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ABSTRACT
Cholangiocarcinoma (CCA) is a relatively rare malignancy that arises from the 

epithelial cells of the intrahepatic, perihilar and distal biliary tree. Intrahepatic CCA 
(ICC) represents the second most common primary liver cancer, after hepatocellular 
cancer. Two-thirds of the patients with ICC present with locally advanced or metastatic 
disease. Despite standard treatment with gemcitabine and cisplatin, prognosis remains 
dismal with a median survival of less than one year. Several biological plausibilities 
can account for its poor clinical outcomes. First, despite the advent of next generation 
and whole exome sequencing, no oncogenic addiction loops have been validated 
as clinically actionable targets. Second, the anatomical, pathological and molecular 
heterogeneity, and rarity of CCA confer an ongoing challenge of instituting adequately 
powered clinical trials. Last, most of the studies were not biomarker-driven, which 
may undermine the potential benefit of targeted therapy in distinct subpopulations 
carrying the unique molecular signature. Recent whole genome sequencing efforts 
have identified known mutations in genes such as epidermal growth factor receptor 
(EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS), v-raf murine sarcoma 
viral oncogene homolog (BRAF) and tumor protein p53 (TP53), novel mutations in 
isocitrate dehydrogenase (IDH), BRCA1-Associated Protein 1 (BAP1) and AT-rich 
interactive domain-containing protein 1A (ARID1A), and novel fusions such as 
fibroblast growth factor receptor 2 (FGFR2) and ROS proto-oncogene 1 (ROS1). In 
this review, we will discuss the evolving genetic landscape of CCA, with an in depth 
focus on novel fusions (e.g. FGFR2 and ROS1) and somatic mutations (e.g. IDH1/2), 
which are promising actionable molecular targets.

INTRODUCTION

Cholangiocarcinoma (CCA) comprises of 
malignancy arising from the intrahepatic, perihilar 
and distal biliary tree. Intrahepatic CCA (ICC) is the 
second most common primary hepatic malignancy, 
after hepatocellular carcinoma, and accounts for 10-
20% of primary liver cancers [1, 2]. The incidence and 
mortality rates of ICC have been rising worldwide in 
the past decade, whereas those of extrahepatic CCA 
(ECC) are either stable or decreasing [2]. In the Western 
countries, the annual incidence of ICC is 2.1 per 100,000 
person years [3]. Chronic inflammation from liver 
fluke infestation, hepatitis B and C infections, primary 

sclerosing cholangitis and inflammatory bowel disease 
are the main risk factors of CCA [4]. Other less common 
etiologic factors include hepatolithiasis, cirrhosis, alcohol, 
smoking, fatty liver disease and cholelithiasis [1].

Only 10-15% of the patients with CCA are amenable 
to potentially curative surgery, as majority present at 
an advanced stage due to lack of effective screening 
strategies [5]. Despite resection, high recurrence rates of 
50-60% persist, conferring a five-year overall survival 
(OS) of only 30% [5, 6]. The high rate of relapse 
prompted a strong rationale for adjuvant therapies to 
improve survival. However, the available evidence 
remains conflicting as randomized adjuvant trials are still 
ongoing. A meta-analysis of 6,712 biliary tract cancer 
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(BTC) patients who received varying forms of adjuvant 
therapy (chemotherapy, radiotherapy, chemoradiotherapy) 
demonstrated no clear survival benefit with adjuvant 
treatment (Odds ratio (OR) 0.74, 95% Confidence interval 
(CI) 0.55-1.01; P = 0.06) [7]. Liver transplantation, though 
not considered as standard therapy for CCA, has also been 
explored in selected patients with early stage perihilar 
CCA, where complete resection is impossible due to 
vascular or biliary invasion. A meta-analysis of 605 CCA 
patients who underwent liver transplantation demonstrated 
a 5-year OS of 39%, with superior outcomes in those who 
underwent perioperative chemoradiotherapy (5-year OS 
57%) [8].  

Majority of the patients present at an advanced 
stage, with limited treatment options which include 
locoregional or systemic therapy. There has been 
a growing interest in various locoregional therapy 
modalities including transarterial chemoembolization, 
selective internal radiotherapy, external beam radiation or 
ablation in patients who present with liver-limited disease 
[9]. However, these therapies were evaluated in small 
retrospective series or single arm phase II trials, and thus 
limit generalizability. The current standard of care for first 
line treatment of unresectable CCA is the combination of 
gemcitabine and cisplatin, albeit with modest benefit [10]. 
The prognosis of patients with unresectable or metastatic 
CCA is universally poor, with a median OS of less than 
one year. The treatment complexity is further confounded 
by the presence of recurrent cholangitis or cholestasis, 
necessitating interventions for restoration of biliary 
drainage and long term antibiotics use, thus leading to 
delays in systemic treatment. 

Notably, the conduct of phase III randomized 
controlled trials (RCTs) have been exceptionally 
challenging due to the rarity of CCA and its inherent 
anatomical, pathological and molecular heterogeneity. 
With the advent of whole genome sequencing, mutations 
in epidermal growth factor receptor (EGFR), Kirsten rat 
sarcoma viral oncogene homolog (KRAS), v-raf murine 
sarcoma viral oncogene homolog (BRAF) and tumor 
protein p53 (TP53) were unraveled. More recently, novel 
mutations in isocitrate dehydrogenase (IDH), BRCA1-
Associated Protein 1 (BAP1) and AT-rich interactive 
domain-containing protein 1A (ARID1A), and novel 
fusions such as fibroblast growth factor receptor (FGFR2) 
and ROS proto-oncogene 1 (ROS1) were revealed. In this 
review, we will discuss the evolving genetic landscape and 
summarize the targeted therapies in CCA. 

