of glands 
(purple staining), demonstrating therapeutic effects. On 
the other hand, the histology of the non-responding tumor 
shows a gland-dominated tumor with low stromal collagen 
density, indicating little to no therapeutic effect.

Figure 3 compares QUS parameters with the 
RECIST metric for tracking changes in the tumor during 
NAC. Average QUS data obtained from responding and 
non-responding groups are plotted versus treatment time 
in Figure 3A-3G. Patients were grouped based on their 
ultimate clinical/pathological responses. The vertical 
axes represent the absolute difference in QUS parameters 
relative to week 0 (pre-treatment), which is denoted by 
a ∆ prefix. For instance, ∆MBF at week 4 is computed 
as MBF(week 4) – MBF(week 0). Parameters related to 
the intensity of the frequency-dependent backscatter (i.e. 
∆MBF, ∆SI, ∆AAC) demonstrated, on average, an increase 
with treatment time for responders. Based on unpaired t-
test comparison of responder and non-responder groups, 
right-tailed with 95% confidence, this increase was 
statistically significant at weeks 1, 4, and 8 for ∆MBF (p 
= 0.042, <0.005, <0.005, respectively), and at weeks 1, 
4, and 8 for ∆SI (p = 0.034, 0.010, <0.005, respectively). 
Patients in the responding group demonstrated a greater 
increase in ∆ACE compared to non-responders, which 
were statistically significant at weeks 1 and 4 (p <0.005 
and 0.042, respectively). On the other hand, ∆SS, ∆ASD, 
and ∆SAS values did not show any significant changes 
between responders and non-responders at any time during 
the treatment. As expected, the mean tumor size reduction 
shown in Figure 3H was not significantly different in 
responders versus non-responders at any time (p = 0.89, 
0.53, and 0.42 at week 1, 4, and 8, respectively) except 
at the end of the several-month treatment (p = 0.0011 at 
pre-op). Whereas a 30% mean size reduction occurred 
in responders at week 4 (Figure 3H), non-responders 
also had a mean reduction of almost 30% at week 4, and 
the difference between the groups was not statistically 
significant. After week 4, whereas responding tumors 
continued shrinking, non-responding tumors grew to 20% 
larger than their original size between week 8 and pre-op, 
which had approximately an 8 to 10 week gap.

In order to compare the effectiveness of different 
QUS parameters in differentiating responding tumors from 
non-responding ones, the KNN algorithm was run for each 
QUS parameter separately and classification accuracy 
was computed. Table 2 summarizes the performance of 
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Table 1: Summary of patient characteristics 

Parameter Mean +/- SD / count

Age (y) 49 ± 10

Pre-tx tumor size (cm) 6.3 ± 3.2

 No. %

Tumor subtype   

 IDC 52 90

 ILC 3 5

 Other 3 5

Responders 42 72

BTS (%) 68 ± 47

Non-responders 16 28

BTS (%) -16 ± 57

IDC = invasive ductal carcinoma, ILC = Invasive lobular carcinoma, BTS = bulk tumor shrinkage (percent change in tumor 
size)
± indicates standard deviation

individual QUS parameters in predicting response in 
terms of classification accuracy and statistical significance 
(p-value) for weeks 1, 4, and 8. The classification results are 
based on a 2-neighbor search area and using the Euclidean 
distance metric, which provided the optimal classification. 
The results demonstrated that the MBF parameter was 
most effective in response detection at all weeks (accuracy 
= 61 ± 8%, 65 ± 5%, and 85 ± 5%, for weeks 1, 4, and 
8, respectively), followed by SI (accuracy = 55 ± 8%, 65 
± 11%, 74 ± 6%, respectively). Overall, performances 
improved at week 8 compared to those of weeks 4 and 1.

Table 3 presents the RECIST-based versus 
multiparameter-QUS-based patient response classification 
results. Sensitivity was defined as the ratio of the 
number of true responders to total number of responders 
(expressed as a percentage). Specificity was defined as 
the ratio of the number of true non-responders to the total 
number of non-responders in percentage. Accuracy was 
determined as the percentage of total number of correctly 
classified patients to the total number of patients. The first 
row presents the RECIST-based response classification, 
which was performed by classifying each patient based 
on 30% reduction at each follow-up visit and comparing 
the prediction with their “true” response, assumed to be 
the ultimate clinical/pathological response. The second 
row presents the classification performance obtained 
using only changes in QUS features relative to pre-
treatment, whereas the third row presents the classification 
performance obtained using pre-treatment QUS features, 
and the combination of pre-treatment and changes in 
QUS features during treatment. The fourth row presents 
the p-values of the significance of the difference between 

