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ABSTRACT

Background and Purpose:

To improve quality and personalization of oncology health care, decision aid tools
are needed to advise physicians and patients. The aim of this work is to demonstrate
the clinical relevance of a survival prediction model as a first step to multi institutional
rapid learning and compare this to a clinical trial dataset.

Materials and Methods:

Data extraction and mining tools were used to collect uncurated input parameters
from Illawarra Cancer Care Centre’s (clinical cohort) oncology information system.
Prognosis categories previously established from the Maastricht Radiation Oncology
(training cohort) dataset, were applied to the clinical cohort and the radiotherapy
only arm of the RTOG-9111 (trial cohort).

Results:

Data mining identified 125 laryngeal carcinoma patients, ending up with 52
patients in the clinical cohort who were eligible to be evaluated by the model to
predict 2-year survival and 177 for the trial cohort. The model was able to classify
patients and predict survival in the clinical cohort, but for the trial cohort it failed to
do so.

Conclusions:

The technical infrastructure and model is able to support the prognosis prediction
of laryngeal carcinoma patients in a clinical cohort. The model does not perform well
for the highly selective patient population in the trial cohort.

INTRODUCTION 39,900 [2] and the USA reported an incidence of 12,630
(2014) with an estimated number of deaths of 3,610

Laryngeal carcinoma has a recorded incidence [3]. Treatment options for patients with early localized

of 606 (2009) with 255 reported mortalities (2010) in laryngeal carcinoma include surgery or radiotherapy,
Australia [1]. In Europe the recorded incidence (2012) was having equal outcome [4, 5]. For advanced laryngeal
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cancer, surgery therapy using total laryngectomy has been
the standard of care for decades [6], however nowadays
laryngeal preservation strategies using primary radiation
or chemoradiation have been adopted [7, 8].

New developments to further improve outcome in
patients treated with radiotherapy, include the application
of dose-escalation [9] and the use of more advanced
radiotherapy technologies such as IMRT [10] and
proton irradiation [11, 12], to reduce side effects while
maintaining local control.

Clinical Decision Support Systems (DSS) are a way
to support the choice between the increasing number of
radiotherapy techniques and technology options [13-15]
both in terms of clinical benefit in the individual patient
and in assigning resources to patient groups that benefit
most from the new technology to address the concerns of
keeping cancer care affordable [16]. To construct a DSS,
predictive models need to be learned and validated.

Rapid learning health care is a way to learn
predictive models. In rapid learning it is postulated that
data routinely generated through patient care and clinical
research feed into an ever-growing set of coordinated
databases [17]. These coordinated datasets could then
be used to learn and validate the model. In this study
we present a first rapid learning approach that combines
learning a predictive model from one clinical center
(“training cohort”) and validating it in both another
clinical center (“clinical cohort”) and a clinical trial dataset
(“trial cohort”). A comprehensive technical infrastructure
is proposed in which databases were coordinated
spanning institutions and continents (Maastricht Radiation
Oncology (MAASTRO) in Europe, the Radiation Therapy
Oncology Group (RTOG) in North-America and Illawarra
Cancer Care Centre (ICCC) in Australia).

The hypothesis of this study is that it is possible to
implement an automated data extraction infrastructure
for rapid learning that uses a model to predict survival in
laryngeal carcinoma without any human evaluation of the
data to show that routine clinical data is a valuable source
of information that can be used to complement the current
evidence base consisting mainly of clinical trial data. The
model was learned in one institution (MAASTRO) and
applied in a patient care-driven regional cancer service
(ICCC) and evaluated for a research-driven clinical trial
collaborative group (RTOG).

MATERIALS AND METHODS

Clinical cohort

After internal review board approval, the data of
laryngeal carcinoma patients was extracted from the
Oncology Information System (OIS) of ICCC (MOSAIQ,
Elekta, Stockholm, Sweden) using a data integration tool

(Kettle, Pentaho Community Edition 5.0, Orlando, USA).
To provide an automated infrastructure all model input
parameters needed to be extracted from the OIS and stored
in a data warehouse (MSSQL 2008). Patients were selected
using the International Classification of Diseases (ICD)
codes version 10. The ICD code for laryngeal carcinoma
patients is C32 and all subcategories in this classification
group. Patients treated with radiotherapy alone for a
primary H&N disease were added to the clinical cohort
data warehouse. These patients were diagnosed between
April 1987 and February 2014. Over time more patients
will be included because it is an automated system in
which new patients can be included each time the software
is executed. For patients with missing record and verify
(R&V) data within the OIS (e.g. due to H&N diagnoses
that were manually added to the treatment history
for treatment they received elsewhere) an imputation
algorithm was added to the data mining script: patients
with a H&N diagnosis treated with radiotherapy before
2012 with no recorded delivered dose were assumed to
be treated with the recorded prescribed dose. Each of
the model parameters were extracted from the OIS with
individual data integration programs. Quality assurance of
the extracted data was undertaken via cross referencing
with the OIS.