SYSTEMIC CHEMOTHERAPY

The standard of care for first line chemotherapy for 
advanced CCA is the combination of gemcitabine and 
cisplatin. The pivotal United Kingdom National Cancer 
Research Institute Advanced Biliary Cancer (ABC)-02 
study reported superior survival with gemcitabine and 

cisplatin (GC), with a median OS of 11.7 months versus 
8.1 months, and median progression free survival (PFS) 
of 8.0 months versus 5.0 months, when compared to 
gemcitabine alone [10]. Despite intensified evaluation 
of other chemotherapy combinations with fluorouracil, 
oxaliplatin or irinotecan, the improvement in survival has 
been marginal [11]. Currently, there is no standard second-
line chemotherapy. In a systemic review of 761 patients, 
treatment with second-line chemotherapy attained a mean 
OS of 7.2 months (95% CI 6.2-8.2), PFS of 3.2 months 
(95% CI 2.7-3.7), response rate (RR) of 7.7% (95% CI 
6.5-8.9) and disease control rate (DCR) of 49.5% (95% 
CI 41.4-57.7) [12]. However, these results need to be 
interpreted with caution. First, patients who receive 
second-line chemotherapy have better performance status, 
which may be associated with improved prognosis [13]. 
Second, only 15-25% of patients will be fit enough to 
receive second-line treatment [14]. Third, no RCTs have 
been included in this systemic review. Given the marginal 
advances with chemotherapy, emphasis has been shifted to 
molecularly targeted therapies, either as a single agent or 
in combination with chemotherapy.

CURRENT GENETIC LANDSCAPE

CCA represents a molecularly diverse subgroup of 
BTCs. Genomic profiling with whole-exome and next-
generation sequencing has identified multiple molecular 
aberrations that contribute to its multistep carcinogenesis 
[15-17]. Well established genomic alterations include 
overexpression of EGFR (5%-27%), vascular endothelial 
growth factor (VEGF) and its receptor (VEGFR) (55%-
60%), human epidermal growth factor receptor 2 (HER2)/
erb-b2 receptor tyrosine kinase 2 (ERBB2) (0%-20%) 
[15-19], and MET proto-oncogene (MET) (7%-21%) [15, 
17, 19, 20], mutations in BRAF (5%) and loss of function 
mutation in TP53 (3%-45%) [15-17, 21]. Dysregulation 
of a plethora of key signaling pathways such as RAS/RAF/
mitogen-activated extracellular signal regulated kinase 
(MEK)/ extracellular signal-regulated kinases (ERK) 
and phosphatidylinositol 3-kinase (PI3K)/phosphatase 
and tensin (PTEN)/protein kinase B (AKT)/mechanistic 
target of rapamycin (MTOR) further contribute to its 
malignant transformation [15-17, 21]. The first whole 
exome sequencing study of 8 liver-fluke related CCA 
identified 206 somatic mutations in 187 genes, including 
novel genes (e.g. SMAD4 (16.7%), roundabout guidance 
receptor 2 (ROBO2) (9.3%), GNAS (9.3%), MLL3 
(14.8%), Cyclin-dependent kinase inhibitor 2A (CDKN2A) 
(5.6%), paternally expressed 3 (PEG3) (5.6%), ring 
fingers proteins (RNF) (9.3%) [22]. Another study with 
genomic profiling on 209 CCA revealed that SMAD4 and 
TP53 were more frequent in Opisthorchis viverrini related 
CCA, and IDH1/2 mutations were more frequent in non-
Opisthorchis viverrini related CCA [23]. Furthermore, 
chromatin remodeling genes such as BAP1, ARID1A, 
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Protein polybromo-1 (PBRM1), and MLL3 were found 
to be highly mutated in CCA [24]. Other novel genetic 
signatures include IDH mutations (16%-36%) [15-17, 
21, 24-27], FGFR (5%-50%) [15-17, 28-31] and ROS1 
fusions (9%) [15, 32]. The prevalence of these genetic 
aberrations vary widely across studies, anatomical 
sites and geographically, primarily attributed to the 
heterogeneity of BTCs, limited sample size, retrospective 
nature of majority of the studies, and different techniques 
used to identify the genomic mutations. 

Next generation sequencing (NGS) of 46 cancer-
related genes in 75 CC patients has highlighted anatomical 
variability in frequency of mutations [16]. Notably, it may 
be technically challenging to distinguish ICC and ECC 
based on pathology, and hence there may be inherent 
biases in these studies. The common genetic alterations in 
ICC include TP53 (30%), KRAS (24%), ARID1A (20%), 
IDH1 (18%) and MCL1 (16%), whereas for extrahepatic 
CCA, common aberrations include TP53 (45%), KRAS 
(40%), ERBB2 (20%), SMAD4 (25%), F-box/WD repeat-
containing protein 7 (FBXW7) (15%) and CDKN2A 

(15%). Furthermore, there were significant differences 
with regards to the prognostic significance of the above 
molecular markers, with TP53, KRAS and MTOR 
alterations predicting a worse prognosis in ICC, and 
BAP1, PBRM1 and chromatin modulating genes linked to 
a worse survival in ECC. A subsequent meta-analysis of 
4,458 patients with the study of 102 individual markers 
revealed that genetic alterations of HER2 and TP53 were 
more common in ECC, and BCL-2, EGFR, SMAD4, 
p16 and VEGF-A were more frequent in ICC [33]. 
Table 1 summarizes the molecular aberrations in CCA. 
In the following section, we will highlight the known 
molecular aberrations in conjunction with their targeted 
therapies. Figure 1 depicts the key signaling pathways in 
the pathogenesis of CCA, and novel targeted therapies in 
development in CCA.

Table 1: Molecular aberrations in cholangiocarcinoma
Intrahepatic 
cholangiocarcinoma

Extrahepatic 
cholangiocarcinoma Reference

EGFR overexpression 11%-27% 5%-19% [15-19]
KRAS mutation 9%-24% 40% [15-17]
HER2 overexpression 0%-2% 5%-20% [15-19]
VEGF
overexpression 54% 59% [15-19]

PIK3CA mutation or 
deletion 4% NR [15-19]

BRAF mutation 5% NR [21]
MET overexpression 7%-21% 0% [15, 17, 19]

IDH1/IDH2 mutation 16%-36% 0% [15-17, 21, 24-27, 
54]

FGFR translocations 6%-50% 0-5% [15-17, 28-30, 60]
TP53 mutation 3%-36% 45% [15-17]
ARID1A mutation 19%-36% 5% [16, 17, 24]
MCL1 amplification 16%-21% NR [16, 17]
PTEN mutation 1%-11% NR [15, 17, 21]
PBRM1 mutation 11%-17% 5% [16, 24]
BAP1 mutation 9%-25% 10% [16, 24]
SMAD4 mutation 4% 25% [16]
FBXW7 mutation 6% 15% [16]
CDKN2A mutation 7% 15% [17]
CDK6 mutation 7% NR [17]
BRCA mutation 4% NR [17]
NF1 mutation 4% NR [17]
TSC1 deletion 4% NR [17]
ROS1 fusion 8.7% (all CCA) NR [15, 32]

