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ABSTRACT
Chromatin regulatory factors (CRFs), are known to be involved in tumorigenesis 

in several cancer types. Nevertheless, the molecular mechanisms through which driver 
alterations of CRFs cause tumorigenesis remain unknown. Here, we developed a CRFs 
Oncomodules Discovery approach, which mines several sources of cancer genomics 
and perturbaomics data. The approach prioritizes sets of genes significantly miss-
regulated in primary tumors (oncomodules) bearing mutations of driver CRFs. We 
applied the approach to eleven TCGA tumor cohorts and uncovered oncomodules 
potentially associated to mutations of five driver CRFs in three cancer types. Our 
results revealed, for example, the potential involvement of the mTOR pathway in the 
development of tumors with loss-of-function mutations of MLL2 in head and neck 
squamous cell carcinomas. The experimental validation that MLL2 loss-of-function 
increases the sensitivity of cancer cell lines to mTOR inhibition lends further support to 
the validity of our approach. The potential oncogenic modules detected by our approach 
may guide experiments proposing ways to indirectly target driver mutations of CRFs.

INTRODUCTION

In recent years, catalogs of mutational cancer 
driver genes from large sequencing datasets have been 
identified [1, 2]. Although most of such mutational 
drivers are involved in biological processes traditionally 
associated with cancer, such as apoptosis or cell 
proliferation [3, 4], an important fraction [1] is related to 
cellular regulatory functions, including the regulation of 
chromatin structure. Chromatin remodeling is crucial to 
the regulation of gene expression. Three main biochemical 
mechanisms compose chromatin remodeling –covalent 
histone modifications, core histone replacement and 
ATP-dependent chromatin remodeling [5]. Proteins that 
carry out these three processes are generically referred 
to as chromatin regulatory factors (CRFs), and their 
involvement in tumorigenesis is now well established [6]. 
We recently showed that i) drivers are overrepresented 
within CRFs; ii) CRF complexes –such as SWI/SNF 
[7]– rather than individual genes driver tumorigenesis; 

and iii) the importance of CRFs in tumorigenesis varies 
amongst cancer types [8]. However, in most cases the 
actual mechanism through which mutations in driver 
CRFs lead to tumorigenesis is unclear. In this work, 
we start with the catalog of mutational driver CRFs in 
a cohort of almost 7.000 tumors representing 29 cancer 
types, extending the aforementioned previous analysis. 
We then hypothesize that changes in the expression of 
key groups of genes mediate the tumorigenic effect of 
mutational driver CRFs. To test this hypothesis, we develop 
a simple three-step bioinformatics approach –the CRFs 
Oncomodules Discovery Approach, or CRFs-ODA. We first 
culled from TCGA a dataset of 3583 tumor samples from 11 
cancer types for which both mutation and expression data 
are available [9]. We then systematically detected genes 
whose expression changes significantly in coherence with 
mutations in individual driver CRFs. We call the groups 
of functionally related genes (i.e. those in biochemical 
pathways, gene ontology terms, or under the regulation 
of a transcription factor, etc) significantly enriched for the 
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differentially expressed genes in the previous analysis, 
oncomodules. Finally, we ranked these oncomodules 
according to prior knowledge on tumorigenesis and 
information from several high throughput cancer genomics 
and perturbaomics datasets [10, 11]. It is thus possible to 
construct hypotheses linking the somatic mutations in the 
driver CRF and the emergence of cancer based on the top-
ranking oncomodules. Furthermore, they provide clues on 
possible therapeutic strategies to indirectly target tumors 
bearing mutated CRFs.

RESULTS

CRFs as mutational drivers across tumor types

We started with a list of 459 mutational drivers derived 
from the combination of three widely-used bioinformatics 
methods [12–14] to a cohort of almost 7,000 tumors of 29 
cancer types [1]. We intersected this list with a manually 
curated set of 183 CRFs [8], resulting in 37 cancer driver 
CRFs, 24 of which are included in the Cancer Gene Census, 
CGC [15]. (The refined approach employed to detect the 
drivers [16] and the increase in the number of tumor samples 
in the cohort analyzed constitute the main improvement of 
this catalog of driver CRFs over the aforementioned study.) 
CRFs as a group are significantly enriched for drivers, as 
25.3% of known CRFs are drivers, which represent only 1.9% 
of non-CRF human genes (Fisher’s test p-value: 2.2×10−16). 
Three quarters of these CRFs (77.7%) are predicted to be 
loss-of-function (LoF) [17]. On the other hand, only 48% of 
all drivers are predicted LoF.

