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     ABSTRACT 
 Increasing evidence has highlighted the important roles of dysregulated long non-

coding RNA (lncRNA) expression in tumorigenesis, tumor progression and metastasis. 
However, lncRNA expression patterns and their prognostic value for tumor relapse in 
lung adenocarcinoma (LUAD) patients have not been systematically elucidated. In this 
study, we evaluated lncRNA expression profi les by repurposing the publicly available 
microarray expression profi les from a large cohort of LUAD patients and identifi ed specifi c 
lncRNA signature closely associated with tumor relapse in LUAD from signifi cantly altered 
lncRNAs using the weighted voting algorithm and cross-validation strategy, which was 
able to discriminate between relapsed and non-relapsed LUAD patients with sensitivity 
of 90.9% and specifi city of 81.8%. From the discovery dataset, we developed a risk 
score model represented by the nine relapse-related lncRNAs for prognosis prediction, 
which classifi ed patients into high-risk and low-risk subgroups with signifi cantly 
different recurrence-free survival (HR=45.728, 95% CI=6.241-335.1; p=1.69e-04). The 
prognostic value of this relapse-related lncRNA signature was confi rmed in the testing 
dataset and other two independent datasets. Multivariable Cox regression analysis and 
stratifi ed analysis showed that the relapse-related lncRNA signature was independent 
of other clinical variables. Integrative in  silico  functional analysis suggested that these 
nine relapse-related lncRNAs revealed biological relevance to disease relapse, such as 
cell cycle, DNA repair and damage and cell death. Our study demonstrated that the 
relapse-related lncRNA signature may not only help to identify LUAD patients at high 
risk of relapse benefi ting from adjuvant therapy but also could provide novel insights 
into the understanding of molecular mechanism of recurrent disease. 

    INTRODUCTION 

 Lung cancer, including small cell lung cancer (SCC) 
and non-small cell lung cancer (NSCLC), is one of the 
most common cancers that severely threaten human health. 
The number of deaths from lung cancer is increasing, and 
it is estimated that nearly one in four cancer-related deaths 
is due to lung cancer [ 1 ]. Lung adenocarcinoma (LUAD) 
is the most frequent histological subtype of NSCLC and 
its incidence remains a rapidly increasing trend over the 
past few decades in China [ 2 ]. Despite improvement in 
diagnosis and treatment, the overall fi ve-year survival rate 
for LUAD patients is only about 15% [ 3 ]. Moreover, more 

than 30% of patients treated with surgical resection will 
have a relapse within fi ve years after surgery [ 4 ]. 

 Recent advances in large-scale genomic analysis 
and high-throughput sequencing technologies have 
greatly increased our understanding of non-coding RNA 
(ncRNA) world. It has become increasingly apparent that 
a large proportion of human genome can be transcribed 
and produced a huge number of ncRNA molecules [ 5 ]. 
NcRNAs are briefl y divided into two broad categories on 
the basis of their size: short ncRNAs and long ncRNAs. 
MicroRNA (miRNAs) is very important short ncRNAs, 
recently several predictors have been proposed to 
accurately predict miRNAs from other RNAs [ 6 – 8 ], which 
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are very useful for the studies of the ncRNAs. Recently a 
web server called repRNA [ 9 ] was established to extract 
various features from RNA sequences, which will benefi t 
the studies of RNAs. Long non-coding RNAs (lncRNAs), 
representing the largest class of ncRNAs, are mRNA-like 
transcripts and defi ned arbitrarily as ncRNAs of greater 
than 200 nucleotides in length [ 10 ,  11 ]. Evidence from 
growing publications has demonstrated that lncRNAs play 
important roles in various fundamental biological processes 
including development, differentiation and metabolism by 
executing functions as signals, decoys, guides and scaffolds 
[ 12 ,  13 ]. Furthermore, there is increasing evidence that 
lncRNAs are emerging as crucial components in the cancer 
paradigm [ 14 ]. The fi ndings from transcriptome profi ling 
analysis have shown highly aberrant lncRNA expression 
pattern in various types of human cancer [ 15 ,  16 ]. These 
differently expressed lncRNAs may be associated with 
tumorigenesis, tumor progression and metastasis [ 17 ,  18 ]. 
Moreover, lncRNA expression tended to be cell-, tissue- 
and cancer-type specifi c, thus making them attractive as 
independent biomarkers for diagnosis and prognosis [ 19 ]. 
Some well-known lncRNAs, such as  HOTAIR ,  MALAT1 , 
H19 ,  Xist ,  HULC  and  PTENP1 , have been found to possess 
oncogenic or/and tumor suppressor properties in various 
types of cancer [ 20 ,  21 ]. Several combinations of multiple 
lncRNAs were proposed as potential prognostic signature 
associated with overall survival in some cancers, including 
glioblastoma multiforme, colorectal cancer, breast cancer, 
oesophageal squamous cell carcinoma, non-small cell lung 
cancer and multiple myeloma [ 22 – 29 ]. Recent studies have 
shown the close relationship between cancer metastasis/
relapse and dysregulated lncRNA expression [ 28 ,  30 – 34 ], 
implying the potential of lncRNAs as biomarkers to predict 
the risk of cancer metastasis/relapse. However, lncRNA 
expression patterns and their prognostic value for LUAD 
relapse have not been systematically elucidated. 

 In this study, we performed a systematic analysis 
of lncRNA expression profi les across 403 LUAD patients 
who did or did not relapse by repurposing the publicly 
available microarray expression profi les to determine 
whether there is signifi cantly altered lncRNA expression 
pattern that could distinguish LUAD with relapse and 
without relapse. We aimed to detect potential lncRNA 
biomarkers closely correlated with LUAD relapse, and 
to develop novel lncRNA signature to identify LUAD 
patients who are at the higher risk for developing relapse. 