H&N predictive model

The data warehouse was queried and analyzed
by a predictive model developed using Matlab 8.2.0
(The MathWorks Inc., Natick, MA, USA). The software
applies the laryngeal carcinoma survival model [18] to the
extracted data and reports the accuracy of the predictions
created by the model. The model was fitted with
Univariate Cox regression [18] which uses the following
factors: age at the time of diagnosis, gender, T-stage,
N-stage, hemoglobin level before treatment, tumor
location and the biological equivalent dose in fractions of
2 Gray. These features and other features were selected by
a medical specialist to be analyzed by the Univariate Cox
regression. In the original study [18] it was concluded that
these features had a statistical relevance when predicting
survival while others had not (e.g. the Tumor Volume
computed from the PET scan). This resulted in a model
with a baseline two-year survival of 0.1404. Table 1
shows the beta-coefficients of the model and the data input
formatting that is used. The proportional hazards model
resulting from this fit was implemented as a nomogram
in the original study [18] to create an easy to use DSS
for the physicians. For this study we implemented the
original proportional hazard model as we are using a
completely automated digital infrastructure. To evaluate
the accuracy of the model the survival in months and the
patient deceased status were also extracted from the OIS.
To determine the survival of alive patients the last known
registered contact within the OIS was used.
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Table 1: Model coefficients together with the corresponding features and data format.

Model Feature Model Input Model Beta
Age number 0.0454
Gender is male? 0/1 0.8715

T2 classification 0/1 0.1177

T3 classification 0/1 0.6795

T4 classification 0/1 1.2836

N+ classification 0/1 0.3623
Tamer ossien o
Hemoglobin level number* -0.3190
Total radiation dose | number -0.0034

*in mmol/l

The 0/1 input is the binary answer to the yes or no question of the model feature.

Model validation and statistics

A Receiver Operating Characteristic (ROC) curve
computation module was used to compare the predicted
survival with the actual survival of each patient population
[18]. For the training cohort we applied an internal
validation on the entire dataset. We compared internal
validation to the external validations on the clinical and
trial cohort. All validations result in an area-under-the-
curve (AUC) that displays how well the model predicted
the survival of the patients. An AUC of 0.5 indicates that
the result is completely random meaning that the model is
not able to predict outcome and an AUC of 1.0 indicates
that the result is perfectly matched meaning the model is
a perfect outcome predictor. Bootstrapping was used to
determine the uncertainty in the model’s AUC reported
by the program. Specifically, the AUC was determined
a thousand times using the bootstrap function provided
by the Matlab statistics toolbox. All cohorts were
bootstrapped and in each bootstrap sample the model was
applied to determine +/- 2 standard deviations of the AUC
in all cohorts. Additionally, the predicted probability of
survival was compared to the observed probability of
survival for each prognosis group to assess the calibration
of the model for each cohort.

Reference cohorts

To compare the effectiveness of the model in the
clinical cohort we used the trial cohort (the RTOG-91-
11 trial dataset [7]) and the training cohort (MAASTRO
dataset [18]). With respect to the randomized RTOG-
91-11 trial, only the patients treated with radiation only
were selected (n = 177). The training and trial cohort
were added to separate databases with the same data
structure as the clinical cohort, this enabled the use of

the same software for analyzing each cohort separately.
An overview of the patient population of these datasets is
given in Table 2. To perform a univariate survival analysis,
the Kaplan Meier method was used. The prognosis groups
were divided into 3 groups, classifying the 25% lowest
survival predictions and 25% highest survival predictions
as the poor and good prognosis group respectively. The
middle 50% were classified as medium prognosis. The
training cohort was used to create these thresholds for
the poor, medium and good prognosis groups. These
survival prediction thresholds dividing the training cohort
were also applied to the clinical and trial cohort model
outcomes. To compare the Kaplan Meier curves between
cohorts and between prognosis groups the log-rank test
was used. In all statistical tests p-values of less than 0.05
were assumed to indicate statistical significance.

