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Emerging therapeutic targets in esophageal adenocarcinoma

Puja Gaur1, Clayton R. Hunt2 and Tej K. Pandita2

1 Department of General Surgery, Division of Thoracic Surgery, The Houston Methodist Research Institute, Houston, TX, USA
2 Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, USA

Correspondence to: Puja Gaur, email: pgaur@houstonmethodist.org
Keywords: esophageal adenocarcinoma; cancer stem cells; immunotherapy; genetic and epigenetic targets; chemoradioresis-
tance
Received: February 25, 2016 Accepted: April 10, 2016 Published: April 17, 2016

ABSTRACT
The incidence of gastro-esophageal disease and associated rate of esophageal 

adenocarcinoma (EAC) is rising at an exponential rate in the United States. However, 
research targeting EAC is lagging behind, and much research is needed in the field 
to identify ways to diagnose EAC early as well as to improve the rate of pathologic 
complete response (pCR) to systemic therapies. Esophagectomy with subsequent 
reconstruction is known to be a morbid procedure that significantly impacts a patient’s 
quality of life. If indeed the pCR rate of patients can be improved and those patients 
destined to be pCR can be identified ahead of time, they may be able to avoid this life-
altering procedure. While cancer-specific biological pathways have been thoroughly 
investigated in other solid malignancies, much remains unexplored in EAC. In this 
review, we will highlight some of the latest research in the field in regards with EAC, 
along with new therapeutic targets that are currently being explored. After reviewing 
conventional treatment and current changes in medical therapy for EAC, we will 
focus on unchartered grounds such as cancer stem cells, genetics and epigenetics, 
immunotherapy, and chemoradio-resistant pathways as we simultaneously propose 
some investigational possibilities that could be applicable to EAC.

INTRODUCTION

Esophageal cancer remains the sixth most 
commonly occurring form of cancer and continues to be 
an aggressive cancer due to its diagnosis in late stages. 
Overall 5-year survival for patients with esophageal 
cancer remains dismal at 18% according to the latest 
statistics, despite clinical advances [1, 2]. In 2015 alone, 
there will be a predicted 16,980 patients diagnosed with 
esophageal cancer in the United States with nearly equal 
number of deaths [2]. Unfortunately, due to lack of a 
universal screening tool and the advanced stage at which 
symptoms develop [3], only about half of the patients 
are considered resectable at the time of diagnosis. While 
patients with early stage tumors (T1a-T1b) are appropriate 
candidates for resection, locally advanced tumors (T2-T3, 
node positive, of either histologic subtype) are treated with 
upfront chemoradiation followed by surgical resection 
after restaging as per the CROSS group recommendations 
(chemoradiotherapy for oesophageal cancer followed by 

surgery study, Figure 1a) [4]. This trimodality therapy 
where patients are treated with neoadjuvant chemotherapy 
and radiation followed by surgery offers the best clinical 
outcome with a 26-33% complete response rate for these 
locally advanced tumors (Figure 1b) [5, 6]. Indeed, those 
patients with pathologic complete response (pCR) have 
much better prognosis in terms of recurrence, metastatic 
potential, and long-term survival [7]. With the rising 
incidence of gastroesophageal reflux and an epidemic 
in Barrett’s esophagus and esophageal adenocarcinoma 
(EAC) in the United States, it is imperative that we 
understand the molecular biology of this disease in 
order to strategically develop biological therapies and 
to simultaneously develop an effective pre-symptomatic 
screening tool. In this review, we will discuss current 
and new therapeutic targets for EAC and suggest some 
potential preclinical models to provide a resource for 
identification of biomarkers that can be exploited for 
tailored therapy in the future. 
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NEODAJUVANT CHEMOTHERAPY VS 
CHEMORADIATION

A thorough review of the literature supports the 
use of neoadjuvant chemotherapy and radiation (nCRT) 
followed by surgery for EAC over surgery alone [8, 
9], or even neoadjuvant chemotherapy (nCTX) alone 
followed by surgery with a reported 25-30% pCR rate in 
nCRT trials and < 10% in the nCTX only trials [8, 10-
12]. The absolute risk reduction and number needed to 
treat are also much higher and lower, respectively, in the 
nCRT group compared to nCTX alone group [13]. The 
fact that nCRT has a better response rate than nCTX alone 
suggests that there must be a synergistic effect between 
chemotherapy and radiation such that concurrent therapy 
results in the best outcome [14, 15]. It is well known 
that patients with pCR when compared to non-pCR after 
neoadjuvant treatment have a higher rate of R0 resection 
and lower rate of tumor recurrence, as well as improved 
disease-free interval and overall survival compared to 
the non-pCR group [7, 16]. This use of dual modality is 
intuitively an appealing strategy since it allows treatment 
of micrometastatic disease while tumor blood supply is 
still intact when chemotherapy can arrest the tumor cells 
in a certain growth phase such that the radiation can exert 
it’s toxic effects [17, 18]. 