 RESULTS 

 Identifi cation of altered lncRNA expression 
associated with tumor relapse 

 Here, the Okayama dataset, which is the largest 
dataset in our study, contains 64 LUAD patients who 
developed relapse and 162 relapse-free LUAD patients 
[ 35 ]. To identify relapse-related lncRNAs, we selected 88 

favorable patients (alive > 5 years without any evidence 
of relapse) and 33 fatal samples (dead in 5 years with 
evidence of relapse) in the Okayama dataset to form a 
discovery dataset (n=121). The remaining patients in the 
Okayama dataset was considered as the internal testing 
dataset (n=105). Analysis of lncRNA expression profi les 
for LUAD patients in the discovery dataset revealed 
obvious differences and identifi ed a total of 25 differentially 
expressed lncRNAs (adjusted p-value <0.01 after Bonferroni 
correction) between LUAD patients who developed relapse 
and relapse-free LUAD patients (Supplementary File S1). 
Unsupervised hierarchical clustering of 121 LUAD patients 
in the discovery dataset according to the expression patterns 
of these 25 differentially expressed lncRNAs showed two 
distant patient clusters, which were highly correlated 
with the tumor relapse status (p=7.557e-12, chi-square 
test;  Figure 1A ). Indeed, cluster I contained close to the 
majority of relapsed patients (n=30; 90.9%). Conversely, 
cluster II contained the majority of non-relapsed patients 
(n=70; 79.5%). Moreover, the Kaplan-Meier analysis and 
log-rank test revealed signifi cant difference in recurrence-
free survival (RFS) between these two patients subgroups 
(p=4.93-e14, log-rank test;  Figure 1B ). At three and fi ve 
years, the RFS rates of LUAD patients in cluster II were 
95.9% and 95.9%, respectively, whereas the corresponding 
rates in the cluster I were 45.8% and 37.5%, respectively. 
The above results demonstrated that dysregulated lncRNAs 
might have a predictive power in the prognosis of LUAD 
patients.  

 Identifi cation of optimal relapse-related lncRNA set 

 To identify relapse-related lncRNA signature, we 
used the weighted voting classifi cation algorithm to predict 
outcome with the expression levels of these 25 differentially 
expressed lncRNAs as described in Materials and methods. 
These 25 differentially expressed lncRNAs were fi rstly 
ranked according to signal-to-noise metric. Then the average 
number of misclassifi ed patients of the 5-fold cross-validation 
in 100 permutations was calculated when increasing numbers 
of top ranked predictive lncRNAs ( Figure 2A ). As a result, 
nine lncRNAs were found to yield a balance between 
accuracy and the number of lnRNAs, and were identifi ed 
as optimal relapse-related lncRNA set. When choosing 
more than nine lncRNAs, there is a very slight increase in 
prediction accuracy ( Figure 2B ). With the selected nine 
lncRNAs and relapse status taken together, 121 LUAD 
patients were assigned as either relapse or relapse-free with 
accuracy of 84.3%. The classifi cation of 121 LUAD patients 
produced a receiver operating characteristic (ROC) curve 
with AUC of 0.923, sensitivity of 90.9%, and specifi city of 
81.8% ( Figure 2C ). Furthermore, the Kaplan-Meier analysis 
for RFS demonstrated a signifi cant difference between the 
groups predicted to be relapse or relapse-free (p=3.44e-15, 
log-rank test;  Figure 2D ). At three and fi ve years, the RFS 
rates of LUAD patients in the predicted relapse-free group 
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were 96% and 96%, respectively, whereas the corresponding 
rates in the predicted relapse group were 45.7% and 34.8%, 
respectively. We clustered LUAD patients in the discovery 
dataset according to the expression levels of nine relapse-
related lncRNAs by hierarchical clustering analysis and 
obtained two distinctive patient groups with signifi cantly 
different RFS (p=2.56e-07, log-rank test;  Figure 3A  and  3B ). 
These results revealed better performance of nine relapse-
related lncRNAs in prognosis prediction.   

 Construction of relapse-related lncRNA 
signature from the discovery dataset 

 We applied univariate Cox proportional hazard 
regression to each of these nine relapse-related lncRNAs and 
found all of them signifi cantly correlated with patient’s RFS 
( Table 1 ). We then used these nine relapse-related lncRNAs to 
construct a signature by the risk score method as the classifi er 
for prognosis prediction. This risk score model was defi ned 

     Figure 1: LncRNA expression patterns can distinguish patients who developed relapse from those who did not relapse 
in the discovery dataset.   A.  The unsupervised hierarchical clustering heatmap of 121 patients based on the 25 differentially expressed 
lncRNAs in the discovery dataset.  B.  Kaplan-Meier survival curve for RFS in the two lncRNA transcriptomic classifi cations. 
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as a linear combination of the expression levels of the nine 
relapse-related lncRNAs and the multivariate Cox regression 
coeffi cient as the weight as follows: (-1.049×expression 
value of  DACT3-AS1 ) + (0.027×expression value of 
 CTD-2524L6.3 ) + (0.485×expression value of  EFCAB14-
AS1 ) + (0.93×expression value of  AP000679.2 ) + 
(0.439×expression value of  CTB-129P6.4 ) + (0.091× 
expression value of  LRRC2-AS1 ) + (-0.357×expression 
value of  RP11-517O13.3 ) + (0.489×expression value of 
AL133249.1 )+(0.015×expression value of  CTC-366B18.2 ). 
Each LUAD patient in the discovery dataset was assigned a 
risk score and was classifi ed into different prognostic groups 
(the high-risk group and low-risk group) according to the 
threshold of the median risk score (-0.054). The Kaplan-
Meier analysis demonstrated a signifi cant difference in RFS 
between two patient groups predicted to have good or poor 
prognosis (median RFS > 8 years vs. 3.73 years, p=1.01e-10, 
log-rank test;  Figure 4A ). The three-year and fi ve-year 
RFS rates of the high-risk group were 55% and 46.7%, 
respectively, whereas the corresponding rates in the low-risk 
group were 98.4% and 98.4%, respectively. The univariate 
analysis revealed a signifi cant association between the risk 

score and RFS, in which the hazard ratio (HR) of high-
risk group versus low-risk group for RFS is 45.728 (95% 
confi dence interval (CI) 6.241-335.1; p=1.69e-04;  Table 2 ). 
The time-dependent ROC curves analysis for the relapse-
related lncRNA signature prognostic model achieved an 
AUC of 0.932 at fi ve years of RFS ( Figure 4B ). These results 
demonstrated that the relapse-related lncRNA signature has 
better performance in prognosis prediction of LUAD.  