RESULTS

The data mining of the OIS resulted in an initial
clinical cohort of 125 patients primarily diagnosed with
laryngeal carcinoma. From this cohort, patients with
missing data were then excluded; 13 patients because
the diagnosis was not older than 2 years and thus it is
impossible to assess 2-year survival for these patients;
3 patients due to a lack of treatment dose available in
the OIS; 57 patients (the largest exclusion group) due to
a lack of hemoglobin measurements before treatment.
This resulted in a clinical cohort containing 52 patients
diagnosed between June 1993 and February 2012 with
complete datasets suitable for analysis, at the time of
modelling; in time the set will automatically grow.

The model predicted prognostic survival groups,
resulted in the Kaplan Meier curves presented in Figure
1. The survival prediction thresholds to seperate the poor,
medium and good prognosis groups were 58% and 82%
chance of 2-year survival. By definition these thresholds
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Table 2: Patient population model input parameter values.

gﬁ:gi?g g:)ilrll(i)?:l Trial Cohort | Training VS
# % # % # % [ Clinical | Trial
Total 978 52 177
Age 47-60 years [357 37 15 29 96 54 |p>0.20|p<0.05
> 60 years 621 63 37 71 81 46 |p>0.20 |p<0.05
Gender Male 870 89 47 90 136 77 [p>0.20|p<0.05
Female 108 11 5 10 41 23 [p>0.20|p<0.05
T1 524 54 18 35 0 0 »<0.05|p<0.05
T2 260 27 11 21 18 10 [p>0.20|p<0.05
T-classification T3 128 13 14 27 144 81 |p<0.05|p<0.05
T4 66 7 13 15 8 p=0.07 |p>0.20
Missing 0 0 2 4 0 0 »<0.05|p>0.20
N-classification | NO 884 90 41 79 92 52 |p<0.05|p<0.05
N+ 98 10 11 21 85 48 |p<0.05|p<0.05
Missing 2 0 0 0 0 0 p>020|p>0.20
. Glottic 723 74 27 52 49 28 [p<0.05|p<0.05
Tumor location -
Non-Glottic |255 26 25 48 128 72 [p<0.05|p<0.05
Low! 168 17 24 46 58 33 |p<0.05|p<0.05
Hemoglobin level | Normal-high | 667 68 28 54 116 66 |p<0.05|p>0.20
Missing 0 0 0 0 3 p>0.20 [p<0.05
~ |<60Gy 16 2 11 21 5 3 p<0.05|p>0.20
qotal - radiation[go 66Gy (437 [45 |22 |42 1 £>020 |p<005
>66Gy 541 55 19 37 171 97 [p<0.05|p<0.05

'Male < 8.5 mmol/l, Female < 7.5 mmol/l)

The clinical and trial cohort are compared to the training cohort to indicate a statistical difference.

meant that the training cohort had 25%, 50% and 25% of
patients in the poor, medium and good prognosis groups
respectively. Applying the same thresholds to the clinical
cohort gave a group distribution of 53%, 36% and 10%
and for the trial cohort gave 55%, 41% and 4%. The
Kaplan Meier curves of all groups in the clinical and
trial cohort were compared with their equivalent in the
training cohort. The survival prediction of each prognosis
group in the clinical and trial cohort was not statistically
different from the corresponding training cohort prognosis
group (p > 0.2). The clinical cohort’s poor and medium
prognosis groups were statistically different (p < 0.05) but
the medium and good prognosis groups were not (p > 0.2).
The trial cohort comparison showed similar results.

The ROC computation resulted in AUC values of
0.77, 0.71 and 0.57 for training, clinical and trial cohort
respectively. Bootstrapping (1000 samples) resulted in
normally distributed AUC reliability intervals (+/-2SD) of
0.73 to 0.81, 0.55 to 0.88 and 0.47 to 0.67 for training,
clinical and trial cohort respectively. The model calibration
plots are presented in Figure 2. For the training cohort

the observed 2-year survival is higher than predicted for
the poor and medium prognosis group. The same can
be concluded for the clinical cohort as the difference in
survival for each prognosis group did not reach statistical
significance (p > 0.2) between the training and clinical
cohort. No statistical difference could be found between
the prognosis groups of the trial cohort (»p > 0.2) and the
poor and good prognosis group survival was different
from the training cohort (p < 0.05).