The role of cancer stem cells, genetics, epigenetics, 
and immunotherapy in EAC, as well as the identification 
of potential biomarkers to predict tumor progression and 
treatment response are in various exploratory phases 
(Figure 2). For the rest of this paper, we will first discuss 
the current treatment regimens available for EAC and 
then focus on unchartered grounds and future direction of 
cancer research that may make an impact in the treatment 

of patients with EAC and overall pCR rate. 

CURRENT CHEMORADIATION AND 
BIOLOGICAL THERAPY REGIMENS

Currently, neoadjuvant chemotherapy regimens 
available for the treatment of EAC include 5-fluorouracil, 
platinum agent, irinotecan, and taxanes. Typical 
preoperative radiation dose ranges from 44 to 50.4 Gy as 
radiation over 50.4 Gy does not impact tumor response and 
indeed only results in more normal tissue toxicity (INT 
0123 trial) [19]. The mechanism behind this concurrent 
therapy is that the chemotherapy sensitizes the tumor to 
radiation and arrests the cells by synchronizing them to 
G0/G1 phase where radiation can be most effective [18].

Besides these cytotoxic chemotherapy agents, there 
are very limited biological agents currently approved 
for the treatment of esophageal cancer and the only two 
currently FDA-approved (trastuzumab and ramucirumab) 
are for patients with locally advanced unresectable 
or metastatic disease. Trastuzumab (Herceptin), a 
monoclonal antibody against human epidermal growth 
factor receptor type 2 (Her-2), was studied in a multi-
institutional ToGA trial where almost 600 patients were 
enrolled in a randomized phase III trial [20]. All patients 
enrolled had Her-2/neu overexpression and the results 
demonstrated a significant overall survival benefit over 
standard chemotherapy (13.8 vs 11.1 months, p = 0.0046). 
Similarly, ramucirumab, a monoclonal antibody against 
human vascular endothelial growth factor receptor 2 
(VEGFR2), was approved for the treatment of advanced 
gastric or GEJ adenocarcinoma after disease progression 
on first-line therapy. Two large randomized international 
multicenter phase III trials (REGARD and RAINBOW) 

Figure 1: Treatment of esophageal cancer solely depends on staging. For early-stage tumors without any nodal involvement, 
patients are referred directly to surgical resection, while patients with advanced tumors and distant metastases are committed to definitive 
chemoradiation or palliation. However, those patients who have localized disease without any distant metastases, standard of care includes 
neoadjuvant chemoradiation therapy (1a). Those patients who have a favorable response to chemoradiation on restaging then undergo a 
surgical resection, and about 30% of these patients have a pathological complete response (1b). This group of patients have the best long-
term outcome in terms of recurrence, metastases, and overall as well as disease-free survival. Abbreviations: CRT, chemoradiation therapy; 
EAC, esophageal adenocarcinoma; pCR, pathologic complete response.
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demonstrated some survival benefit with ramucirumab 
(5.2 vs 3.8 months, p = 0.047 and 9.6 vs 7.4 months, p 
= 0.017) [21, 22]. Despite these large randomized trials, 
the overall benefits of these two biological agents are 
marginally significant with survival difference of merely 
2-3 months.

Unlike Her2 and VEGF, other biological agents 
targeting epidermal growth factor receptor (EGFR), 
fibroblast growth factor receptor (FGFR), insulin growth 
factor receptor (IGF-R), c-Met, PI3K, as well as poly 
[adenosine diphosphate (ADP)]-ribose polymerase 
(PARP) inhibitors have been explored in pre-clinical 
settings and have been under investigation in various 
Phase I-III clinical trials [23, 24]. However, none of these 
have been able to demonstrate significant improvements 
in efficacy and have therefore not been approved by the 
FDA.