 The distribution of prognostic risk scores, the relapse 
status and expression pattern of lncRNA signature of 121 
LUAD patients in the discovery dataset was shown in 
 Figure 4C . Of these nine relapse-related lncRNAs, fi ve were 
protective lncRNAs whose high expression were associated 
with low risk, and the remaining four were risky lncRNAs 
whose high expression were associated with high risk. 

 Validation of relapse-related lncRNA signature 
in the testing and entire Okayama dataset 

 To confi rm our fi ndings, the predictive ability of 
relapse-related lncRNA signature was validated in LUAD 
patients from the testing dataset and entire Okayama 

     Figure 2: Identifi cation of the relapse-related lncRNA signature in the discovery dataset.   A.  The learning errors for top 
N -lncRNA model using 5-fold cross-validation procedures with 100 random partitions of the discovery dataset.  B.  The variance rate of 
classifi cation accuracy when increasing numbers of the predictive lncRNAs.  C.  ROC analysis of the relapse-related lncRNA signature for 
relapse prediction within fi ve years as the defi ning point.  D.  Kaplan-Meier survival curve for RFS of patients with relapse or relapse-free 
according to nine-lncRNA model-based prediction. 
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dataset. With the same risk score formula and cutoff 
value derived from the discovery dataset, patients of the 
testing dataset were classifi ed into the high-risk group 
(n=58) and low-risk group (n=47). As in the discovery 

dataset, the RFS time of patients in the high-risk group 
was signifi cantly shorter than that in the low-risk group 
(median RFS 4.01 years vs. > 5 years, p=8.14e-07, log-
rank test) ( Figure 5A ). The risk stratifi cation of the entire 

     Figure 3: The heatmap and survival analysis of hierarchical clustering based on relapse-related lncRNA signature in 
the discovery dataset.   A.  The unsupervised hierarchical clustering heatmap of 121 patients based on selected optimal nine lncRNAs in 
the discovery dataset.  B.  Kaplan-Meier survival curve for RFS in the two lncRNA transcriptomic classifi cations. 
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Okayama dataset (i.e. combined the discovery and testing 
series) also yielded similar result. This relapse-related 
lncRNA signature was able to separate 226 patients in the 
entire Okayama dataset into two groups with signifi cantly 
different RFS (median 3.73 years vs. > 8 years, 
p=1.11e-16, log-rank test) ( Figure 5B ). A signifi cant 
association between the relapse-related lncRNA signature 
and RFS in the univariate Cox regression analysis was 
observed both in the testing and entire Okayama datasets. 
The hazard ratios of the high-risk group versus the low-
risk group for RFS was 11.02 (p=7.96e-05; 95% CI 3.346-
36.3) in the testing dataset, and 20.66 (p=4.7e-09; 95% CI 
7.5-56.91) in the entire Okayama dataset ( Table 2 ). The 
distribution of prognostic risk scores, the relapse status 
and expression pattern of lncRNA signature of LUAD 
patients in the testing and entire Okayama datasets were 
shown in  Figure 5C  and  5D . Patients with high prognostic 
scores tended to express risky lncRNAs, whereas patients 
with low prognostic scores tended to express protective 
lncRNAs.  

 Further validation of relapse-related lncRNA 
signature with two additional independent 
datasets of LUAD patients 

 Further validation of the prognostic power of relapse-
related lncRNA signature in LUAD patients was conducted 
using two additional completely independent cohorts of 124 
and 53 LUAD patients obtained from Der’s study [ 36 ] and 
Botling’s study [ 37 ], which will be further referred to as the 
Der dataset and Botling dataset. The median cutoff value 
of risk score obtained from the discovery dataset was used 
for the Der dataset and Botling dataset to classify patients 
into either high-risk or low-risk groups. For the Der dataset, 
patients with high-risk scores had signifi cantly shorter RFS 
than those with low-risk scores (median 3.74 years vs. 
7.61 years, p=2.42e-02, log-rank test) ( Figure 6A ). Among 
patients in the Botling dataset, the high-risk group and low-
risk group were marginally signifi cantly different in their 
RFS (median 1.38 years vs. 7.96 years, p=7.07e-02, log-
rank test) ( Figure 6B ). At three and fi ve years, the respective 

  Table 1: Relapse-related lncRNAs signifi cantly associated with RFS in patients with LUAD                   

  Ensembl ID    Gene name    Chromosome    Coef    HR    95% CI of HR      P -value   

 ENSG00000245598  DACT3-AS1  Chr19: 
46,660,364-

46,677,447(+) 

 -0.964  0.382  0.26-0.559  7.52e-07 

 ENSG00000260037  CTD-2524L6.3  Chr15: 
71,818,396-

71,823,384(+) 

 -0.783  0.457  0.334-0.626  1.09e-06 

 ENSG00000228237  EFCAB14-AS1  Chr1: 
46,674,036-

46,692,098(+) 

 -1.226  0.294  0.182-0.474  5.13e-07 

 ENSG00000176984  AP000679.2  Chr11: 
120,168,977-

120,171,679(+) 

 1.058  2.881  1.976-4.202  3.83e-08 

 ENSG00000267282  CTB-129P6.4  Chr19: 
44,882,027-

44,890,876(-) 

 0.835  2.304  1.682-3.157  2.04e-07 

 ENSG00000268324  LRRC2-AS1  Chr3: 
46,557,398-

46,559,694 (+) 

 0.711  2.037  1.574-2.637  6.52e-08 

 ENSG00000258658  RP11-517O13.3  Chr14: 
58,370,023-

58,395,641(-) 

 -0.843  0.43  0.299-0.619  5.44e-06 

 ENSG00000223647  AL133249.1  Chr2: 
31,793,823-

31,803,980(-) 

 0.843  2.323  1.636-3.3  2.51e-06 

 ENSG00000248881  CTC-366B18.2  Chr5: 
75,598,482-

75,599,380(-) 