the accuracies of the second and third rows. An asterisk 
indicates a significant difference. Leave-one-patient-out 
cross-validation was performed on the KNN classifier 
to obtain the overall sensitivity, specificity, and accuracy 
values. All possible combinations of the 7 QUS parameters 
(∆MBF, ∆SS, ∆SI, ∆SAS, ∆ACE, ∆ASD, ∆AAC) were 
investigated for feature selection. As expected, the 
RECIST method showed the poorest discrimination 
between responders and non-responders at all times during 
the treatment (accuracies of 30%, 52%, and 68% at weeks 
1, 4, and 8, respectively, as presented in Table 3, row 1). 
On the other hand, the QUS-based model including the 
optimal parameter combination of [∆MBF ∆SS ∆SAS] 
displayed promising accuracies (accuracy = 60 ± 10%, 
77 ± 8%, 75 ± 6%, at weeks 1, 4, and 8, respectively, as 
presented in Table 3, row 2). Combinations of 4 or more 
parameters have not been reported since no improvement 
was observed beyond 3 parameters. A separate feature 
selection was performed for the case when the pre-
treatment values were included. Furthermore, the QUS 
biomarker consisting of [MBFwk0 ∆MBF SSwk0 ∆SS SASwk0 
∆SAS] differentiated responders from non-responders 
with improved accuracies of 70 ± 9% 80 ± 5%, and 81 
± 6% at weeks 1, 4, and 8, respectively, as presented in 
Table 3, row 3. The inclusion of pre-treatment information 
demonstrated a 10% improvement in the accuracy at week 
1 which was also statistically significant (p-value = 0.03). 
Even at baseline (pre-treatment), the response of the 
patients could be predicted with 65 ± 9% accuracy using 
the set [MBFwk0 SSwk0 SASwk0].

In order to compare the predictions of QUS and 
histopathology on the recurrence free survival (RFS) 
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of the patients, Kaplan-Meier survival analysis was 
performed and the results are presented in Figure 4. The 
median follow-up time was 25 months. The RFS curves 
were divided into responder and non-responder groups. 
A log-rank test was performed to compare the RFS rates 
between the responders and non-responders [25]. The 
RFS curves obtained from QUS biomarkers demonstrated 
statistically significant differences between the response 
groups at weeks 1 and 4 (log-rank p-value = 0.035, 
0.027, respectively) as did the RFS curves obtained from 
histopathology information (log-rank p-value = 0.0002). 
However, RFS curves obtained from QUS biomarkers at 
week 8 did not show significant difference between the 
response groups (log-rank p-value = 0.26).

DISCUSSION

This study demonstrated, for the first time, using a 
relatively large patient database and using a leave-one-
patient out classifier evaluation that multi-parametric 

QUS applied at a clinically relevant frequency range (<10 
MHz) can be used to non-invasively predict breast tumor 
response to NAC as early as after 1-2 cycles (1-4 weeks) 
with reasonable accuracy (80%), whereas RECIST-based 
tumor size change is only 52% accurate in predicting 
response at week 4 with a 30% threshold. Additionally, 
RFS analyses performed demonstrated that when the 
ultrasound biomarkers [MBF, SS, SAS], which include 
pre-treatment values along with the change at a specified 
time during treatment, were used to predict the RFS, 
responder and non-responder RFS rates were statistically 
significantly different when classifying patients based 
on data at weeks 1 and 4. Although the results of this 
study were not used to modify the treatments of the 
patients, the findings suggest that ultrasound biomarkers 
can predict the RFS rates of responding and non-
responding patients within weeks almost as accurately 
as patient ultimate clinical response based on clinical 
and histopathology information obtained many months 
later. The reason for the poor separation of the RFS 

Figure 1: Representative data for a responding patient. B-mode images A. MBF images B. and power spectra C left. before 
and 4 weeks after the start of chemotherapy treatment. Hematoxylin and eosin histology histology image post–surgery  
C right. Data in the left column represent pre-treatment data, obtained prior to treatment initiation, and data in the right column represent 
week 4 data. US scale bar represents 1 cm, histology scale bar represents 100 μm.
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rates of the groups predicted from week 8 QUS data was 
likely due to the QUS biomarker being sensitive only 
to early microstructural changes in the tumor during 
treatment. Post-surgical histology images demonstrated a 
considerable extent of fibrosis potentially mixed with cell 
death in the responding tumor bed. Thus, it is posited that 
at 8 weeks, the beginning of fibrotic changes contributed 
to altering the QUS measurement of cell death.

Previously developed theories about ultrasound 
detection of cell death support the findings in this study. 
Just as the parameters related to the backscatter intensity 
and acoustic concentration (i.e. MBF and SI) increased in 
tumors undergoing cell death in vivo in previous studies 
[19], MBF, SI, and AAC values increased in clinically 
responding tumors in this study. Classification results 
determined that MBF was the most effective parameter 
in the discrimination of responders from non-responders 
at weeks 4 and 8 (Table 2). This suggests that response-
related changes in a tumor are linked to the energy 
efficiency of acoustic backscatter from the tumor tissue. 
Since changes in ACE obtained at weeks 1 and 4 were 
statistically significant in responders compared to those 
of non-responders (p = 0.004 and 0.039, respectively), 

it is likely that the attenuation correction of the tumor 
spectra helped in accentuating the MBF parameter to 
response detection. Furthermore, the MBF changes in 
the responding-tumor patient population became highly 
statistically different from those of non-responding tumors 
at week 8 (p < 0.005). The increase in the ACE observed 
in responding tumors over treatment time was concordant 
with the increase in attenuation coefficient with cell death 
extent observed in previous high-frequency QUS cell 
treatment characterization studies [26].