DISCUSSION

We have implemented a survival prediction model
for laryngeal carcinoma patients treated with primary
radiation in a clinical cohort from a completely different
geographical area (Australia vs The Netherlands) and
evaluated the same model in a trial cohort from North
America. In previous work this model was validated in
other curated independent datasets from the Leuven
Cancer Institute (Belgium), VU University Medical
Center (Netherlands), Netherlands Cancer Institute-Antoni
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van Leeuwenhoek Hospital (Netherlands) and Christie
Hospital (UK) [18]. The AUCs reported were 0.68, 0.74,
0.71 and 0.76 for each mentioned group respectively.
The uncurated clinical cohort had a comparable accuracy
(AUC of 0.71). The model is able to predict 2-year
survival for laryngeal cancer patients for the clinical
cohort as the AUC is statistically different from 0.5. The
AUC reliability interval was larger than observed for the
training cohort which can be explained by the smaller size
of the clinical cohort. Comparable results were shown for
the Leuven dataset (AUC 0.50 - 0.82) which is similar in
size (n = 109). Another important fact is that the applied
model was learned from the training cohort so it will
by definition perform better on this cohort. The model
calibration plots (Figure 2) shows that the model is not
perfectly calibrated for 2-year survival, underestimating
survival especially in the poor prognosis group. The likely
reason is that this proportional hazard model was trained
in the original study for 5-year survival prediction and
provides a baseline survival for all time points between 0
and 5 years. It is not uncommon for these types of models
to be recalibrated after acquiring more data to improve
the survival probability [19]. The observed survival
in the clinical cohort is not statistically different from
the observed survival in the training cohort as reported
carlier in the Results section demonstrating that the model
performance in the clinical cohort is comparable to the
training cohort. The prognosis distribution of the clinical
cohort is shifted towards the poor prognosis group; the
main reason is the difference in patient population. As
shown in Table 2 the clinical cohort patients have more T3
and T4 cancers, more often have N1 and N2 disease, more
non-glottic cancers, receive a lower treatment dose and
have lower hemoglobin levels. These are all unfavorable
predictors for survival in the prediction model. The more
advanced cancers and nodal metastasis might be explained
by the socioeconomic difference between the Illawarra and
Maastricht regions, as patients are referred to the ICCC
at a later stage or wait longer to consult their physician.
However, the observed survival is not statistically different
from the training cohort for each prognosis group as
reported in the results. This indicates that the training
and clinical cohort are similar and that similar features
seem to be predictive for survival. The inclusion of the
clinical cohort patients in a future training cohort may find
additional features specific to the poorer prognosis group,
which is the subject of future work.

Uncurated clinical data has been demonstrated to
be sufficient to produce and validate useful models and
DSS, however the work also indicates that prospective
consistent data recording can improve opportunities to
learn from clinical data. Increasing the numbers of patient
records eligible to be entered into the modelling process
can enable the addition of more model parameters and
strengthen model performance. For this study the data
quality was very high in comparison to similar studies [20]

where less than 5 percent of the treated patient records
were usable after data mining while in this study over 30
percent of the treated patient records have been included.
This can be explained by a previous retrospective study
in this patient group. The original data for these patients
was complimented with great detail, something that is not
standard in a radiotherapy clinic.

The largest gap in data was caused by the poorly
recorded hemoglobin level measurements before the
start of radiotherapy. Because hemoglobin level is one
of the input parameters with the strongest weight in the
model a separate analysis was undertaken where the
hemoglobin level was imputed with a low (7.0mmol/l),
high (11.0mmol/l) and the training set median (9.1mmol/l)
value. This imputation resulted in an enlarged clinical
cohort of 109 patients. This resulted in an AUC interval
increase of 0.60 to 0.83, 0.61 to 0.84, and 0.62 to 0.85
for the mentioned imputations respectively, intervals
which are somewhat tighter than for the non-imputed
clinical cohort which is likely caused by the increase in
patient numbers. The different imputation methods for the
hemoglobin level resulted in a very different distribution
of the patients across survival groups as shown in the
Kaplan Meier curves (Figure 3). This shows that the model
is very sensitive to the hemoglobin level and that one has
to take great care in choosing an appropriate imputation
method but it also shows that the clinical cohort contains
more information that could be utilized. In future work
smarter ways of imputing missing values could be
explored. An example of a smarter solution is a Bayesian
Network model where for example the hemoglobin level
could be derived by considering all other patient properties
available instead a of simple median calculation [21].