 -0.841  0.431  0.305-0.609   1.79e-06  

 Abbreviations: Coef, Coeffi cient; HR, hazard ratio; CI, confi dence interval. 
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absolute differences in RFS between the high-risk group 
and low-risk group were 15.6% (56.6% vs.72.2%) and 
18% (43.3% vs. 61.3%) for Der dataset, and 22.8% (42.2% 
vs. 65%) and 26.1% (38.9% vs. 65%) for Botling dataset, 
respectively. In the univariate analysis, the hazard ratios of 
high-risk scores versus low-risk scores for RFS were 1.829 
(p=2.62e-02; 95% CI 1.074-3.115) for Der dataset and 1.86 
(p=7.52e-02; 95% CI 0.939-3.685) for Botling dataset, 
respectively ( Table 2 ). The distribution of prognostic risk 
scores, the relapse status and expression pattern of lncRNA 
signature of LUAD patients in the two independent cohorts 
were consistent with those observed in the discovery, testing 
and entire Okayama datasets ( Figure 6C  and  6D ).  

 Independence of prognostic value of relapse-related 
lncRNA signature from other clinical variables 

 To determine whether the prognostic value of the 
relapse-related lncRNA signature was independent of 
other clinical variables, we conducted a multivariate Cox 
regression analysis including lncRNA signature, age, gender, 

smoking status and tumor stage as covariates. The results 
of multivariable Cox regression analysis from fi ve LUAD 
patient datasets showed that the relapse-related lncRNA 
signature was still signifi cantly associated with RFS after 
adjusted by these clinical variables in each dataset ( Table 2 ). 
We also found that age and tumor stage was signifi cant in the 
multivariate analysis in some datasets. So we performed data 
stratifi cation analysis according to the age and tumor stage. 
All LUAD patients enrolled in this study were fi rst stratifi ed 
into either the younger stratum (age≤65) or the elder stratum 
(age>65). This analysis showed that within each age stratum, 
the relapse-related lncRNA signature could further classifi ed 
patients into the high-risk group and low-risk group with 
signifi cantly different RFS (median 4.73 years vs. > 8.68 
years, p=2.55e-12 for younger stratum; median 2.94 years 
vs. 8.83 years, p=3.39e-05 for elder stratum; log-rank test) 
( Figure 7A  and  7B ). Next, the stratifi ed analysis was carried 
out in tumor stage, which stratifi ed patients into the stage 
I stratum and stage II stratum. For patients within stage I 
stratum, signifi cant differences for RFS between high-risk 
group and low-risk group were observed (median 4.68 years 

     Figure 4: The relapse-related signature by risk score method in prognosis of RFS of patients with LUAD in the 
discovery dataset.   A.  Kaplan-Meier survival curve for RFS of patients with high-risk or low-risk scores.  B.  ROC analysis of the risk 
score model for prognosis prediction within fi ve years as the defi ning point.  C.  The distribution of risk scores, patients’ relapse status and 
the heatmap of lncRNA expression profi les. 
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vs. >10 years, p=2.8e-13, log-rank test) ( Figure 7C ). Among 
stage II patients, RFS was also marginally signifi cantly 
different between the groups with high-risk and low-risk 
scores (median 2.26 years vs. 4.88 years, p=9.38e-02, log-

rank test) ( Figure 7D ). Because of limited patient size, the 
stratifi ed analysis was not conducted for stage III (n=8) and 
IV (n=1) patients. Taken together, the results of multivariate 
Cox regression and stratifi cation analyses suggested that the 

  Table 2: Univariate and multivariate Cox regression analysis of RFS in each dataset                     

  Variables      Univariate analysis     Multivariate analysis   

  HR    95% CI of 
HR  

   P -value    HR    95% CI of 
HR  

    P -value   

Discovery dataset, n=121  

lncRNA signature  High risk vs. Low risk  45.728  6.241-335.1  1.69e-04  31.259  4.158-235.021  8.25e-04 

 Age  >65 vs. <=65  2.876  1.44-5.744  2.75e-03  2.771  1.314-5.845  0.007 

 Gender  Male vs. Female  1.623  0.818-3.222  0.166  1.23  0.505-2.995  0.649 

 Stage  II vs. I  4.761  2.397-9.455  8.31e-06  2.243  1.102-4.566  0.026 

Smoking status  Yes vs. No  1.574  0.789-3.14  0.198  1.099  0.43-2.809  0.843 

Testing dataset, n=105  

lncRNA signature  High risk vs. Low risk  11.02  3.346-36.3  7.96e-05  11.5  3.344-39.57  1.06e-04 

 Age  >65 vs. <=65  1.015  0.439-2.348  0.972  1.213  0.516-2.856  0.658 

 Gender  Male vs. Female  1.02  0.509-2.044  0.955  0.481  0.165-1.402  0.18 

 Stage  II vs. I  2.52  1.234-5.145  0.011  1.147  0.546-2.408  0.717 

Smoking status  Yes vs. No  1.197  0.597-2.399  0.612  1.695  0.585-4.913  0.331 

Okayama dataset, n=226  

lncRNA signature  High risk vs. Low risk  20.66  7.5-56.91  4.7e-09  17.619  6.266-49.543  5.36e-08 

 Age  >65 vs. <=65  1.801  1.72-3.025  0.026  1.949  1.145-3.315  0.014 

 Gender  Male vs. Female  1.268  0.783-2.055  0.335  0.905  0.471-1.738  0.765 

 Stage  II vs. I  3.37  2.066-5.497  1.13e-06  1.609  0.969-2.67  0.066 

 Smoking status  Yes vs. No  1.324  0.816-2.148  0.256  1.09  0.565-2.102  0.797 

Der dataset, n=124  

 lncRNA signature  High risk vs. Low risk  1.829  1.074-3.115  0.026  1.938  1.135-3.31  0.015 