While looking for candidate genes is the most 
common method of exploring biological agents, another 
approach to analyze the biology of tumors would be to 
study them backwards. In other words, it would be prudent 
to study the altered molecular pathways of the complete 
responders to see what biological theme they have in 
common or even study the long-term (5-year) survivors 
versus the short-term survivors to explain tumor biology. 
Given the significant rise in incidence of EAC with 
simultaneous limitation of robust biological agents, the 
need for additional targeted agents is timely warranted. 
However, the heterogeneity of EAC lends itself to variable 
tumor response in different patients, which then compels 
clinicians to molecularly profile each patient and perhaps 
identify tumor biomarkers that can predict which patient 
will benefit from which targeted therapy and follow tumor 
response.

CANCER STEM CELLS

Cancer stem cells (CSCs) are believed to be that sub-
population of cells found in tumors that retain the capacity 
to self-renew and differentiate into a heterogeneous 
population of cells in an anchorage-independent manner 
[25, 26]. They have been defined differently by different 
authors, either by cell surface marker such as CD133, side 
population, or ALDH-1 (aldehyde dehydrogenase-1) based 
assay [27-29]. Many of the studies on the existence of 
cancer stem cells (CSCs) have been done on glioma, breast 
cancer, colon cancer, carcinoid tumors, and melanoma.

Although a paradigm shift in understanding 
carcinogenesis, limited studies have been performed on 
CSCs in EAC to date. In 2014, Ajani et al demonstrated 
how ALDH-1 expression correlated with presence of 
CSCs in EAC patients and also predicted tumor response 
to nCRT [30]. Those patients with pCR had minimal 
expression of ALDH-1, however patients extremely 
resistant to nCRT had very high levels of ALDH-1, which 
correlated with a higher incidence of death or relapse (HR 
= 3.87;p = 0.006) and nodal metastases. The results of this 
study implicated CSCs to play a role in tumor chemoradio-
resistance and response to CRT. Using three EAC cell 
lines, the study also demonstrated a linear association 
between ALDH-1 levels and tumorigenicity, thus 
suggesting the use of ALDH-1 as a biomarker to predict 
tumor response [30]. Furthermore, Honjo et al identified 
these ALDH-1 positive cells in both EAC and ESCC 
cell lines and demonstrated how metformin (an inhibitor 
of the mammalian target of rapamycin pathway) has an 
increased activity against esophageal cancer because it 
is able to specifically target the CSCs [31]. In this study, 
metformin was able to inhibit tumor cell growth, induce 

Figure 2: The complexity of tumorigenesis. While multiple hypotheses exists regarding what results in cancer development, equally 
large number of hypotheses exist to explain tumor recurrences and development of distant metastases as well as chemoradio-resistance. 
For instance, cancer stem cells are attributed to give rise to cancer, but they have also been shown to play a role in chemoradio-resistance 
and hence tumor recurrence. Similarly, several different genetic and epigenetic silencing pathways have been linked to carcinogenesis, 
while other epigenetic silencing pathways have been associated with enhanced cell survival, ongoing tumor growth, and metastases with 
simultaneous escape mechanisms acquired against chemoradiation and immunity. Abbreviations: CSCs, cancer stem cells.
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apoptosis, and sensitize the cells to chemotherapy agents 
like 5-fluorouracil. Additionally, metformin successfully 
diminished the ability of EAC cell lines to develop tumor 
spheres as well as reduced the fraction of ALDH-1 positive 
cells, suggesting that it can be used to target the CSCs. 