Classification results using the multiparametric 
QUS model demonstrated that increasing the number of 
QUS parameters submitted to the classification system 
improved the discrimination power, but not beyond three 
parameters. Whereas previous studies found classical 
parameters (MBF and SI) to be sensitive to detecting 
breast tumor response at 4 weeks, we found that MBF, 
SI, ACE, and AAC all have comparable accuracies in 
predicting tumor response (65%, 65%, 64%, and 64% 
respectively at week 4). Combining the changes and 
pre-treatment values of MBF, SS, and SAS provided the 
best prediction of response (70 ± 9% at week 1, 80 ± 5% 
at week 4, and 81 ± 6 and week 8). This may be due to 

Figure 2: Representative data for a non-responding patient. B-mode images A. MBF images B. and power spectra C left. 
before and 4 weeks after the start of chemotherapy treatment. Hematoxylin and eosin histology histology image post–surgery 
C right. Data in the left column represent pre-treatment data, obtained prior to treatment initiation, and data in the right column represent 
week 4 data. US scale bar represents 1 cm, histology scale bar represents 100 μm.
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structural tumor properties before NAC being linked to 
tumor aggressiveness and consequently the likelihood of 
response to NAC.

In terms of statistical analysis, the ∆MBF, ∆SI, and 
∆ACE parameters in our study demonstrated a significant 
change in responders at week 1 (p < 0.05), just as tracer 
uptake change did after one cycle in the PET study (p 
< 0.05) [4], just as total diffusion change did after one 
cycle of NAC in the DW-MRI study (p < 0.05) [5], and 
just as changes in deoxygenated hemoglobin, oxygenated 
hemoglobin, total hemoglobin concentration, water 
percentage, and tissue optical index did at week 1 in the 
DOS study (p < 0.05) [3]. Recently, a genetic method of 
monitoring metastatic breast cancer has been proposed, 
demonstrating circulating tumor DNA as an effective 

biomarker for this purpose [27]. However, this method is 
invasive in its nature and time consuming, as it involves 
many steps including blood sample centrifugation, DNA 
extraction, polymerase-chain-reaction to detect genomic 
mutations, and assay of circulating tumor cells. On the 
other hand, the ultrasound-based method here permits 
breast ultrasound imaging and response assessment to be 
performed using one system and in one session and does 
not rely on tumor-specific genetic markers. It is sensitive 
to the biophysical changes which accompany cell death – 
the induction of which is the goal of cancer chemotherapy. 
Evidence demonstrates that patients who respond well 
to chemotherapy may benefit from longer regimens of 
efficacious chemotherapy and suggest that ineffective 
treatments should be changed [28].

Figure 3: Comparison between QUS parameters A-G. and the RECIST-based tumor size reduction H. for tracking 
patient tumors during chemotherapy. QUS and RECIST values were averaged over responder (blue diamond) and non-responder 
(red square) groups, and plotted over the treatment time. Patients were grouped based on their pathological clinical response determined 
post-chemotherapy. All values were normalized to week 0 by subtraction. Error bars represent standard error of the mean.
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Currently the standard of care for patients receiving 
NAC only includes pre-treatment and post-treatment 
imaging, using typically DCE-MRI, but does not routinely 
include intra-treatment imaging for tumor size assessment. 
Furthermore, ultrasound imaging is not reliable for tumor 
size measurement due to attenuation artefacts which cast 
shadows on the distal end of deep-set tumors. However, 
this had minimal effect on QUS assessment in this study, 

since the ROIs were selected in the center of the tumor 
(~ 90% coverage), avoiding regions of artefacts. Although 
intra-treatment tumor size was recorded in this study as 
measured by the physician during follow-up physical 
examinations, this method has limited reproducibility 
since measurements were made by different physicians. 
Thus, measurements reported here should be assumed 
approximate.

Table 2: p-values and classification performances (accuracy) of individual QUS parameters for differentiating 
responders from non-responders at weeks 1, 4 and 8

  Week 1 Week 4 Week 8

∆MBF Accuracy 61 ± 8 65 ± 5 85 ± 5

 p-value 0.042 <0.005 <0.005

∆SI Accuracy 55 ± 8 65 ± 11 74 ± 6

 p-value 0.034 0.010 <0.005

∆ACE Accuracy 54 ± 8 64 ± 4 60 ± 10

 p-value <0.005 0.042 0.259

∆AAC Accuracy 58 ± 8 64 ± 9 69 ± 8

 p-value 0.404 0.069 0.135

∆SS Accuracy 53 ± 8 62 ± 7 63 ± 15

 p-value 0.424 0.368 0.727

∆ASD Accuracy 54 ± 9 61 ± 9 60 ± 13

 p-value 0.382 0.377 0.570

∆SAS Accuracy 62 ± 7 58 ± 8 69 ± 7

 p-value 0.606 0.678 0.590

Parameters are sorted from highest to lowest accuracy at week 4. The bold entry indicates the best performance. Reported 
values are mean and standard deviation of the accuracies in percentages. Results were obtained by running the classification 
10 times using 10 random samples from responders group