 Age  >65 vs. <=65  1.327  0.756-2.328  0.324  1.397  0.788-2.477  0.252 

 Gender  Male vs. Female  1.267  0.761-2.109  0.364  1.312  0.778-2.213  0.308 

 Stage  II vs. I  2.64  1.559-4.469  3.02e-04  2.746  1.615-4.67  1.92e-04 

 Smoking status  Yes vs. No  1.219  0.628-2.366  0.559  0.968  0.49-1.914  0.926 

Botling dataset, n=53  

 lncRNA signature  High risk vs. Low risk ç 1.86  0.939-3.685  0.075  1.997  0.976-4.084  0.058 

 Age  >65 vs. <=65  1.231  0.653-2.321  0.521  1.118  0.58-2.155  0.74 

 Gender  Male vs. Female  1.123  0.59-2.138  0.725  1.152  0.552-2.404  0.706 

 Stage  I  1.000 (reference)   1.000 (reference)  

   II  1.823  0.796-4.176  0.156  2.074  0.878-4.898   0.096  

 III  2.338  1.027-5.322  0.043  2.624  1.066-6.459   0.036  

 IV  4.61  0.588-36.143  0.146  3.866  0.46-32.479   0.213  

Abbreviations: HR, hazard ratio; CI, confi dence interval. 
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relapse-related lncRNA signature is independent of other 
clinical features for prognosis prediction of LUAD patients. 
Moreover, the discrimination performance of relapse-related 
lncRNA signature measured by the C-index was much 
higher than that of other clinical variables in each dataset 
( Table 3 ), demonstrating the better predictive ability to 
discriminate between LUAD patients who are or not likely 
to develop relapse.  

 Identifi cation of associated biological functions 
of relapse-related lncRNA signature 

 As an initial step toward gaining insights into the 
biological functions of relapse-related lncRNA signature, we 

fi rst applied GSEA to identify associated biological pathways 
and processes from gene expression profi les of LUAD 
patients in the high-risk and low-risk groups classifi ed by the 
relapse-related lncRNA signature in the Okayama dataset. 
The high-risk scores were associated with coordinated 
transcriptional up-regulation of multiple gene sets ( Figure 
8A  and  8B ) (Supplementary File S2), mainly involved in 
glucose metabolism and proteasome that have been reported 
to be involved in lung cancer [ 38 ,  39 ]. The low-risk score 
was accompanied with up-regulation of circadian clock and 
JNK-MAPK pathway ( Figure 8A  and  8B ) (Supplementary 
File S2), both of which have inhibitory effects on the growth 
of lung cancer [ 40 ,  41 ]. Then we measured the co-expressed 
relationships between nine relapse-related lncRNAs and 

     Figure 5: The relapse-related signature predicts RFS of patients with LUAD in the testing dataset and entire Okayama 
dataset.  Kaplan-Meier survival curves of RFS between high-risk and low-risk patients in  A.  the testing dataset and  B.  entire Okayama 
dataset. The distribution of risk scores, patients’ relapse status and the heatmap of lncRNA expression profi les in  C.  the testing dataset and 
D.  entire Okayama dataset. 
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mRNAs by calculating the Pearson correlation coeffi cient of 
paired lncRNA and mRNA expression profi les and identifi ed 
1414 mRNAs positively correlated (ranked top 1%) with at 
least one of nine relapse-related lncRNAs. The functional 
enrichment analysis of GO and KEGG pathway revealed that 
the co-expressed mRNAs were most signifi cantly enriched 
in 15 GO functional annotation clusters (mainly involved 
in cell cycle, DNA repair and damage, macromolecular 
complex assembly, RNA splicing and cell death) ( Figure 8C ) 
(Supplementary File S3), and 10 KEGG pathways including 
cell cycle, oocyte meiosis, progesterone-mediated oocyte 
maturation, DNA replication, insulin signaling pathway, 
spliceosome, p53 signaling pathway, One carbon pool by 
folate, gap junction and ErbB signaling pathway (p<0.05 and 

Fold Enrichment>2) ( Figure 8D ) (Supplementary File S4).
This integrative functional analysis suggested that the 
dysregulated expression of relapse-related lncRNAs might 
affect the critical biological pathways and processes involved 
in tumor progression and recurrence.  

 DISCUSSION 

 LUAD, the most frequent type of NSCLC, remains 
to be the leading cause of cancer-related deaths in women 
and men. LUAD is a recurrent disease, and more than 
30% of patients still faced relapse after surgical resection 
and treatment and ultimately die of relapse [ 4 ]. In the 
past years, great efforts have been made to improve our 

     Figure 6: Independent validation of relapse-related signature for prognosis prediction in two additional independent 
datasets.  Kaplan-Meier survival curves of RFS between high-risk and low-risk patients in  A.  the Der dataset and  B.  the Botling dataset. 
The distribution of risk scores, patients’ relapse status and the heatmap of lncRNA expression profi les in  C.  the Der dataset and  D.  the 
Botling dataset. 
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understanding of the possible molecular mechanism 
of relapse process at protein, mRNA and microRNA 
(miRNA) levels, and some protein/mRNA/miRNA-based 
predictive signature were reported to identify patients 
at the high risk of relapse, which will enable them to 
benefi t from adjuvant therapy [ 35 ,  42 – 50 ]. LncRNAs is a 

novel layer of gene regulation network and their aberrant 
expression has been demonstrated to be associated with 
tumorigenesis, tumor progression and metastasis [ 14 ,  17 , 
 18 ,  30 ]. Until now, several lncRNAs, including  MALAT-1 , 
 CCAT2 ,  HOTAIR , and  ZXF1 , have been found to 
contribute to LUAD [ 51 – 54 ]. More recently, differentially 

     Figure 7: Prognosis prediction in patients stratifi ed by age and tumor stage.  Kaplan-Meier survival curves for younger 
patients  A.  and elder patients  B.  Kaplan-Meier survival curves for stage I patients  C.  and stage II patients  D.  