In both the previous study [18] and in this study
the model is able to predict survival for the clinical
cohorts. However, in this study we show that the model
is not able to predict 2-year survival for laryngeal cancer
patients for the trial cohort: The AUC shows that the
prediction is not different from random and the calibration
plot shows that the observed survival is statistically the
same for each prognosis group in the trial cohort. The
comparison between the trial cohort prognosis groups
as reported in the results confirms this. The most likely
cause of this poor performance and calibration is that
the trial patient population is different from the training
and clinical cohort. Table 2 shows cohort properties
which are statistically different between training and trial
cohort. The trial cohort consists of younger patients, more
females, almost exclusively T3 staged cancers, more
nodal involvement, more non-glottic cancers and almost
exclusively high radiation dosages. This patient-type is
under represented in the training cohort. Although data
quality is extremely high in a clinical trial, the patients
in the trial cohort are highly selected being relatively
young patients with advanced cancers that were treated
perhaps with a higher quality level or with different
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Figure 1: Kaplan Meier Curves for each cohort. The survival prediction thresholds to create the poor, medium and good prognosis
groups were 57% and 81% chance of 2-year survival. This resulted in a group distribution of 53%, 36% and 10% and 53%, 42% and 5%
for the poor, medium and good prognosis group for the clinical cohort and trial cohort respectively, while (by definition) the training cohort

had 25%, 50% and 25% distribution.
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treatments than standard practice or that were different
by another unknown confounding factor. After training
new model coefficients on the trial cohort and using the
same data for validation the AUC was only 0.58. Even
when using an optimistic overestimating validation, the
model performs poorly, this means that the data does not
contain the knowledge we need to predict survival for
this specific cohort supporting our earlier statement that
there might be another unknown factor that is of great
influence on the survival for these patients. This difference
between clinical routine and trial cohorts is one of the
arguments against using solely evidence from clinical
trials as the source of clinical guidelines in radiation
oncology [22, 23]. For rapid learning, if a training cohort
is different from a validation cohort and/or the patients
in the validation cohort are underrepresented in the
training cohort, a poor performance of the model can be
expected. To increase model performance more patients
with different characteristics should be included in the
training set during model learning. Including trial patients
can have a negative effect on model performance; it has
been reported that it can result in a biased model towards
this population. As an example, the predicted survival (i.e.
the calibration of the model) will be much higher than can
be obtained in routine clinical practice as routine quality is
expected to be lower than in clinical trials, which is known
to affect survival [24]. The poor performance in the trial
cohort also underlines the need of model commissioning.
Before using any prediction model, it is important to
verify if this model does indeed perform well in a specific
population. Commissioning of hardware and software
is a well-known process in radiotherapy and decision
aid tools should undergo the same quality assurance
procedures. A better modelling approach would be multi
center rapid learning systems that can enable the model
learning algorithm to learn from data present in multiple
centers, using different machine learning approaches,
such as Bayesian Networks, which can explicitly account
for biased datasets. This could include the integration of
large scale observational studies such as DAHANCA [25]
and the integration of clinical routine and clinical trial
cohorts as suggested by others [13, 26]. In ongoing work
on the rapid learning infrastructure, we use Semantic Web
technology and ontologies such as the Radiation Oncology
Ontology [https://bioportal.bioontology.org/ontologies/
ROQ] to create well defined semantically interoperable
data stores and secure messaging systems to facilitate
multi institutional rapid learning.

In clinical practice TNM staging is used to estimate
the prognosis for larynx patients and there is some
evidence of additional single variable prognosis predictors
[27, 28]. To our knowledge there are no models to predict
survival in laryngeal cancer patients. Some survival
prediction models exist for other head and neck cancer
patients [29, 30]. The study [30] with a similar approach,
large training and external validation cohorts found

comparable results in model performance.

CONCLUSIONS

We were able to use a data mining system to
automate the collection of model parameters in a totally
different clinical cohort in a different country and
healthcare system and predict 2-year survival for their
patient population using uncurated clinical data. The
study shows that routine clinical data contains valuable
information that could be harvested to improve and
personalize patient care and even more so if recorded in a
detailed, structured manner. The results demonstrate that
further investigations into the difference between clinical
trial cohorts and clinical cohorts is necessary with the
potential for rapid learning systems to provide evidence
for patients who do not fit clinical trial criteria.
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