Table 3: A comparison of the response classification results obtained using tumor size alone (RECIST criteria), using 
KNN-based QUS feature combination, and using KNN-based QUS feature combinations with the addition of pre-
treatment data. Reported are sensitivity (Sen), specificity (Spe), and accuracy (Acc) mean ± standard deviation 

 
Pre-Tx Week 1 Week 4

Sen Spe Acc Sen Spe Acc Sen Spe Acc

RECIST NA 16 60 30 53 50 52

∆QUS NA 61 ± 13 59 ± 9 60 ± 10 79 ± 10 76 ± 11 77 ± 8

∆QUS + 
QUSw0

67 ± 13 63 ± 7 65 ± 9 76 ± 11 64 ± 11 70 ± 9 80 ± 9 79 ± 5 80 ± 5

p-value NA 0.03* 0.33

The results (sensitivity, specificity, and accuracy in percentages) are reported for weeks 1, 4 and 8 obtained from leave-one-
out analysis cross-validation. ∆QUS represents [∆MBF ∆SS ∆SAS] and QUSw0 represents [MBFw0 SSw0 SASw0]. The last 
row presents the p-value significance of the difference between the mean accuracies of ∆QUS and ∆QUS + QUSw0 KNN 
models. Reported values are mean and standard deviation of the accuracies obtained by running the classification 10 times 
using 10 bootstrap samples from responder group.



Oncotarget45102www.impactjournals.com/oncotarget

Figure 4: Kaplan-Meier survival curves for responding (solid line) and non-responding (dashed line) patients. Patients 
were classified based on clinical/histopathological information. A. Patients were classified based on the QUS biomarkers (including week 
0 data) obtained at weeks 1, 4, and 8, respectively B, C, D.

Figure 5: A diagram depicting the ultrasound attenuation correction procedure. α0 and x0 are the attenuation coefficient 
(assumed to be 1 dB/cm-MHz) and length of the intervening tissue above the ROI, respectively. α1 and x1 are the local attenuation coefficient 
estimate (ACE) of the ROI and the distance from the top of the ROI to the center of RF block. A(f) is the total attenuation from the top of 
the image to the center of the RF block.

A B

C D
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As demonstrated by the results, whereas ΔMBF was 
the most effective single QUS parameter for classifying 
patient response, combining ΔMBF with ΔSS and ΔSAS 
improved the classification response accuracy at week 4 
from 65 ± 5% to 77 ± 8%. A point of note is that ∆SS 
(week 0 and 4) and ∆SAS (week 0 and 4) were less 
accurate than other parameters investigated such as 
∆SI, ∆ACE, ∆AAC, and ∆ASD, according to the results 
in Table 2. However, since ∆SS and ∆SAS are features 
that are independent from ∆MBF, the discriminating 
power increased when these parameters were combined. 
Particularly, MBF describes the acoustic concentration, SS 
describes the size of the scatterers, and SAS describes the 
distance between regularly-spaced scatterers.

The QUS results obtained indicated poor separation 
between responders and non-responders at the pre-
operative scan time. This is expected and likely due to the 
large time gap between the end of neoadjuvant treatment 
and surgery (usually several weeks), where minimal or 
no cell death had occurred at the time of data acquisition. 
Additionally, tumor ROI selection in pre-operative images 
was difficult in complete pathologic responders who had 
no residual tumor, and were therefore excluded from the 
analysis. As expected the early investigated times at weeks 
1 and 4 indicated the best separation between responders 
and non-responders. These were selected to span cycles of 
NAC and it remains unknown if other times sooner or later 
would be useful for analyses. Despite this, the sensitivity 
and specificity and consequent accuracy were significant 
for predicting ultimate patient clinical response.

CONCLUSIONS

In summary, this study demonstrated for the first 
time, using a relatively large patient cohort and leave-one-
out classifier evaluation, that the hybrid QUS biomarker 
[ΔMBF, ΔSS, ΔSAS] can, with good sensitivity and 
specificity, detect the response of LABC tumors to NAC 
as early as after 1 cycle (1 week) of administration. 
Extending efficacious treatments and switching ineffective 
ones early based on indications of QUS biomarkers 
may likely result in improved RFS. The findings of this 
study also provided insight into pre-treatment ultrasonic 
scattering properties of a tumor potentially contributing 
to a prediction about its therapeutic resistance before the 
initiation of therapy.

MATERIALS AND METHODS

Ultrasound data acquisition and processing

This prospective study was reviewed and approved 
by the institution’s research ethics board. After obtaining 
informed consent, ultrasound RF data were collected 
from the affected breast of patients (N = 58) with 
locally advanced breast cancer (LABC) prior to NAC 

treatment initiation and at four times during the course 
of the treatment - weeks 1, 4, 8, and prior to surgery 
(mastectomy/lumpectomy). Patients recently diagnosed 
with locally advanced invasive breast cancer within one 
week, including invasive ductal carcinoma, invasive 
lobular carcinoma, and other forms of invasive cancer, 
including all grades, were referred from the diagnostic 
clinic to our study. This included patients with tumors 
larger than 5 cm and/or tumors with locoregional lymph 
node, skin, and chest wall involvement as per guidelines 
reported in [29]. All clinical and ultrasound data obtained 
for this study were dated back to patients treated between 
January 2009 and August 2013. Treatment regimens varied 
from 5-fluorouracil, epirubicin and cyclophosphamide 
followed by docetaxol (FEC-D), to Adriamycin followed 
by paclitaxel (AC-T), or taxol followed by herceptin 
varying from weekly to tri-weekly cycles. Individual 
patient treatment regimens are provided in Table A.1.