It is understood and validated that CSCs play a 
role in tumor progression, metastasis, and resistance 
to chemoradiation. Indeed, CSCs have been shown to 
have increased expression of adhesion and drug-efflux 
genes such that they have higher potential for epithelial-
mesenchymal transition and develop chemoresistance in 
comparison to its counterparts [32]. Radio-resistant EAC 
and ESCC CSCs also have increased telomerase activity 
when compared to radio-naïve cells (data extrapolated 
from cell lines), and therefore possess a distinct survival 
advantage [33]. This is consistent with the dogma that 
telomerase activity can be a measure of radiocurability in 
tumor cells [34]. Zhang et al further demonstrated how a 
telomerase-specific oncolytic adenovirus was able to target 
radioresistant CSC-like cells since they were telomerase 
rich while sparing the normal cells, thus suggesting that 
human TERT (telomerase reverse transcriptase, catalytic 
unit of telomerase, the enzyme that maintains telomeric 
DNA) can be used for targeted therapy of these CSCs 
[33, 35]. Consistent with these results are that DNA 
damage response proteins, like single-strand DNA-
binding protein SSB1, which plays a critical role in the 
recruitment of hTERT to the telomere G-overhang [36], 
may offer additional therapeutic targets in EAC. Stem 
cells have been identified in ESCC lines as well, where 
a subpopulation of cells termed as side-population had 
the capacity to self-renew and express elevated levels of 
hTERT (with higher telomerase activity), Oct-4, SOX-2, 
BMI, ZFX, ABC transporters, and multiple anti-apoptotic 
and pro-survival Wnt and Notch signal pathway-related 
genes [29]. Che et al elegantly developed an ESCC 
radioresistant cell line by irradiating tumor cells in vitro 
[37]. They then demonstrated how fractionated irradiation 
indeed enriched or selected for that fraction of cells 
enriched in CSC markers, thus suggesting that CSCs have 
enhanced resistance to radiation. Similar research has been 
done in glioma, where CSCs (CD133-positive cells) were 
able to repair DNA damage more efficiently and rapidly 
than CD133 negative cells [38]. Most of this cancer stem 
cell research has been performed in other solid organ 
tumors and ESCC [29, 39], with limited studies on EAC 
[30, 40, 41]. Recognizing that EAC tumors can harbor a 
CSC population that manages to escape chemotherapy 
and/or radiation should open opportunities for scientists 
to explore and understand the pivotal role of CSCs and 
indeed exploit the underlying mechanisms in its treatment.

GENETICS AND EPIGENETICS

EAC tends to display significant tumor 

heterogeneity where different clonally-derived tumor 
regions can express different genetic profiles and undergo 
transformation from Barrett’s esophagus into invasive 
cancer [42]. This indeed can explain why some EACs are 
so aggressive and difficult to treat with chemotherapy, 
radiation, and biological agents while others are not 
(referring to those 30% of patients that have a complete 
response). Understanding the pathways that lead to such 
heterogeneity is urgent. But perhaps it’s not solely genetic 
factors that make esophageal cancer so aggressive, and 
indeed it may be the environment or post-translational 
modifications of expressed proteins that leads to 
differential protein expression or function. Mechanisms 
that contribute to EAC tumor progression and chemo-
radioresistance development, other than mere genomic 
mutations, such as differences in epigenetics, remain 
under-explored. 

Role of genetics

There have been several whole genome and 
whole exome sequence studies in both EAC and ESCC 
[43, 44]. However, very few genes with mutations have 
been identified that can be implicated as having a role in 
esophageal tumor growth, and could therefore serve as 
potential therapeutic targets, such as tumor suppressors 
p27, p53, and CDKN2A [43, 45, 46]. While p53 has been 
the most extensively studied molecule in EAC in terms 
of tumor suppressor function, potential biomarker with 
loss of heterozygosity, and associated with neoplastic 
progression [47, 48], no good agent has been developed 
to stabilize the protein and prevent its inactivation, 
degradation, or epigenetic silencing. Additionally, 
ARID1A, PIK3CA, SMAD4, ELMO1, and DOCK2 have 
been identified as potentially mutated in EAC [43]; and 
RB1, NOTCH1, ADAM29, and FAM135B in ESCC 
[49]. Although gene specific research has confirmed a 
correlation between their mutant status and tumor growth 
or migration, none of these genes have become potential 
biological targets. Dulak et al demonstrated 4 oncogenes 
(CCNE1, CCND1, CDK6, and MYC) and 7 members of 
the tyrosine kinase/MAPK signaling pathways (EGFR, 
KRAS, MET, ERBB2, FGFR1, FGFR2, and IGF1R) to 
be aberrantly expressed in EAC tumor specimens using 
GeneChip Human Mapping arrays and Genome-Wide 
Human SNP genomic profiling arrays [50]. However, 
as stated above, most of these targets have been studied 
without meaningful results. 