Abbreviations: NR, not reported
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Table 2: Clinical trials of targeted therapies in biliary tract cancers (including cholangiocarcinoma)

Drug Study Phase Line of 
Rx

No. of 
pts RR (%) Median PFS 

(mths)
Median OS 

(mths)
Phase III 
study
GEMOX + 
Erlotinib (A) 
vs. GEMOX 
(B)

Lee et al. [35] III 1st 268 A: 30
B: 16

A: 5.8
B: 4.2

A: 9.5
B: 9.5

Phase I/II 
studies

EGFR

Erlotinib Phillips et al. 
[97] II 1st/

2nd 42 8 2.6 7.5

Sorafenib + 
Erlotinib

El-Khoueiry et 
al. [42] II 1st 30 7 2 6

GEMOX + 
Cetuximab

Gruenberger et 
al. [98] II 1st 30 63 8.8 15.2

GEMOX + 
Cetuximab

Paule et al. 
[99] II 2nd 9 33 Low EGFR: 4

High EGFR: 7
Low EGFR: 7
High EGFR: 

9
GEMOX + 
Cetuximab (A) 
vs. GEMOX 
(B)

Malka et al. 
[36] II 1st 150 A: 23

B: 29
A: 6

B: 5.3
A: 11

B: 12.4

GEMOX + 
Cetuximab (A) 
vs. GEMOX 
(B)

Chen et al. 
[37] II 1st 122 A: 27

B: 15
A: 6.7
B: 4.1

A: 10.6
B: 9.8

Gemcitabine/ 
Capecitabine/
Cetuximab

Rubovszky et 
al. [100] II Any 34 17.6 8.6 15.7

Gemcitabine/ 
Cetuximab

Borbath et al. 
[101] II 1st 44 20.4 6 month PFS: 

47% 13.5

GEMOX/
Capecitabine/
Panitumumab

Jensen et al. 
[102] II Any 46 33 8.3 10 

GEMOX + 
Panitumumab
(KRAS WT)

Hezel et al. 
[103] II 1st 31 45 10.6 20.3

Gemcitabine/
irinotecan/
Panitumumab

Sohal et al. 
[104] II 1st 21 43 NR 12.7

HER-2

Lapatinib Ramanathan et 
al. [105] II 1st/

2nd 17 0 1.8 5.2

VEGF/
VEGFR

GEMOX + 
Bevacizumab Zhu et al. [39] II 1st/

2nd 35 40 7 12.7

Bevacizumab + 
Erlotinib

Lubner et al. 
[40] II 1st 49 12 4.4 9.9

Gemcitabine + 
Capecitabine + 
Bevacizumab

Iyer et al. [41] II 1st 50 72 8.1 11.3

Sorafenib El-Khoueiry et 
al. [43] II 1st 31 0 3 9

Sorafenib Bengala [45] II Any 46 2 2.3 4.4
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ESTABLISHED MOLECULAR ABERRATIONS 
AND TARGETED THERAPY

EGFR/HER2

The EGFR family comprise of ERBB1-4, with 
ERBB1 (EGFR) and ERBB2 (HER2) being frequently 
implicated in the multi-step carcinogenesis of CCA 
[15]. Binding of EGF-ligands to the receptors induce 
homodimerization or heterodimerization, which in turn 
activates downstream signaling pathways (MAPK, PI3K/
AKT/MTOR and STAT) that regulates cell differentiation, 
migration, angiogenesis and survival. EGFR 
overexpression occurs in 11-27% of ICC and 5-19% of 
ECC, and has been associated with tumor recurrence and 
worsened survival [15, 17, 18]. Majority (77-79%) of 
EGFR overexpression in BTCs exhibit copy number gain, 
with activating mutations in EGFR being extremely rare 
[15]. Although no mutations have been reported in HER2, 
HER2 overexpression has been noted in 0-2% of ICC and 
5-20% of ECC [18]. Preclinical studies have demonstrated 

that overexpression of HER2 in transgenic mouse models 
and orthotopic transplantation BDEneu models enhance 
the development of CCA, and provided consistent 
evidence of the oncogenic potential of EGFR [34]. 

Despite the strong rationale of targeting EGFR in 
BTCs and early interesting results with single arm phase 
II trials suggesting the benefits of EGFR inhibitors either 
as single agents or in combination with chemotherapy 
(Table 2), four completed randomized studies have failed 
to confirm the benefits of targeting EGFR in advanced 
BTCs. The only phase III trial of 133 patients with BTCs 
demonstrated that the addition of erlotinib to gemcitabine-
oxaliplatin (GEMOX) significantly improved RR, but did 
not demonstrate any benefit in survival, with a median 
OS of 9.5 months in both arms [35]. However, subgroup 
analyses showed that for patients with CCA, the addition 
of erlotinib to chemotherapy significantly prolonged 
median PFS by 2.9 months [5.9 months vs. 3.0 months 
(HR 0.73, 95% CI 0.53-1.00; P = 0.049)]. In a phase II 
study, the addition of cetuximab, a chimeric anti-EGFR 
monoclonal antibody to GEMOX did not confer a survival 
benefit in patients with advanced BTCs [36]. The median 
PFS was 6.1 months for the GEMOX and cetuximab 

Gemcitabine +
Sorafenib 
(A) vs. 
Gemcitabine 
(B)

Moehler et al. 
[44] II 1st 102 A: 8

B: 6
A: 3

B: 4.9
A: 8.4
B: 11.2

Gemcitabine/ 
Cisplatin +
Sorafenib

Lee et al. [46] II 1st 39 NR 6.5 14.4

Sunitinib Yi et al. [47] II 2nd 56 9 1.7 4.8
Gemcitabine/
cisplatin + 
Cediranib (A)
vs. 
Gemcitabine/
cisplatin (B)