  Table 3: Concordance index values of the relapse-related lncRNA signature and other clinical feature for prognosis 
prediction                 

   C-index   

      Variables        Discovery 
dataset  

    Testing dataset    Okayama dataset        Der dataset       Botling dataset   

lncRNA signature  0.876  0.761  0.822  0.677  0.657 

 Age  0.608  0.498  0.556  0.528  0.514 

 Gender  0.567  0.490  0.536  0.536  0.534 

 Stage  0.671  0.590  0.635  0.591  0.585 

 Smoking  0.561  0.525  0.544  0.531   -  

 “-” means no corresponding information available in this dataset. 
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expressed lncRNAs were observed between LUAD tissues 
and normal tissues by microarray analysis [ 55 ]. However, 
lncRNA expression patterns and their prognostic value for 
LUAD relapse have not been systematically investigated. 

 In the present study, we obtained lncRNA 
expression profi les in 403 LUAD patients by repurposing 
the publicly available microarray expression profi les, and 
performed comparison analysis between the groups of 
121 LUAD patients that dead in 5 years with evidence 
of relapse and those that alive > 5 years without any 
evidence of relapse. Although Okayama  et al.  analyzed 
ALK-positive and triple negative LUAD patients [ 35 ], 
current study did not differentiate them. We found that 
two patient groups have signifi cantly different lncRNA 
expression patterns and identifi ed 25 differentially 
expressed lncRNAs. Hierarchical clustering analysis 
revealed that these differentially expressed lncRNAs were 
signifi cantly correlated with LUAD relapse. By using the 
lncRNA expression data and a weighted voting algorithm, 
we were able to generate an optimal set of nine lncRNAs 

that could clearly distinguish patients who developed 
relapse from those who did not relapse with high accuracy, 
demonstrating their potential clinically application to 
identify patients with higher risk of relapse and improve 
prognosis prediction of LUAD. In statistical prediction, the 
following three cross-validation methods are often used 
to examine a predictor for its effectiveness in practical 
application: independent dataset test, subsampling test, 
and jackknife test. However, of the three test methods, 
the jackknife test is deemed the least arbitrary that can 
always yield a unique result for a given benchmark 
dataset as elaborated in [ 56 ]. Accordingly, the jackknife 
test has been widely recognized and increasingly used by 
investigators to examine the quality of various predictors 
[ 57 – 61 ]. However, to reduce the computational time, we 
adopted the 5-fold cross-validation in this study as done 
by many investigators with SVM as the prediction engine. 
Furthermore, the small subset of predictive lncRNAs 
perhaps not only has better transferability in the clinics 
but also reduce the possibilities of false positives in the 

     Figure 8: Functional analysis of the prognostic lncRNAs.   A.  The enrichment map of gene sets with each node represents a gene 
set and an edge represents the proportion of shared genes between connecting gene sets.  B.  The enriched biological pathways and processes 
associated with risk score.  C.  The functional enrichment map of GO terms with each node represents a GO term and an edge represents the 
proportion of shared genes between connecting GO terms.  D.  The enriched KEGG pathways ranked by −log 10  (p-value). 



Oncotarget29732www.impactjournals.com/oncotarget

selection of predictive lncRNAs. By focusing on relapse-
related lncRNAs, we constructed a nine-lncRNA signature 
for prognosis by the risk score method based on the 
linear combination of expression data of relapse-related 
lncRNAs and weighted by the regression coeffi cients from 
multivariate Cox regression analysis, which effectively 
classifi ed patients of the discovery dataset into high-risk 
group and low-risk group with signifi cantly different 
RFS. Moreover, the prognostic power of this relapse-
related lncRNA signature was further validated by the 
testing dataset and other two independent non-overlapping 
datasets, indicating good reproducibility and robustness of 
relapse-related lncRNA signature in patient prognosis. 

 The conventional indicators for making adjuvant 
treatment decisions for patients after surgical resection 
are based on some clinical factors, such as tumor stage, 
tumor size, margin status and so on [ 45 ]. Therefore, 
we performed multivariate Cox regression analysis to 
assess the independence of the relapse-related lncRNA 
signature in prognosis prediction, and in these datasets, 
the signature maintained an independent correlation 
with RFS after adjusting for age, gender, stage and 
smoking status ( Table 2 ). However, it can be found that 
age and stage also were two important factors affecting 
RFS when accessed in the multivariate Cox regression 
analysis. So, we further stratifi ed patients according age 
and stage, and applied this lncRNA signature to classify 
patients within the same age stratum or the same stage 
into two subgroups with good and poor prognosis. 
The stratifi cation analysis showed that patients in the 
predicted good prognosis group tended to have longer 
RFS than those in the predicted poor prognosis group 
across these stratifi ed patient datasets, demonstrating 
the age- and stage-independent prognostic value of 
this lncRNA signature. Moreover, the discriminatory 
power of relapse-related lncRNA signature measured 
by the C-index value was better than the discrimination 
provided by the clinical variables in different datasets. 
Taken together, this relapse-related lncRNA signature 
was a signifi cant and independent prognostic marker in 
predicting relapse risk of patients with LUAD. 

 Although the number of identifi ed lncRNAs in 
human is continuously increasing, only a small proportion 
have been well functionally characterized to date and the 
functional study of lncRNAs remains to be in its infancy. 
For example, only 181 lncRNAs with functional evidence 
were recorded in lncRNAdb v2.0 database by manually 
literature mining [ 62 ]. To gain functional insight into these 
nine relapse-related lncRNAs, we performed an integrative 
bioinformatics analysis to predict lncRNA function 
which could overcome the bias derived from the single 
prediction method. We found that the GO composition 
of co-expressed mRNAs with these lncRNAs revealed  
biological relevance to disease relapse, such as cell cycle, 
DNA repair and damage and cell death. Moreover, the 
pathway analysis also revealed a signifi cant enrichment of 
co-expressed mRNAs with these lncRNAs in lung cancer-

related pathways. These in silico functional analysis based 
on the co-expressed mRNAs with lncRNAs suggested that 
expression variation of these relapse-related lncRNAs 
might affect some critical biological pathways and 
processes involved in tumor progression and recurrence. 
However, biological signifi cance of these relapse-related 
lncRNAs should be validated using wet experiments on 
cell lines and clinical samples in the future. As shown 
in a series of recent publications [ 63 – 68 ] in developing 
or reporting new methods or fi ndings, user-friendly and 
publicly accessible web-servers will signifi cantly enhance 
their impacts [ 69 ], we shall make efforts in our future 
work to provide a web-server for the method presented 
in this article. 