Breast ultrasound data were collected by an 
experienced sonographer using a clinical scanner (Sonix 
RP, Ultrasonix, Vancouver, Canada) employing a 6 MHz 
center frequency linear array transducer (L14-5-60), 
sampling at a rate of 40 MHz, with the focus set at the 
midline of the tumor and maximum imaging depth set to 
4-6 cm, depending on tumor size and location. Standard 
B-mode imaging was used for anatomical navigation, and 
acquisition volume was determined based on the tumor 
location reported in biopsy findings. Approximately 3-5 
image planes were acquired from the tumor, depending on 
the tumor size. Regions of interest (ROI) were contoured 
around the tumor within each image plane and segmented 
into smaller blocks, called RF blocks. The ROI was then 
divided into 2 by 2 mm blocks, with adjacent overlap of 
80% in both axial and lateral directions. A 2 by 2 mm RF 
block corresponds to 10 spatial pulse lengths axially and 
5.5 beamwidths laterally, which meets the minimum ROI 
size requirements for obtaining reliable scatterer property 
estimates [30, 31]. A normalized power spectrum was then 
computed for each RF block using a phantom reference, 
and was corrected for the total attenuation, A(f), from the 
top of the image down to the center of the RF block, as 
illustrated in Figure 5. The total attenuation consisted of 
two components: attenuation of the intervening tissue, 
α0, assumed to be 1 dB/cm-MHz based on reported 
ultrasound tomography measurements of the breast [32], 
and the local attenuation estimate of the ROI, α1, which 
is also referred to here as ACE and is estimated using 
the spectral difference method [33]. After obtaining 
attenuation corrected normalized power spectra from 
all RF blocks within the ROI, a parametric image was 
computed for each QUS parameter. The QUS parameters 
investigated were MBF, SS, SI, SAS, ACE, ASD, and 
AAC. More details about QUS analysis are provided in 
the appendix. Since spectral normalization was performed 
using a homogeneous tissue-mimicking phantom prior to 
parameter estimation, effects of tumor depth and size were 
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minimized. In addition to acquiring ultrasound data, tumor 
sizes reported by oncologists by physical examination in 
the follow-up visits were also examined. Size reports were 
corroborated by ultrasound imaging results but clinical 
physical examination documentation was used for tumor 
size measures.

Classification and statistical analyses

All QUS results were compared with the clinical 
standard response of each patient, determined based on 
the RECIST guideline. This was determined at the end of 
the patient’s several-month treatment by measuring the 
reduction in gross tumor size based on dynamic contrast 
enhanced magnetic resonance images (DCE-MRI) 
cross-verified with whole-mount breast histopathology 
obtained post-operatively. Since the focus of this study 
was a binary classification of response, the standard four 
categories of response defined in the RECIST guideline 
were merged into two categories by grouping complete 
and partial responses into “response” and grouping stable 
and progressive disease responses into “non-response”. A 
recent study demonstrated that residual tumor cellularity 
is an important prognostic factor in breast cancer 
neoadjuvant treatment, which should be taken into account 
in conjunction with the RECIST metric of bulk tumor 
shrinkage (BTS) [34]. Accordingly in this study, a patient 
was deemed to be a clinical responder if the sum of the 
lengths of the tumor foci was reduced by more than 30% 
or if in the non-mass enhancing area, the pathologically 
determined residual tumor cellularity was low. Conversely, 
a patient was considered a clinical non-responder if the 
sum of the lengths of their tumor foci was reduced by less 
than 30% or the residual tumor cellularity remained high. 
In cases (infrequent) where the RECIST-based response 
conflicted with the pathological response, the pathological 
response was used to determine the true response.

The mean changes in each QUS parameter were 
compared between the clinical responder and non-
responder groups at each time. Initially, a Shapiro-
Wilk normality test was used to test each parametric 
data set for normality. Since all data sets passed the 
normality test, a student’s unpaired t-test (right-tailed, α 
= 0.05) was used to test for statistical significance of the 
difference between group means. In order to determine 
the clinical feasibility of using QUS as a cancer therapy 
monitoring system, multi-feature response classification 
was performed using a KNN classifier based on 
Euclidean distances (see Appendix). Rather than the 
absolute values, the changes in the QUS parameters 
relative to their pre-treatment value (week 0) were used 
as classification features, which are denoted here by 
the prefix ∆ (i.e. ∆MBF). This baseline normalization 
was necessary to account for differences in the breast 
tissue echogenecity levels among the patients, owing to 
differences in breast densities. The imbalance in the data 

set was compensated for by randomly sampling (with 
replacement) from the responder group so as to have 
equal number of responders and non-responders (N = 
16). Classification was performed 10 times (10 different 
responder group samples) with leave-one-patient-out 
evaluation. Due to the small number of features, an 
exhaustive search feature selection method was used for 
obtaining the optimal set of features for classification. 
The exhaustive search involved searching through all 
possible combinations of 2, 3, 4, 5, 6, and 7 parameters 
(120 combinations) in order to determine the minimal 
feature set resulting in the best classification accuracy, 
thereby removing any irrelevant or redundant parameters. 
Classification accuracy (number of correctly classified 
patient over the total number of patients) was used as 
the objective function to maximize. The metrics used for 
measuring classification performance were sensitivity, 
specificity, and accuracy.