Valle et al. 
[49] II 1st 124 A: 44

B: 19
A: 8 

B: 7.4
A: 14.1
B: 11.9

Vandetanib Santoro et al. 
[48] II 1st 173 4 105 days 228 days

C-MET
Tivantinib + 
Gemcitabine Pant et al. [52] I Any 20 20 NR NR

Cabozanitib Goyal  et al. 
[53] II 2nd & 

beyond 19 0 1.8 5.2

Others

Selumetinib Bekaii-Saab et 
al. [80] II 1st/

2nd 28 12 3.7 9.8

Selumetinib + 
Gemcitabine/
cisplatin

Bridgewater et 
al.[81] I 1st 12

37.5% (8 
evaluable 

pts)
6.4 NR

Bortezomib Denlinger et 
al. [85] II 2nd/

3rd 20 5 1.6 9.5

Abbreviations: PFS, Progression free survival; OS, Overall survival; Rx, Treatment ;  NR, Not reported; Pts, Patients
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arm, compared to 5.5 months in the GEMOX alone arm, 
and the median OS was 11.0 months and 12.4 months, 
respectively. In another study, patients who were stratified 
by KRAS status, received GEMOX with or without 
cetuximab [37]. The addition of Cetuximab to GEMOX 
was associated with a trend in improvement in PFS (6.7 
months vs. 4.1 months; P = 0.05), but not OS (10.6 months 
vs. 9.8 months; P = 0.91). In addition, KRAS mutation did 
not predict for benefit in survival. The addition of another 
EGFR antibody, panitumumab to gemcitabine/cisplatin 
based chemotherapy did not improve survival in patients 
with advanced BTCs [38]. Additional biomarker-driven 
trials will provide further insight as most of the studies 
were conducted in patients who were unselected for KRAS 
mutation status or other signatures implicated in predicting 
response to EGFR therapy.

VEGF

The most potent angiogenic factor in perpetuating 
tumor growth and metastasis is the vascular endothelial 
growth factor. VEGF overexpression was observed in 54% 
of ICC and 59% of ECC, and has been shown to promote 
metastasis, tumor recurrence and confer a worse prognosis 
[15, 18]. 

The efficacy of VEGF inhibitors has been 
investigated in several trials (Table 2). Bevacizumab has 
been combined with GEMOX, erlotinib or gemcitabine 
and capecitabine, yielding a PFS of 4-8 months and OS 
of 10-13 months [39-41]. Five trials have investigated 
sorafenib, a multikinase inhibitor against VEGFR-2, 
VEGFR-3, RAF, platelet derived growth factor receptor 
(PDGFR) and stem cell factor (KIT), and did not report 

any significant benefit in survival [42-46]. Other VEGF 
inhibitors such as sunitinib [47] and vandetanib (ZD6474) 
[48] yielded disappointing results. Recently, Valle and 
colleagues reported the results of ABC-03 trial in which 
the addition of cediranib, a potent oral VEGFR 1-3 
inhibitor, was evaluated in combination of gemcitabine/
cisplatin in advanced BTCs in a randomized phase II trial 
[49]. Of the 124 patients enrolled (62 in each arm), the 
addition of cediranib improved the response rate (44% 
in the cediranib arm and 19% in the placebo arm, P = 
0.004) but did not improve the median PFS (8.0 months 
in cediranib arm and 7.4 months in placebo arm, HR 0.93, 
P = 0.72) or OS (14.1 months in cediranib arm and 11.9 
months in placebo arm, HR 0.86, P = 0.44). Whether 
other antiangiogenic agents have any benefits in BTCs 
and whether any biomarkers have any predictive values in 
BTCs remain to be investigated. 

MET

Binding of hepatocyte growth factor (HGF) to HGF 
receptor (c-MET) activates multiple key downstream 
signaling pathways such as the RAS/MAPK, PI3K/
AKT and JAK/STAT, which play critical roles in tumor 
proliferation and survival [50]. Activation of MET can 
arise via mutations or copy number amplification. Through 
gene expression profiling, increased c-MET expression 
was observed in 20-60% of ICC and 0-70% of ECC [20, 
50]. Accumulating evidence has established that MET 
overexpression is associated with a poor prognosis. There 
is emerging evidence that suggest MET aberration to be 
one of the mechanisms responsible for EGFR resistance 
[51]. This led to the evolution of MET inhibitors for CCA, 

Table 3: FGFR2 translocations in ICC

Study No. of 
patients (n)

No. of patients with 
FGFR2 translocation 

(n, %)
Type of FGFR2 
Translocations Method

Wu et al. [59] 2 2 (100%) FGFR2-BICC1 RNA, exome sequencing

Borad et al. [30] 6 3 (50%)
FGFR2-TACC3 
FGFR2-BICC1  
FGFR2-MGEA5 

Genome-wide and whole 
transcriptome sequencing

Graham et al. [29] 96 12 (13%) NR Fluorescence in situ 
hybridization 

Arai et al. [28] 66 9 (13.6%) FGFR2-AHCYL1 
FGFR2-BICC1 Whole transcriptome sequencing 

Ross et al.[17] 28 3 (10.7%)
FGFR2-KIAA1598 

FGFR2-BICC1 
FGFR2-TACC3 

Next generation sequencing

Sia et al. [31] 107 48 (45%) FGFR2-PPHLN1 
FGFR2-BICC1 RNA, exome sequencing

Nakamura et al. [60] 109 6 (5.5%)
FGFR2-KCTD1
FGFR2-TXLNA

FGFR2-BICC1(Type 2)
Exome sequencing

Abbreviations: NR, Not reported
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Table 4: Targeted therapies in development
Drug Target Phase Line of therapy NCT number

AG-120 IDH1 I 2nd & beyond NCT02073994
IDH305 IDH1 I 2nd & beyond NCT02381886
AG-221 IDH2 I/II 2nd & beyond NCT02273739

Dasatinib IDH1/2 II 2nd & beyond NCT02428855
BAY1187982 FGFR2 I 2nd & beyond NCT02368951

ARQ087 FGFR2 I/II 2nd & beyond NCT01752920
BAY1179470 FGFR2 I Any NCT01881217

AZD4547 FGFR2 I Any NCT00979134
BGJ398 FGFR2 II 2nd & beyond NCT02150967

Ponatinib Hydrochloride FGFR2 II Any NCT02265341

BLU-554 FGFR4 I Any NCT02508467
Erlotinib +
Cetuximab EGFR I Any NCT00397384

GEMOX ±
Cetuximab EGFR II 1st NCT01267344

GEMOX ±
Panitumumab EGFR II 1st NCT01389414

GEMOX/Capecitabine ±
Panitumumab EGFR II Any NCT00779454

GEMOX ±
Panitumumab EGFR II 1st NCT01389414

Gemcitabine/cisplatin + BIBW 
2992 EGFR/HER2 I 1st NCT01679405

Afatinib + Capecitabine EGFR/HER2 I 2nd & beyond NCT02451553
ASLAN001 EGFR, HER2, HER4 II 2nd & beyond NCT02609958