 In summary, we investigated lncRNA expression 
patterns in LUAD relapse and their effects on patient 
outcome for the fi rst time. We identifi ed an optimal small 
set of nine lncRNAs whose expression patterns were able 
to discriminate between relapsed and non-relapsed LUAD 
patients with sensitivity of 90.9% and specifi city of 81.8%. 
A relapse-related lncRNA signature was developed by the 
risk model method that effectively classifi ed patients into 
good and poor prognosis groups across different datasets. 
Moreover, the prognostic power of this signature was 
independent of other clinical variables. The relapse-related 
lncRNA signature may not only help to identify LUAD 
patients at high risk of relapse benefi ting from adjuvant 
therapy but also could provide novel insights into the 
molecular mechanism of recurrent disease. 

 MATERIALS AND METHODS 

 LUAD patient datasets 

 LUAD patients with whole-genome gene expression 
profi les (generated from the Affymetrix Human Genome 
U133 Plus 2.0 Array) and corresponding clinical 
information were collected from the publicly available 
Gene Expression Omnibus (GEO) database ( http://
www.ncbi.nlm.nih.gov/geo/ ). A total of 403 LUAD 
patients were enrolled in this study, including 226 
patients from Okayama’s study (the accession number is 
GSE31210,  http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE31210 ) [ 35 ], 124 patients from Der’s study 
(the accession number is GSE50081,  http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE50081 ) [ 36 ] and 
53 patients from Botling’s study (the accession number 
is GSE37745,  http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE37745 ) [ 37 ]. LUAD patients and tumor 
features are detailed in  Table 4 .     

 Acquisition and analysis of lncRNA expression 
profi les of LUAD patients 

 The raw array data (.CEL fi les) of 403 LUAD patients 
were retrieved from the GEO database and were uniformly 
pre-processed using the Robust Multichip Average (RMA) 
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algorithm for background correction, quantile normalization 
and log2-transformation [ 70 ]. To account for the 
heterogeneity of multiple microarray datasets in systematic 
measurement, each dataset was standardized independently 
by the Z-score transformation to scale expression intensities 
of each probe as follows [ 71 ]: 

 Z score e ei= -( ) / d  
 Where  e i   the raw intensity data of probe i , e is the overall 

average intensity of probes in a single experiment and δ is the 
standard deviation (SD) of all of the measured intensities. 

 The probe sequences of Affymetrix HG-U133 Plus 
2.0 array were obtained from the Affymetrix website ( http://
www.affymetrix.com ). LncRNA expression data of 403 
LUAD patients were obtained by repurposing Affymetrix 
array probes as previous described [ 72 ,  73 ]. Briefl y, probe 
sets for Affymetrix HG-U133 Plus 2.0 array were re-
annotated to the human genome (GRCh38) and lncRNA 
genes based on the annotations from GENCODE (release 
21) using SeqMap tool [ 74 ]. Then those probes (or probe 
sets) that were uniquely mapped to the human genome and 
lncRNA genes with no mismatch were generated to represent 
the lncRNAs. For each lncRNA, all corresponding probe set 
signals were averaged to produce a single expression value. 
Finally, the expression data of 2313 lncRNAs was obtained. 

 The expression profi les of lncRNAs between 
relapse-free LUAD patients (alive > 5 years without any 
evidence of relapse) and LUAD patients who developed 
relapse (dead in 5 years with evidence of relapse) were 
compared and the differentially expressed lncRNAs were 

identifi ed using two-tailed T-test. Those lncRNAs with 
an adjusted p-value <0.01 after Bonferroni correction 
were considered as differentially expressed lncRNAs. 
The unsupervised hierarchical clustering of both LUAD 
patients and lncRNAs was performed with R software 
using the euclidean distance and complete linkage method. 

 Identifi cation of relapse-related lncRNA set 

 To identify optimal lncRNA set associated with 
relapse of LUAD patients, we used the weighted 
voting algorithm to develop a supervised classifi cation 
model, assessed using 5-fold cross-validation with 100 
randomized permutations in the discovery dataset as 
follows: (i) patients of discovery dataset were divided into 
fi ve non-overlapping sets with equal quantity. (ii) With 
four of fi ve sample sets, the signal-to-noise statistic ( S  lnc- i  ) 
of each lncRNA was calculated as

c – i c – iln lnlnc- i relapse non- relapseµ µ( )( ) ( )= −S

c – i c – irelapse non- relapseσ σ( )( ) ( )+ln ln ,

where mrelapse c iln -( )  and s relapse c iln -( )

( c ilnnon relapseµ ( )−−  and c ilnnonrelapseσ ( )−  ) is the mean value 

and standard deviation (SD) of expression level of lncRNA  i
in LUAD patients who developed relapse (relapse-free). In 
addition, the classifi cation boundary of two classes (relapse or 
non-relapse) for each lncRNA  i  was also calculated as

  Table 4: Clinical features of LUAD patients enrolled in this study                   

   Covariates       Discovery 
dataset N=121  

  Testing 
dataset N=105  

  Okayama 
dataset N=226  

  Der dataset 
N=124  

   Botling 
dataset N=53   

 Age (years), no (%)  <=65  93(76.9)  83(79.0)  176(77.9)  40(32.3)   25(47.2)  

 >65  28(23.1)  22(21.0)  50(22.1)  84(67.7)  28(52.8) 

 Gender, no (%)  Male  55(45.6)  50(47.6)  105(46.5)  63(50.8)   20(37.7)  

 Female  66(54.4)  55(52.4)  121(53.5)  61(49.2)  33(62.3) 

 Vital status, no (%)  Alive  88(72.7)  103(98.1)  191(84.5)  75(60.5)   16(30.2)  

 Dead  33(27.3)  2(1.90)  35(15.5)  49(39.5)  37(69.8) 

 Relapse status, no (%)  Relapse  33(27.3)  31(29.5)  64(28.3)  37(29.8)   26(49.1)  