Quantitative ultrasound data analysis

All spectral analyses were carried out using the 
data from the -6 dB system transducer bandwidth, 
which was 3-8 MHz. The first step in the QUS analysis 
was computation of the attenuation coefficient estimate 
(ACE) of the tumor, which was used for attenuation 
correction of the tumor power spectrum. The ACE was 
computed using the reference phantom method (RPM) by 
estimating the rate of change in the spectral magnitude 
with depth and frequency relative to a reference medium 
with a known attenuation coefficient [33]. The reference 
material was an in-house constructed tissue-mimicking 
phantom with a measured attenuation coefficient of 
0.15 dB/cm-MHz and a sound speed of 1515 m/s. The 
phantom was constructed based on [35], containing 
randomly dispersed glass microspheres with diameter 
of 18 (SD =3) μm and concentration of 2.2 g/L, in a 2% 
agar medium. Any phantom can be used for the RPM and 
for the QUS analysis performed here as long as it meets 
the following requirements. The phantom must produce a 
homogeneous speckle image and its BSC, speed of sound, 
and attenuation coefficient must be known (accurately 
measured). In order for system-dependent factors to be 
accurately corrected for using the RPM, the speed of 
sound of the reference should be matched to that of the 
sample [36]. Based on reported values [37], the speed of 
sound averaged over the fatty tissue, parenchyma, benign, 
and malignant lesion of the breast is 1490 m/s. Thus, the 
speed of sound of the phantom used here is within 1.5% 
difference of this value and is considered reasonable for 
use of the RPM.

In order to estimate ACE of a tumor ROI using 
the RPM, plots of phantom-normalized power spectrum 
amplitude versus depth were obtained by averaging the 
power spectra across laterally adjacent blocks and then 
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Table A1: Patient characteristics and treatment information 

Pt No. Age
Initial tumor 

Dimensions (AP 
x ML x SI cm)

Histology Grade ER PR HER2 Treatment

1 55 5.4 x 5.0 x 2.3 IDC I - + + FEC and Taxol, 
Herceptin

2 53 7.4 x 7.0
IDC with 
mucinous 
features

I + + - Epi and Taxotere

3 41 5.3 x 4.4 x 4.7 IDC II + + +
Docetaxel, 
carboplatin, 
trastuzumab

4 65 10.0 x 10.0 IDC I - - - AC & Taxotere

5 50 4.0 x 5.0 IDC III + + + AC + docetaxel, 
trastuzumab

6 33 3.0 x 3.0 IDC I + + - AC & Taxol

7 33 5.4.0 x 5.0 x 8.0 IDC II + + +
AC + docetaxel, 
paclitaxel, 
trastuzumab

8 48 4.9.0 x 4.9.0 x 
4.1.0 IDC III + + - AC + docetaxel

9 36 4.4 x 3.9 x 5.8 IDC II + + - AC + paclitaxel

10 40 4.4 x 3.4 IDC III - - - AC + paclitaxel

11 62 12.0 x 14.0 IDC II-III - - - FEC + docetaxel

12 59 6 x 2.3 x 4.3 IDC III - - - AC + paclitaxel

13 53 8.4 x 9.4 x 12.7 Metaplastic 
carcinoma III - - -

AC + 
cisplatinum, 
gemcitabine 
platinum

14 48 7 x 9.0 IDC II + + + AC-Taxol and 
Herceptin

15 50 13.0 x 11.0 IDC III - - - AC + paclitaxel

16 49 7.1 x 5.5 x 8.9 IDC III - - + Docetaxel, 
trastuzumab

17 40 3 x 2.4 x 3.0 IDC III + + + AC + paclitaxel, 
trastuzumab

18 56 2.4 x 2.7 x 3.2 IDC II - - + AC + paclitaxel, 
trastuzumab

19 49 2.4 x 2.8 x 1.4 IDC II - - + AC-Taxol and 
Herceptin

20 47 5.2 x 4.0 x 4.0 IDC NA + + - FEC + docetaxel

21 52 4.1 x 3.0 x 2.5 IDC NA + + - AC + docetaxel, 
paclitaxel

22 44 9.9 x 4.5 x 9.7 IDC III + + + AC + paclitaxel, 
trastuzumab

(Continued)
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Pt No. Age
Initial tumor 

Dimensions (AP 
x ML x SI cm)