Cediranib + mFOLFOX6 VEGF II 1st NCT01229111
Gemcitabine + Oxaliplatin + 
Capecitabine + Panitumumab/

Bevacizumab
EGFR, VEGF II 1st NCT01206049

Ramucirumab VEGFR II 2nd & beyond NCT02520141
Lenvatinib VEGFR II 2nd & beyond NCT02579616
LY2801653 c-MET I 2nd & beyond NCT01285037
Everolimus MTOR I 2nd & beyond NCT00949949
Trametinib MEK II 2nd & beyond NCT02042443
MK2206 AKT II 2nd NCT01425879
LDK378 ROS1 II 1st or 2nd NCT02374489
Ceritinib ALK II 2nd & beyond NCT02638909

Sorafenib + GEMOX
VEGFR,
PDGFR,
RAF, KIT

I/II Phase 1: Any 
Phase II: 1st NCT00955721

Regorafenib EGFR, Ras, Raf, VEGFR, 
PDGFR II 2nd NCT02053376

Regorafenib EGFR, Ras, Raf, VEGFR, 
PDGFR II 2nd & beyond NCT02115542

Pazopanib + GSK1120212 
VEGFR/
PDGFR

/Raf /MEK
I Any NCT01438554

Gemcitabine + Pazopanib c-KIT, FGFR, PDGFR and 
VEGFR II 1st NCT01855724

Pembrolizumab PD-1 II 2nd & beyond NCT02628067
Pembrolizumab + mFOLFOX PD-1 I/II Any NCT02268825

MEDI4736 PD-L1 I 2nd & beyond NCT01938612
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either alone or in combination with cytotoxic agents. 
The combination of Tivantinib (ARQ 197) with 

gemcitabine was examined in 74 patients with solid 
tumors, with 20% (1 CCA patient) achieving partial 
response [52]. In another study, 19 CCA patients who 
were unselected for MET amplification or overexpression 
were treated with cabozantinib and exhibited no objective 
responses [53]. PFS and OS were 1.77 (95% CI 1.63-5.37) 
and 5.2 (95% CI 2.70-8.17) months, respectively.

NOVEL ONCOGENIC DRIVERS

The advent of next generation sequencing 
techniques has further shaped the genomic landscape of 
CCA and enhanced our understanding of its pathogenesis. 
Recent discoveries include IDH1/2 mutations, FGFR2 and 
ROS1 fusions, and mutations in chromatin remodeling 
genes for example ARID1A and BAP1. We will further 
elaborate on these promising molecular targets. 

IDH mutations

IDH1 and 2 alterations exist in several tumors 
including gliomas and more recently identified in BTCs 
through high throughput molecular profiling [15-17, 
21, 25-27, 54]. IDH1 and IDH2 are metabolic enzymes 
that catalyze the oxidative decarboxylation of isocitrate 
to alpha-ketoglutarate [55]. IDH mutations enhance the 
conversion of alpha-ketoglutarate to 2-hydroxyglutarate 
(2-HG), an oncometabolite that inhibits α-ketoglutarate-
dependent enzymes responsible for DNA methylation, 
epigenetic regulation and call signaling. The accumulation 
of 2-HG in tumor tissue in turn promotes cell proliferation 
and survival. 

The frequency of IDH mutations ranges from 16-
36%, and is ubiquitously higher in ICC than ECC [15-17, 
25-27, 54, 55]. IDH mutations were observed in 22-36% 
of ICC and only 0-7% of ECC, and may be associated 
with clear cell or poorly differentiated histology [26, 55]. 
The prognostic significance of IDH mutations remains 
conflicting. In a cohort of 326 patients with resected 
ICC, IDH mutation was associated with longer time to 
recurrence and OS [27]. In addition, the authors observed 
enhanced p53 and DNA hypermethylation among patients 
with IDH mutations. In contrast, Jiao et al. demonstrated 
in a study of 32 patients with ICC that IDH mutations 

confer a worse prognosis when compared to those with 
IDH wild-type (3-year OS 33% vs. 81%; P = 0.003) [24]. 
However, this adverse finding may be due to the presence 
of a larger proportion of stage IV disease amongst the 
IDH mutants compared to IDH wild-type (50% vs. 15%). 
Two recent studies revealed no correlation between IDH 
mutation status and survival among 200 patients with 
resected ICC [21] and 104 patients with advanced ICC 
[54].

Two proof of concept studies illustrated the tumor 
suppressive effects of IDH inhibitors. Rohle et al. found 
that a selective R132H-IDH1 inhibitor (AGI-5198) 
impeded the growth of IDH-mutant glioma cells [56]. 
Similarly, Wang et al. showed that AGI-6780 selectively 
inhibits the leukemic cells harboring mutant IDH2/
R140Q [57]. Current IDH-inhibitor studies are in early 
clinical development (NCT02073994, NCT02381886 
and NCT02273739). The preliminary results of a phase 
1 trial of AG120 (IDH1 inhibitor) in 62 patients with 
IDH1 mutation positive solid tumors who had progressed 
on standard treatment was reported at the AACR-NCI-
EORTC International Conference on Molecular Targets 
and Cancer Therapeutics 2015. There were no dose 
limiting toxicities, with anemia being the most frequent 
Grade 3 AE (5%). 1/20 (5%) CC patients attained PR 
and 11/20 (55%) attained SD. Reduction in circulating 
2-HG level was observed ranging from 73% to 99%, and 
reduction in Ki67 staining was seen from 22% - 96%. 
The expansion phase with 500 mg QD is underway 
(NCT02073994). 

Fibroblast growth factor receptor (FGFR) 2 
fusions

FGFR2, a member of the fibroblast growth factor 
family of receptors (FGFR 1-4), is located at chromosome 
10q26 and mitigates cell differentiation, proliferation and 
apoptosis [58]. The oncogenic property of FGFR2 has 
been linked to loss of the carboxy terminus and ligand 
independent dimerization, leading to FGFR protein 
overexpression. 