 Not relapse  88(72.7)  74(70.5)  162(71.7)  87(70.2)  27(50.9) 

 Tumor stage, no (%)  I  93(76.9)  75(71.4)  168(74.3)  90(72.6)   34(64.2)  

 II  28(23.1)  30(28.6)  58(25.7)  34(27.4)   10(18.9)  

 III  -  -  -  -   8(15.1)  

 IV  -  -  -  -  1(1.8) 

 Smoking status, no (%)  Never-smoker  62(51.2)  53(50.5)  115(50.9)  23(18.5)   -  

 Ever-smoker  59(48.8)  52(49.5)  111(49.1)  90(72.6)   -  

 Undetermined   -  -  -  11(8.9)   -  

 “-” means no corresponding information available in the dataset. 
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b c i c iln ln 2c i relapse non relapseln µ µ( )( ) ( )= − + −− −

(iii) lncRNAs were ranked according to its signal-to-noise 
statistic with absolute value, and top  N  ranked lncRNA 
were selected to develop a supervised classifi cation 
model. The top  N  was initially set to top 1, and increase 
one lncRNA each time until  N  was equal to the number 
of candidate lncRNAs. (iv) The above classifi cation 
model was used to classify patients in the remaining 
one set into relapse or non-relapse based on voting 
rules: each lncRNA  i  in the top  N  model has a vote  Vln c– i 

(V S e bc i c i c i c iln ln ln ln( )= −− − − − , where  eln c– i   is the expression 
level of lncRNA  i  in the corresponding patient. The votes 
of top  N  ranked lncRNAs were summed to determine the 
relapse or relapse-free class of sample. (v) repeat steps 
i-iii for each of the fi ve non-overlapping sets. (vi) The 
5-fold cross-validation process was repeated 100 times. 
The average number of misclassifi ed patients of 100 
randomized permutations for top  N  model as follows:

average error 100.errorN
ji 1

5

1

100

∑∑=





==
 Finally, the top

N which yielded the optimal numbers of learning errors 
was selected as the optimal number (OPN) of predictive 
lncRNAs. The frequencies of lncRNAs in 500 candidate 
lncRNAs ranking list according to their signal-to-noise 
statistic were ranked and top OPN of lncRNAs were 
identifi ed as optimal relapse-related lncRNA signature. 

 Statistical analysis for classifi cation and 
prediction 

 The association between expression levels of 
relapse-related lncRNAs and patients’ RFS was assessed 
using the univariate Cox regression analysis. RFS was 
calculated as the time to tumor recurrence or death due to 
any cause, and was censored at the time of last following-
up when recurrence has happened. To construct a 
prognostic model, the relapse-related lncRNAs were fi tted 
in the multivariate Cox regression model in the discovery 
dataset. Then we applied these relapse-related lncRNAs 
to build an expression signature by risk score method as 
follows [ 75 ]: 

 
∑ )(=

=

Risk Score Exp w*i i
i

N

1  
 Where  N  is the number of relapse-related lncRNAs, 

 Exp i   is the expression levels of ln cRNA i  , and  w i   is the 
estimated regression coeffi cient of ln cRNA i   derived 
from the above multivariable Cox regression analysis 
in the discovery dataset. This relapse-related lncRNA 
expression signature was established by taking into 
account the contribution of independent relapse-related 
lncRNA to patient’s RFS. Finally, LUAD patients were 
assigned a risk score according to the relapse-related 
lncRNA expression signature, and were divided into 

high-risk and low-risk groups using the median of the 
risk score generated from the discovery dataset as the 
cutoff value. The LUAD patients with higher scores 
were considered to have high risk of poor outcome. The 
difference in RFS between high-risk group and low-
risk group was demonstrated by Kaplan-Meier survival 
plots, and the statistical signifi cance was assessed by 
two-sided log-rank test. Univariate and multivariate 
analyses with Cox proportional hazards regression were 
performed with RFS as the dependent variable and 
relapse-related lncRNA risk score and clinical features as 
explanatory variables in each dataset. Hazard ratio (HR) 
and 95% confi dence intervals (CI) was estimated by Cox 
proportional hazards regression model. The sensitivity 
and specifi city of relapse-related lncRNA risk score in 
RFS prediction was evaluated by analysis of the time-
dependent ROC curve within 5 years as the defi ning 
point. The Harrell’s concordance index (C-index) was 
calculated to quantify the discriminatory power of 
relapse-related lncRNA risk score [ 76 ]. A C-index of 1.0 
indicates perfect prediction accuracy, whereas a C-index 
of 0.5 represents prognosis prediction is equivalent to 
random guessing. All statistical analyses were performed 
using R software and Bio-conductor. 

 Integrative prediction analysis of lncRNA function 

 In order to explore the potential biological roles of 
lncRNA, we performed function enrichment analysis by the 
integration of gene sets, Gene Ontology (GO) and Kyoto 
encyclopedia of genes and genomes (KEGG). Gene set 
enrichment analysis (GSEA) was performed by the JAVA 
program using MSigDB (c2.cp.v5.0, 1330 gene sets) to 
rank gene set associated with risk score by enrichment 
score [ 77 ]. The gene sets with positive enrichment score 
(or negative enrichment score) and p-value <0.01 after 
performing 1000 permutations of the risk-phenotype labels 
were considered as signifi cant enriched gene sets in which 
most of the genes are up-regulated accompanied with high-
risk scores (or low-risk scores). GO and KEGG enrichment 
analysis were carried out to assess over-representation of 
functional categories among a gene set of interest using 
DAVID Bioinformatics Tool (version 6.7) limited to GO 
terms in the “Biological Process”(GOTERM-BP-FAT) 
and KEGG pathway categories [ 78 ]. Functional categories 
with p-value of <0.05 and an enrichment score of >2 using 
the whole human genome as background were considered 
signifi cant. Signifi cant functional annotations of GSEA and 
GO analysis were organized into an interaction network 
with similar functions using the Enrichment Map [ 79 ] 
plugin in Cytoscape 3.2.1 [ 80 ]. 
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