Telomere shortening, gene copy number alterations, 
and genomic rearrangements involving chromothripsis 
and breakage-fusion-bridge have also been implicated 
in EAC tumorigenesis [51-54]. Telomerase activation is 
associated with significant number of cancer cell types, 
including EAC, lung cancer, and ovarian cancer where 
addition of telomeric-end DNA enhances multiplication 
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of cancer cells and protects the chromosomes from 
degradation [55]. Qi and Mi recently demonstrated how 
full-length hTERT antisense complimentary DNA when 
introduced into an ovarian cancer cell line effectively 
inhibited the corresponding growth of xenografts by 
arresting the cells in G0/G1 phase and thus preventing 
them from undergoing replication as well as decreasing 
telomerase activity [56]. Agarwal et al have similarly 
demonstrated how human telomerase RNA-targeted 
antisense agents also inhibit telomerase activity, thereby 
enhancing hyperthermia-mediated ionizing radiation 
induced cell killing and indeed radiosensitizing tumors 
[57]. Telomere uncapping, as opposed to TERT inhibition 
has also been demonstrated as a different mechanism to 
target lung cancer cells by hindering the cell’s ability to 
interact with binding proteins and thereby resulting in 
cellular apoptosis [58]. Unfortunately, therapy targeting 
telomere maintenance can affect normal cells in principle. 
Treatments like G-quadruplex ligands which inhibit 
telomerase activity and shorten telomere length in cancer 
also have unexpected toxicity in normal tissue [59, 60]. 
However, due to the disproportional ratios of telomerase 
present in normal versus tumor cells, telomerase-targeted 
therapy can be an effective anticancer therapy while 
sparing normal tissue [59, 61]. Recently, inhibition of 
telomerase, and therefore shortening of telomeres, has 
been considered as a mechanism to target tumor growth in 
Barrett’s induced EAC [62, 63]. 

While multiple mechanisms have been proposed 
to contribute to EAC genomic instability, and therefore 
oncogenesis and malignant transformation, tumor 
heterogeneity makes it difficult to develop a targeted 
therapy standard to all EAC patients, as the data cannot be 
generalized to all patients [54].

Role of epigenetics

Epigenetics is a process where modification of 
expressed proteins, such as histones and transcriptional 
factors or methylation of DNA, alters the phenotypic 
outcome. It is believed that epigenetics plays a larger 
role in cancer than originally appreciated [64-66]. This 
indeed has opened many more avenues for researchers to 
explore. Whereas genetic mutations are fixed, epigenetic 
abnormalities can potentially be modified and corrected 
without targeting the genome itself. They can affect many 
of the molecular mechanisms involved in tumor growth 
such as cell cycle, DNA repair, survival and apoptosis, 
tumor suppressors, and epithelial to mesenchymal 
transformation thus affecting cell adhesion and invasion. 
Pathways involving epigenetics in esophageal cancer 
(DNA methylation, deacetylation, histone modification, 
and microRNA-mediated silencing of RNA), 
transdifferentiation, and immune resistance as well 
chemotherapy and XRT resistance are slowly emerging as 

potential targets in the future [67]. 
The best-studied epigenetic mechanism in EAC is 

DNA methylation. Methylation of 5’CpG islands in gene 
promoters results in transcription gene silencing [68]. 
Methylation of certain tumor suppressor genes has been 
implicated in some solid malignancies including breast 
and colorectal cancer [69, 70]. DNA hypermethylation of 
certain candidate genes, such as APC (a well characterized 
tumor suppressor gene), TIMP3 (gene that plays a role in 
tumor metastasis and invasion), TERT (associated with 
immortalization), SOCS-3, SOCS-1 (suppressors of 
cytokine signaling), and p16 (also known as CDK2NA) 
that play a role in tumor inhibition, occurs frequently 
in Barrett’s esophagus and EAC [71-73]. Desmocollins 
play a role in cell-cell adhesion, especially in epithelial 
cells. Normally, they maintain cell integrity and impaired 
desmosomal function has been implicated in multiple 
diseases and carcinogenesis [74, 75]. Wang et al 
demonstrated that hypermethylation of the desmocollin-3 
(DSC3) gene in human tissue samples and EAC cell 
lines correlated with advanced tumor stages and lymph 
node positivity and that treatment with DNA methylation 
inhibitors successfully restored DSC3 mRNA levels [76]. 
Genome-wide hypermethylation and gene methylation 
analyses have also been proposed as candidate methods 
for screening, early detection, disease progression and 
EAC therapy response prediction, however, none of these 
have been rigorously validated and reached clinical trials 
[77].