Whole exome sequencing and fluorescence in situ 
hybridization (FISH) have identified FGFR2 alterations 
primarily in 6%-50% of ICC and 0-5% of ECC [28-31, 
59, 60]. Churi et al. analyzed 75 CCA patients with next 
generation sequencing, and found that genetic alterations 

Gemcitabine/Cisplatin ± 
CX-4945 CK2 I/II 1st NCT02128282

BBI503 Cancer stemness kinase II 2nd & beyond NCT02232633
DKN-01 and Gemcitabine/

Cisplatin Dkk-1 I 1st NCT02375880

ADH-1 ICAM-1 I 1st NCT01825603

Abbreviations: CK2, Caesin kinase 2; ICAM-1, Intercellular adhesion molecule-1, Dkk-1, dickkopf Wnt signaling pathway 
inhibitor 1; mFOLFOX; Modified fluorouracil, folinic acid and oxaliplatin.
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in the FGFR pathway occurred in 13% of intrahepatic 
CCA and 5% of extrahepatic CCA , and that these 
alterations were associated with improved survival [16]. 

More recently, FGFR2 fusions have been detected 
in several studies (Table 3). These fusions are a product 
of the FGFR receptor (exons 1-19) and various partners 
(e.g. AHCYL1, BICC1, KCTD1 and TXLNA). The fusion 
protein is activated by the enforced dimerization of the 
respective partners with resultant intracellular domain 
tyrosine residue phosphorylation, and activation of 
downstream signaling pathways including MAPK, PIK3/
AKT/MTOR and JAK/STAT pathways [59]. There are 
marked variability in the frequency of FGFR2 fusions, 
ranging from 6-50% in ICC, and rarely in ECC. In a series 
of 102 patients with BTCs, Arai et al. observed FGFR2 
fusions (FGFR2-AHCYL1 or FGFR2-BICC1) in 13.6% of 
ICC (9/66 ICC), and that inhibition of FGFR2 impeded 
activation of MAPK pathway, which is responsible for 
uncontrolled tumor growth [28]. Another study evaluated 
152 CCA and 4 intraductal papillary biliary neoplasm of 
the bile duct with FISH, and reported FGFR2 translocation 

in 12/96 (13%) of ICC, with a female predominance 
[29]. Those who harbored FGFR2 translocations had 
improved cancer-specific survival (123 vs. 37 months) and 
superior DFS (125 months vs. 26 months). Furthermore, 
cholangiocarcinoma harboring FGFR2 translocation and 
concomitant KRAS mutation are only rarely reported [31]. 
Therefore, this association remains to be explored in larger 
cohorts to further assess if FGFR2 translocation work in 
synergy with KRAS mutation in promoting carcinogenesis 
in CCA. In a study comprising of 109 ICC, 40 ECC and 
11 gallbladder cases, novel FGFR2 gene fusions (FGFR2-
KCTD1 and FGFR2-TXLNA) and a new variation of 
FGFR2-BICC (Type 2) were reported [60]. Using NIH3T3 
clones that express either wild-type or kinase-inactive 
mutant forms of FGFR2-KCTD1 or FGFR2-TXLNA, the 
Nakamura et al. showed that wild-type FGFR fusions, 
and not the mutant forms induce tumor growth in vivo via 
ligand-independent autophosphorylation and activation 
of the MAPK signaling pathway. In addition, there was 
marked inhibition of FGFR autophosphorylation and 
cell proliferation by the FGFR inhibitors (BGJ398 and 

Figure 1: Key signaling pathways in the pathogenesis of cholangiocarcinoma and established targeted agents.
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PD173474). 
In a genome-wide and whole transcriptome 

sequencing on 6 ICC samples with FGFR2 translocations 
in 3/6 (50%) patients, two out of three patients responded 
to FGFR2 inhibitors [30]. One patient with FGFR2-
MGEA5 fusion was treated with ponatinib (a pan-FGFR 
inhibitor) and had a biochemical CA 19-9 response with 
shrinkage of tumor. Another patient with FGFR2-TACC3 
fusion who previously achieved a partial response with 
pazopanib, and subsequently received ponatinib attained 
stable disease. These encouraging results suggest that 
FGFR2 has the potential to be an actionable molecular 
target, and that patients who harbor these alterations 
may benefit from tyrosine-kinase directed therapies. 
An ongoing phase 2 study of BGJ398 (a selective pan-
FGFR inhibitor) in patients with advanced or metastatic 
CCA with FGFR genetic alterations reported promising 
efficacy (Javle MM et al, 2016 Gastrointestinal Cancer 
Symposium, J Clin Oncol 34, 2016 (suppl 4S; abstr 
335)) The overall RR was 22% (8/36 evaluable patients) 
and DCR was 75% (27/26 patients). BGJ398 was 
generally well tolerated. The Grade 3/4 AEs include 
hyperphosphatemia (19%), hypophosphatemia (9%), 
hyponatremia (6%), and asymptomatic increased lipase 
(6%). This is a promising drug that warrants further 
investigation.

IMMUNE CHECKPOINT INHIBITORS

Immune checkpoints including cytotoxic 
T-lymphocyte-associated antigen (CTLA)-4, programmed 
cell death (PD)-1 receptor and its ligands (PD-L1, PD-
L2) promotes T-cell anergy [61]. Increased levels of 
tumor-infiltrating CD8+ cytotoxic T cells and/or CD4+ 
T cells have been shown to be associated with improved 
prognosis in BTCs [62]. Given the success of ipilimumab 
(CTLA-4 monoclonal antibody), pembrolizumab and 
nivolumab (anti-PD-1 antibodies) in the treatment of 
metastatic melanoma [63, 64], there has been growing 
interest of the benefit of immunomodulation in BTCs. 
In a preclinical study of intrahepatic CCA, Koido et al. 
showed that both gemcitabine and interferon -γ led to an 
upregulation of PD-L1, which suggest that treatment with 
PD-L1 blockade may be beneficial [65]. Studies have 
suggested that mismatch repair (MMR) deficient tumors 
are more responsive to PD-1 blockade than are MMR 
proficient tumors [66]. A phase II study demonstrated that 
pembrolizumab led to high RR in colorectal cancer patients 
with genetic defects in mismatch repair (MMR) [66]. The 
phase II study with pembrolizumab in MMR deficient 
non-colorectal gastrointestinal cancers (ampullary (n = 4), 
pancreas (n = 4), biliary (n = 3), small bowel (n = 3), and 
gastric (n = 3) cancers) is ongoing. An interim analysis 
reported an ORR of 50% and DCR of 70% in 10 evaluable 
patients. The OS was 21 months and PFS was not reached 
(Le DT et al, 2016 Gastrointestinal Symposium, J Clin 