Histology Grade ER PR HER2 Treatment

23 38 9.0 x 6.6 x 6.0 IDC II* + + - AC + paclitaxel

24 58 1.9 x 1.4 x 1.6
IDC with 
basal like 
features

III - - - AC + paclitaxel

25 35 5.9 IDC III - - - AC-Taxol

26 38 8.0 x 8.0 IDC III - - +
Dose-dense AC 
+ paclitaxel, 
trastuzumab

27 47 8.0 x 10.0 IDC II + + - Dose-dense AC 
+ paclitaxel

28 57 7.9 x 4.1 x 5.5 IDC III - - - Dose-dense AC 
+ paclitaxel

29 47 6.3 x 4.1 x 7.4 IDC NA - - +
Dose-dense AC 
+ paclitaxel, 
trastuzumab

30 55 6.6 x 12.8 x 6.8 IDC II + + - AC + paclitaxel

31 32 6.0 x 7.0 x 3.0 IMC Ϯ + + + AC + paclitaxel 
+ Herceptin

32 38 2.3 x 2.5 x 2.5 & 
1.0 x 1.0 x 0.7 IDC III - - - AC + paclitaxel

33 45 6.5 x 5.0 IDC I + + + AC-Taxol + 
Herceptin

34 55 10 x 5 x 10.5 IDC III - - - dose dense AC + 
taxol

35 59 8.0 x 5.7 x3.0 IDc II + + +
FEC + 
docetaxel, 
trastuzumab

36 37 2.5 x 2.0 IDC III + + - dose dense AC + 
taxol

37 50 9.0 x 7.0 x 3.0 IDc II + + - AC + paclitaxel

38 54 3.6 x 3.6 x 2.3 IDC NA + - - TC

39 55 1.6 x 1.2 ILC @ 12H; 
IDC @ 2H NA + + - FEC-D

40 50 7.3 x 2.5 x 7.3 IDC III - - - FEC-D

41 55 3.3 x 3.4 x 3.4 IDC III - - - TC

42 44 3.0 x 3.5 x 1.5

IDC with 
prominent 
lymphoid 

stroma

III - - - FEC-D

43 60 8.7 x 9.0 x 5.2
Invasive 
lobular 

carcinoma
NA + - - FEC-D

(Continued)
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plotting the average amplitude at each frequency against 
the depth of the blocks in the ROI. The mean ACE of the 
tumor was estimated by averaging the slopes of the linear 
fits to the amplitude versus depth data at all frequency 
points in the bandwidth. The newly found ACE was used to 
correct the tumor power spectrum for attenuation using the 
point attenuation compensation method [38]. The phantom 
power spectrum was corrected for using point attenuation 

compensation method and using the known attenuation 
coefficient (0.15 dB/cm-MHz). Afterwards, spectral 
parameters, including MBF, SI, and SS were determined 
from linear regression of the attenuation-corrected power 
spectrum within the usable (-6 dB) bandwidth. SI and SS 
are the intercept and slope parameters of the line of best 
fit, and MBF is the magnitude of the spectral fit at the 
center of the frequency bandwidth.

Pt No. Age
Initial tumor 

Dimensions (AP 
x ML x SI cm)

Histology Grade ER PR HER2 Treatment

44 64 6.4 x 3.2 x 8.7
ILC(Invasive 

lobular 
carcinoma

II + + - FEC-D

45 67 3.2 x 8.7 IDC II - - - FEC-D

46 52 2.6 x 1.2 x 1.6 IDC II - - - FEC-D

47 47 8.0 x 7.0 IDC III - - - FEC-D

48 56 10.0 x 10.0 IDC II + + + Paclitaxel and 
Herceptin

49 45 2.3 x 2.0 IDC NA + + + FEC-DH.

50 59 4.9 x 2.1 x 1.4 IDC II + + - FEC-D

51 66 3.5 x 5.2 x 2.1 IDC II-III + + + TCH

52 49 1.8 x 2.1 x 2.1 IDC I + + +
dose dense 
AC + taxol + 
Herceptin

53 39 6.3

Invasive 
carcinoma 
with ductal 
& lobular 
features

II* + + - FEC-D

54 62 4.4 x 6.3 x 3.3 IDC III - - - dose dense AC/
taxol

55 58 5.2 x 5.2 x 4.4 IDC I + + + dose dense AC/
Taxol+Herceptin

56 58
2.3 x 4.0 x 

2.3;1.6 x 1.8 x 
1.6

IDC III - - +

Taxotere/
Carboplatin and 
Trastuzumab 
(TCH)

57 45 2.7 x 3.2 x 2.0 IDC III + + - ACT

58 29 4.2 x 2.9 x 2.7 IDC III + + - dose dense AC 
paclitaxol

ML = medial-lateral, SI = superior-inferior, and AP = anterior-posterior
Ϯ tubular formation =3/3, nuclear pleomorphism = 2/3, mitotic score could not be determined since tumor was present in 
small clusters
* indicates that the information was obtained from mastectomy report and not the biopsy report, as this was the only 
available source of this information.
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Table A2: Patient responses to administered regimens according to RECIST and cellularity