Hamilton et al suggested that tumor suppressor gene 
inactivation by methylation may be correlated to tumor 
response to chemoradiation in esophageal cancer [78]. 
In their study, a methylation-specific polymerase chain 
reaction analysis of esophageal cancer DNA from patients 
treated with chemoradiation was performed and the results 
confirmed that promoter methylation levels in patients that 
responded to treatment were lower than in patient DNA 
from nonresponders, thus suggesting that methylation 
status can be used as a potential biomarker to predict 
tumor response to chemoradiation [78]. Kaz et al very 
neatly demonstrated in another more recent publication 
how Barrett’s and EAC carry differentially methylated 
CpG sites and how Barrett’s, dysplastic epithelium, and 
EAC have distinct characteristic heat maps [79]. Indeed, 
when these differentially methylated CpG sites were 
mapped to biological processes, pathways related to cell 
proliferation and migration were over-represented in 
EAC and those regulating cell cycle and immune system 
processes were under-represented, thus suggesting their 
role in tumor development [79].

Epigenetic modifiers, such as DNA cytosine-
5-methyltransferase I (DNMT1) and class I histone 
deacetylase 1 and 2 (HDAC1/2), are associated with EAC 
and combined inhibition of both DNMT and HDAC has 
been demonstrated to be an effective strategy to induce 
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DNA damage in vitro that results in cell viability loss, 
enhanced apoptosis, and decreased cell migration [80, 
81]. It has been well established that loss of the p53 
allele also correlates with development of Barrett’s 
and its progression to low-grade dysplasia, high-grade 
dysplasia, and eventually invasive adenocarcinoma 
[45]. P53 is a tumor suppressor protein and acts as a 
checkpoint in cell cycle progression, thereby regulating 
cell quiescence, proliferation, and growth arrest. Miyashita 
et al demonstrated that HDAC1 deacetylates p53, which 
then results in inhibition of apoptosis thus allowing 
tumor growth [82]. Their results also suggest that HDAC 
inhibitors can arrest EAC tumor growth and induce 
apoptosis. 

A role for microRNAs in Barrett’s esophagus and 
carcinogenesis has recently been described [83, 84]. 
MicroRNAs are a newly discovered class of small non-
coding 21-nucleotide RNA molecules that regulate gene 
expression by binding to their corresponding mRNA 
and therefore, inhibit their expression or translation. 
Indeed, they have been shown to control the expression 
of oncogenes and tumor suppressor genes in other solid 
malignancies including gastric cancer, hepatocellular 
carcinoma and breast cancer [85-87], thus making 
them potent regulators of tumorigenesis and potential 
biomarkers. The role of micro-RNAs has now also been 
elucidated in Barrett’s esophagus and its progression into 
cancer [88, 89]. Up-regulated miR-21 and miR-194 levels 
have been correlated with intestinal differentiation of 
Barrett’s into EAC, tumor development and progression, 
and development of metastases [88]. The microRNAs 
miR-143, miR-145, miR-203, miR-215, and miR-518b 
on the other hand, are down-regulated in EAC where 
they normally serve as tumor suppressor genes and their 
down-regulation results in overexpression of oncogenes 
[88, 89]. In 2011, Bansal et al were able to discriminate 
between Barrett’s esophagus with dysplasia and without 
dysplasia with reasonable clinical accuracy using a panel 
of selected miRNAs, thus demonstrating the feasibility 
of using miRNAs as biomarkers [90]. Micro-RNAs have 
therefore become yet another potential field of research in 
developing EAC-specific targeted therapy and prognostic 
indicators.

IMMUNOTHERAPY

Extensive research has been conducted on the 
relationship between the immune system and cancer 
in recent years with the goal of developing new 
immunotherapy-based treatments. The dramatic success of 
the approach was first evident in melanoma where agents 
were successfully developed to enhance the immune 
response against it [91]. The basic concept behind this 
mechanism is that tumors affect the patient’s immune 
system by inhibiting T-cell functions that normally 
suppress and eliminate transformed cells, thereby allowing 

tumor growth and metastasis. Therefore, antibodies 
and drugs have been in development that can block the 
inhibition of such immune checkpoints. 