Oncol 34, 2016 (suppl 4S; abstr 195)). There are currently 
no studies evaluating the efficacy of PD-1 inhibitors in 
CCA patients with microsatellite instability (MSI)-high 
versus MSI-stable tumors. The interim results of another 
phase 1b study of pembrolizumab (MK-3495) in patients 
with advanced BTC was presented at the European Cancer 
Congress 2015 (NCT02054806). Pembrolizumab was well 
tolerated with an ORR of 17.4% (95% CI, 5.0-38.8) in 
the 23 evaluable patients. 4/24 (16.7%) of the patients 
experienced a treatment-related grade 3 AE (anemia, 
autoimmune hemolytic anemia, colitis, and dermatitis). 
Currently, pembrolizumab is evaluated in combination 
with mFOLFOX6 in a phase 1/2 study at the University of 
Utah (NCT02268825).

LESS-ESTABLISHED MOLECULAR 
ABERRATIONS

There has been limited studies regarding the 
following molecular aberrations and additional studies are 
required to provide further insight.

ROS1

Elevated ROS expression has been observed in non-
small cell lung cancer, glioblastoma and breast cancer 
[32]. ROS kinase fusions [between kinase domain of ROS 
and Fused in Glioblastoma (FIG) gene] has been described 
in 8.7% of patients with CCA [32]. These fusions further 
activate downstream effectors such as STAT3 and AKT. 
The FIG-ROS fusion driver gene has been shown to 
accelerate tumor growth in an orthotopic allograft mouse 
model, and that inactivation of the gene portends an 
antitumor effect [67]. 

Notably, TAE684 (an ALK inhibitor) has been 
shown to inhibit ROS kinase activity, with consequent 
cell inhibition and cell death in BaF3 cells expressing 
this fusion protein [32]. Given the success of crizotinib 
in attaining an impressive response rate of 48% in ROS1- 
rearranged non-small cell lung cancer [68], similar studies 
in CCA are warranted to evaluate the potential benefit of 
targeted therapy in patients with ROS fusions. A phase 
II trial of crizotinib in patients with ALK, MET or ROS1 
alterations is underway (NCT02034981).

PI3K/AKT/MTOR

Constitutive activation of the EGFR, HER2, MET 
and Insulin growth factor (IGF) receptor or disruption of 
the PTEN and SMAD4 triggers the downstream activation 
of PI3K/PTEN/AKT/mTOR signaling pathway [69, 70]. 
Dysregulation of this pathway subsequently stimulates 
cell proliferation, angiogenesis and survival. Activation 
of this pathway in patients harboring EGFR, HER2 and 
MET overexpression has been reported in as high as 65% 
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of tumors. The incidence of PIK3CA (a subunit of PI3K) 
hotspot mutations in CCA ranges from 5% to 34% [71]. 
Furthermore, increased expression of phosphor-AKT1 
and phosphor-MTOR in intrahepatic CCA is positively 
correlated with prognosis and that this association was not 
modified by PTEN expression [72]. 

Dual inhibition of AKT and MTOR with MK-2206 
and everolimus (RAD001) has been shown to enhance 
anti-proliferative effects in CCA [73]. More recently, 
increased efficacy was attained in-vitro by dual inhibition 
of the PI3K/AKT/MTOR and RAF/MEK/ERK pathway, 
which overcame resistance pathways [74]. A phase I trial 
of mFOLFOX6 and the oral PI3K inhibitor BKM120 
in patients with advanced solid tumors (4/17 CCA) 
reported high toxicity rates, with 76 % of the patients 
experiencing a grade 3/4 AE [75]. The most common AEs 
were neutropenia, fatigue, leukopenia, hyperglycemia 
and thrombocytopenia. 1/4 of the CCA patients achieved 
SD. The combination of everolimus with gemcitabine 
and cisplatin was evaluated in 10 CCA and gallbladder 
cancers, of which 60% had SD [76]. Currently, MK2206 
(AKT inhibitor) is being investigated in advanced 
refractory BTC (NCT01425879). 

RAS/RAF/MEK/ERK

The RAS/RAF/MEK/ERK signal transduction 
pathway is frequently dysregulated in BTCs [77]. 
Activation of this pathway requires the binding of EGF, 
PDGF and cytokines to its receptors, with subsequent 
transactivation of downstream signaling cascade, leading 
to the end-phosphorylation of MEK1 and 2 and ERK-1 
and ERK-2. MEK is an attractive target as ERK -1 and 
ERK-2 are the only known MEK substrates [70]. Gain 
of function mutations in KRAS constitutes one of the 
most frequent mutations in CCA, with the most frequent 
alteration in codon 12 [15]. The frequency of activating 
KRAS mutations ranges from 9%-40% [15-17]. KRAS 
has been associated with perineural invasion and poor 
prognosis [78]. In addition, there is marked anatomical 
variability in KRAS mutation, with KRAS mutations 
observed in 53.3% of perihilar-type, but only 16.7% 
of intrahepatic CCA. Notably, the incidence of KRAS 
mutations increases with disease stage.[79] Despite the 
recognized frequency of KRAS mutations, targeting this 
pathway remains challenging. Early evidence of efficacy 
of MEK inhibitor was reported in a single arm study of 
selumetinib in advanced BTCs [80]. Of the 28 patients 
enrolled, 3 patients had confirmed partial responses. In this 
study, no BRAF V600E mutations were found. Recently, 
the ABC-04 study of selumetinib in combination with 
gemcitabine and cisplatin in advanced or metastatic BTC 
(9/13 CCA) demonstrated a RR of 37.5%, a median PFS 
of 6.4 months and manageable toxicities [81].