Pt No. Residual tumor size BTS (%) Notes Response

1 No residual 100  Responder
2 7 x 5 x 3 5 Very low cellularity Responder
3 2.7 x 2.5 x 2.4 49 Very high cellularity Non-Responder
4 1.6 x 0.8 x 0.5 84  Responder
5 No residual 100  Responder
6 1.4 53  Responder
7 No residual 100  Responder
8 1.4 x 1 x 1 71  Responder
9 11.4 -97  Non-Responder
10 No residual 100  Responder
11 No residual 100  Responder
12 2.6 x 2.5 x 2.5 57  Responder
13 whole breast 0  Non-Responder

14 5 44 Patient switched therapy after 1 cycle 
due to poor response to first therapy Non-responder

15 4 69  Responder
16 No residual 100  Responder
17 No residual 100  Responder
18 0.2 x 0.2 93  Responder
19 1.4 x 2.4 x 1.4 96  Responder
20 6.5 -25  Non-Responder
21 No residual 100  Responder

22 2 x 1 x 1 + 1.6 x 1 x 
0.5 64  Responder

23 2.9 x 2 x 1.5 + 2 x 1.5 
x 1 46  Responder

24 No residual 100  Responder
25 No residual 100  Responder
26 No residual 100  Responder
27 12.5 x 4.5 x 3.5 -25  Non-Responder
28 No residual 100  Responder
29 No residual 100  Responder
30 17 -33 Very low cellularity Responder

31 7.4 -6 bed of scattered microscopic 
cancer foci Responder

32 2.8 x 3 x 2.3 + 1.5 x 
1.6 x 1.1 -31  Non-Responder

33 2.8 + 2 26  Non-Responder
34 No residual 92  Responder
35 No residual 100  Responder

(Continued)
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Using the same attenuation-corrected power 
spectrum, the backscatter coefficient (BSC) of the 
tumor was estimated using the reference phantom 
technique [39]. Then, by least-squares fitting of the 
Gaussian form factor model to the BSC, arguments of 
the Gaussian form factor, ASD and AAC, corresponding 
to the maximum coefficient of determination, R2, were 
determined. Details about scatterer size estimation can 
be found elsewhere [40].

Whereas spectral linear regression and BSC 
models are based on incoherent scattering, mean scatterer 
spacing (or spacing among scatterers) analysis techniques 
permit coherent scattering properties of tissues to be 
derived and coherent structures to be identified [41]. For 
SAS estimation, the power spectrum of the tumor was 
estimated using the autoregressive (AR) model and the AR 
model parameters were estimated using Burg’s recursive 
algorithm [42]. For SAS computation, we estimated the 
power spectrum using the AR-method rather than the FFT 
since the former offers two advantages – it produces more 
conspicuous peaks, resulting in more accurate estimates 

of SAS, and it is less prone to ringing artifacts at small 
gate lengths [43]. The order of the AR model, p, was 
determined experimentally using an ultrasound image 
of an LABC patient’s breast. The value was chosen by 
plotting the spectral autocorrelations (SAC) for a range 
of p values (from 10 to 100) and finding the p value at 
which the peak in the SAC was most conspicuous and did 
not contain multiple peaks. This value was experimentally 
determined to be 50 for the breast ultrasound data that 
was used in this study. The power spectrum was then 
normalized to that of a planar reflector. The planar reflector 
normalization at different depths was performed using 
pre-recorded reference RF data acquired from Plexiglas-
water interface at six different depths (1-6 cm). For each 
RF block in the sample image, a reference RF block was 
selected by nearest neighbor approach. By computing 
the autocorrelation of the normalized power spectrum, 
the SAS parameter was determined from the frequency 
at which the peak occurred in the autocorrelation. The 
method used here for SAS estimation is described in detail 
in Tadayyon et al. [10].

Pt No. Residual tumor size BTS (%) Notes Response

36 2.2 x 1.5 x 1.1 12  Non-Responder
37 1.2 87  Responder
38 5.5 -139 Scattered tumor clusters Responder
39 1.2 x 0.9 x 0.7 25  Non-Responder
40 2.1 71  Responder
41 1.8 47  Responder
42 No residual 100  Responder

43 8.0 x 5.0 x 4.5 + 3.0 x 
2.5 x 1.7 -22  Non-Responder

44 19 -197  Non-Responder
45 3.2 x 3 x 1.8 63  Responder
46 2.5 x 0.4 x 0.4 4 Very low cellularity Responder
47 4.5 x 3.1 x 2.9 44  Responder
48 8.4 x 5.1 x 2.8 16 Very low cellularity Responder
49 No residual 100  Responder
50 2.8 x 2.5 x 1.5 43  Responder
51 4 x 3 23  Non-Responder
52 No residual 100  Responder
53 1.7x1.5x1 37  Responder
54 12.6 x 6 x 3 -100  Non-Responder
55 3.4 35  Responder
56 No residual 100  Responder
57 3 6  Non-Responder
58 4 0  Non-Responder
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Classification system

After computing all 7 QUS features for all patients, 
classification was performed using the KNN classifier 
and using all possible combinations of QUS features. 
The KNN classifier determines the class of a point in the 
feature space based on the class which forms the majority 
of the points neighboring the point of interest and based 
on the distance between those points and the point of 
interest [44].
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