Cytotoxic T-lymphocyte-associated antigen (CTLA-
4) is an early immune response element, and when bound 
to its co-stimulatory proteins CD80 (B7-1) or CD86 (B7-
2), down regulates immunity and negatively regulates T 
cell activation [92]. CTLA-4 inhibits CD4 helper T-cell 
function and stimulates CD4 T-regulatory cells [93]. 
Similarly, programmed cell death 1 (PD-1) is a T-cell 
surface receptor that inhibits T-cell function when bound 
to its ligands programmed cell death ligand 1 (PDL-1, B7-
H1) or PD-L2 (B7-DC) [94]. PD-1 negatively regulates 
T-cell activation via a distinct mechanism from CTLA-4, 
although the end result is the same [94, 95]. Antibody-
based agents like ipilimumab, lambrolizumab, and 
nivolumab are, therefore, used to block CTLA-4 and PD-1 
binding to PDL-1 respectively, which ultimately enhances 
endogenous immune responses and antitumor activity. 
This concept is also being explored in other malignancies 
with appreciable results in non-small cell lung cancer, 
renal cell cancer, colorectal cancer, and prostate cancer 
[96]. Esophageal and gastric malignancies are also being 
explored in terms of immune checkpoint inhibition trials 
and early results demonstrate penetrance of immune 
targets into esophageal squamous cell carcinoma (ESCC) 
and gastric adenocarcinoma [97]. Since irradiation is 
known to induce antigen expression and upregulate PD-L1 
expression [98, 99], there is potential for concomitant use 
of immunotherapy and chemoradiation in a neoadjuvant 
setting in esophageal cancer. EAC in general, however, 
has been a challenging malignancy in terms of immune 
targets and little research has been published on it.

CHEMO AND RADIORESISTANCE

As highlighted above in the various sections, 
cancer development, and especially progression despite 
appropriate systemic or local therapy, has been attributed 
to either innate or escape mechanisms that patients either 
have or develop which indeed leads to cancer. While 
some solid tumors have demonstrated aberrant genetic 
mutations, others have acquired resistance. For example, 
deregulated or elevated phosphatidylinositol 3-kinse 
(PI3K)/AKT activity has been reported in several tumors 
and even linked to radioresistance [100, 101]. Similarly, 
some evidence also suggests a role of activated PI3K 
and its downstream effector AKT in EAC [102, 103]. 
Therefore, targeting PI3K in EAC has been shown to 
inhibit tumor cell proliferation, enhance apoptosis, inhibit 
in vivo tumor growth, and affect DNA damage response 
and repair pathways [104]. Inhibition of PI3K has also 
been associated with enhanced sensitivity of cancer cells 
to ionizing radiation in other malignancies [105, 106], 
which yet needs to be confirmed in EAC.

Typically, ionizing radiation leads to cell death 
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by producing double strand breaks (DSBs). A hallmark 
of DNA DSB recognition and repair is histone H2A 
phosphorylation, which is thought to mark sites of DNA 
damage. This lethal DNA damage is then either repaired 
by the error prone non-homologous end joining (NHEJ) 
through direct ligation of the DSB ends in the G0/G1 
phase of the cell cycle, or by the error-free homologous 
recombination (HR) mechanism in the S and G2 phase 
by utilizing the sister chromatid as a template for repair, 
which accurately restores the genomic sequence [107].

There is a very close association between HR and 
telomerase in EAC. As discussed above, telomerase 
provides cancer cells an unlimited lifespan [35]. And 
although one would think that telomerase inhibition 
should lead to shorter telomeres and therefore increased 
apoptosis, research has demonstrated that telomerase 
inhibition leads to increased HR activity and RAD51 
expression, which then serves to stabilize the genome thus 
attenuating the intended efficacy of telomerase inhibition 
[63]. Therefore, telomerase inhibition alone does not affect 
tumor growth in EAC unless combined with HR inhibition 
with knockdown or inhibition of RAD51, which then leads 
to enhanced radiosensitivity [63, 108].

SUMMARY

As the genetic and molecular basis behind EAC 
becomes clearer with continued research, the standard 
treatment paradigm continues to evolve for patients with 
locally advanced EAC. Since routine use of neoadjuvant 
chemoradiation has not made a significant impact on 
patient outcomes, novel approaches need to be explored 
to sensitize these aggressive tumors to chemoradiation 
and improve clinical response rate. However, given the 
heterogenous nature and responses of tumors to various 
biological treatments, a patient-tailored cancer treatment 
is required. In the future, molecular profiling will be 
warranted to identify specific patients who may benefit 
from specific targeted therapies. The development of such 
personalized cancer treatments may significantly impact 
the pCR rate of EAC patients. 
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