BRAF

B-Raf is a proto-oncogene and is a key component of 
the RAS/RAF/MEK/ERK proliferation signaling pathway. 
The most common BRAF gene mutation found in human 
cancers is V600E, and exists in up to 22% of CCA in one 
report [82]. More importantly, BRAF and KRAS mutations 
are mutually exclusive. In a recent phase II “basket” study 
of vemurafenib in BRAF V600 mutated non-melanoma 
cancers, one patient with CCA achieved a durable PR of 
more than one year [83]. 

NFk-B

Several studies have suggested the NF-kB, a 
transcriptional nuclear factor, plays a critical role in 
tumor migration and treatment resistance in several 
tumors, although the evidence is not conclusive [84]. This 
stems from the observation that tumor proliferation can 
be kept in check via proteasome inhibition, which halts 
the clearance of pro-apoptotic factors. To date, the only 
proteasome inhibitor investigated was bortezomib and 
results were disappointing, with no objective response, 
median time to progression was 5.8 months and median 
OS was 9 months [85].

JAK/STAT cytokine pathway

Binding of pro-inflammatory cytokine, interleukin-6 
(IL-6) to gp130 triggers the downstream activation of 
the JAK/STAT pathway, leading to the silencing of its 
inhibitor, suppressor of cytokine signaling-3 (SOCS3) 
[86]. This in turn accelerates inflammation, cell growth 
and tumor formation. This pathway has been noted in 
70% of the inflammation subclass in ICC, characterized 
by activation of the STAT3 and cytokine pathways and 
improved prognosis.[87] Furthermore, the JAK2 inhibitor 
AZD1480 has been demonstrated to inhibit Stat3 signaling 
and exhibit anti-tumor efficacy in solid tumor cell lines 
[88]. 

Notch signaling pathways

The Notch signaling cascade is a highly conserved 
pathway, responsible for cell differentiation, apoptosis 
and cell survival. To date, there are four known Notch 
receptors and five ligands. Aberrant Notch signaling was 
first described in acute T-cell lymphoblastic leukemia, and 
subsequently in CCA [89, 90]. Notch-mediated conversion 
of hepatocytes into biliary lineage has been shown to 
promote intrahepatic CCA formation and progression in 
a mouse model of ICC [91]. Notch 1 and 4 were noted 
to be more frequently expressed in tumor cells compared 
to normal tissue. The frequency of Notch expression in 
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ICC for Notch 1, Notch 2, Notch 3 and Notch 4 were 
82.9%, 56.1%, 39.0% and 34.1% respectively [92]. 
In addition, Notch 4 was found to be prognostic and 
Notch 1 overexpressed in large tumors. Furthermore, 
Notch overexpression has been demonstrated to predict 
sensitivity to 5-fluorouracil in vivo. The complex Notch 
signaling pathway warrants further understanding before 
the advent of novel Notch targeting agents. 

Protein kinase A regulatory subunit 1 alpha 
(PRKAR1A) pathway

Protein kinase A is a cyclic AMP (cAMP)-dependent 
protein kinase and is part of the serine-threnonine protein 
kinase family. Activation of the PRKAR1A/PKAI pathway 
is found in various tumors, including CCA [93]. More 
recently, fusion genes comprising of cAMP-dependent 
protein kinase (PKA) and mitochondrial ATP synthase 
(ATP1B-PRKACA and ATP1B-PRKACB) were detected 
with resultant increased expression of PRKACA and 
PRKACB and activation of MAPK signaling [60]. The 
abrogation of PRKAR1A gene expression has been linked 
to significant cell inhibition and apoptosis of CC cells 
via suppression of the JAK/STAT, MAPK, PI3K/AKT 
and WNT/β-catenin pathway signaling. Drug evaluation 
with PKA inhibitor (isoquinoline H89) as well as site-
specific cAMP analogs (8-Cl cAMP and 8-Br cAMP) 
showed promising anti-proliferative effect in CCA cells, 
supporting the notion that PKA can potentially contribute 
as a drug target in CCA. 

Wnt/β-catenin pathway

Aberrant genetic alterations of the Wingless-
type MMTV integration site family (Wnt)/β-catenin 
signaling cascade has been implicated in tumorigenesis 
in several studies [94]. The Wnt signaling pathway is 
highly activated in CCA, and an inflammatory milieu 
comprising of inflammatory macrophages is required for 
its sustainability [95]. Furthermore, tumor regression in 
mouse and rat models were prompted with the introduction 
of Wnt inhibitors. The Wnt signaling pathway has also 
been postulated as one of the mechanisms responsible 
for chemoresistance in CCA [94]. GSK3β, a “destruction 
complex” phosphorylates and degrade β-catenin, leading 
to downregulation of the Wnt survival pathway. Recently, 
Huang et al. showed that β-escin, an active compound 
in horse chestnut (Aesculus hippocastanum) seed, could 
inhibit the GSK3β/β-catenin pathway and thus terminate 
cell growth [96]. Hence, the Wnt signaling pathway may 
represent another alternative target for ICC treatment. 

Clinical studies with novel agents in early 
development are summarized in Table 4.

CONCLUSIONS

Advanced CCA portends a dismal prognosis despite 
standard treatment with gemcitabine and cisplatin. Given 
the modest benefits with chemotherapy alone and the 
anatomical, pathological and molecular heterogeneity, 
there is an unmet and imperative need for comprehensive 
genomic profiling to improve the understanding of the 
pathogenesis of CCA, with the aim of personalized 
treatment. To achieve this aim, we must overcome the 
mounting challenges, which include a lack of RCTs 
due to the rarity of CCA, and the inherent complexity 
due to interactions of the signaling pathways. Extensive 
collaborative efforts will be required to formulate 
adequately powered biomarker-driven trials to improve 
clinical outcomes. Results of the EGFR inhibitors have 
been disappointing. As the majority of the trials are 
performed in unselected population, it will be informative 
to conduct trials in patients enriched for the presence 
of molecular signatures implicated in predicting EGFR 
sensitivity to determine its efficacy. Given the promising 
early evidence of efficacy signal with IDH and FGFR2 
inhibitors in early phase trials, additional studies should 
focus on novel strategies targeting IDH mutations and 
FGFR2 fusions. Furthermore, the identification of 
oncogenic addiction loops, or novel combination strategy 
that targets critical molecular pathways simultaneously 
will be paramount to improve the clinical outcome in 
CCA.
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