The mutational frequency of the 37 driver CRFs 
varies across cancer types (Figure 1A) –a behavior already 
observed in a smaller cohort [8]. While some CRFs (e.g., 
MLL3, MLL2) appear mutated in several cancer types, others 
are very specific to one or a few tumor types (e.g., ATRX, 
PBRM1), as apparent from differences in the distribution 
of the overrepresentation of CRF driver mutations (with 
respect to the expected value) in each tumor sample across 
all the cohorts analyzed, a metric which we call the CRF-
to-driver index, or CDI (Methods). We computed the CDI 
as the minus logarithm of the pvalue of the Fisher’s test of 
the overrepresentation of mutations in CRFs in each sample. 
While the CDI varies amongst the samples of each tumor 
type (Figure 1B) the median of its distribution in some 
cancer types –such as bladder carcinoma (BLCA) and cervix 
squamous cancer (CESC)–, is higher than in others. This 
result suggests that CRFs are involved more frequently in 
tumorigenesis in the cancer types of the former group.

The CRFs-ODA identifies oncomodules related 
to MLL2 driver mutations

The three-step CRFs-ODA (Figure 2) is predicated 
on the idea that driver mutations in CRFs cause the miss-
regulation of a set of functionally related downstream genes. 

First, the CRFs-ODA identifies genes whose expression 
changes significantly in tumors bearing driver mutations 
of a CRF with respect to unmutated samples (Figure 2A). 
Then, the CRFs-ODA identifies sets of functionally related 
genes (members of a biochemical pathway, with a common 
Gene Ontology term, or under the regulation of the same 
transcription factor) that are significantly enriched for the 
previously detected differentially expressed genes (Figure 
2B). We call these sets oncomodules. Finally (Figure 2C), 
the CRFs-ODA employs a scoring system based on prior 
knowledge of the tumorigenesis across several cancer types 
to a) rank the biological modules detected in the previous 
step; b) detect spurious relationships between somatic 
alterations in the CRF and the differentially expressed genes; 
and c) devise hypotheses to explain how the CRF in question 
relates to the tumorigenic process and propose therapeutic 
strategies to target them. In this section, and the following 
two, we describe the use of the CRFs-ODA, illustrated 
through the detection of oncomodules in head and neck 
squamous cell carcinoma (HNSC) tumors carrying MLL2 
driver mutations Tables 1 and 2, and Supplementary Figure 
S1. We then summarize the results of its application to detect 
oncomodules related to mutations of CRFs in eleven cohorts 
of tumor samples analyzed by TCGA [9] (Supplementary 
Tables S1–S5).

To carry out the first step of the CRFs-ODA (Figure 
2A), we retrieved the mutations and expression data of 
HNSC samples and divided them into two groups. The 
first group contained samples (N=52) bearing mutations of 
MLL2 (all protein affecting mutations), while the second 
comprised the samples with no mutations in any driver 
CRF (N=60). To minimize the effects of the multiple test 
correction derived from the comparison of gene expression 
between the two groups, we discarded the 30% of genes 
with the smallest expression variance across samples. We 
then compared the expression of the remaining genes in 
the two groups of samples, using a Wilcoxon test followed 
by a Benjamini Hochberg FDR correction. We identified 
154 differentially expressed (DE) genes –84 up-regulated 
and 70 down-regulated– (corrected P-value<0.05).

In the second step of the CRFs-ODA, we (Figure 
2B), identified sets of functionally related genes 
(transcription factor targets from TRANSFAC [18], 
biochemical pathways from KEGG [19] and REACTOME 
[20] and oncogenic modules from MsigDB [21, 22]) 
significantly enriched for the DE genes. The 154 DE genes 
in HNSC were significantly enriched (Table 1) for genes 
of the mTOR pathway and for targets of the transcription 
factors E2F1 and SF1. We refer to these genesets as the 
MLL2 oncomodules in HNSC.

A scoring system to rank oncomodules

We then ranked these three MLL2 oncomodules 
using information retrieved from several cancer 
genomics and perturbaomics databases and the literature 
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Figure 1: CRFs and their relative importance as drivers across tumor types. A. Heatmap illustrating the frequency of samples 
with mutations of each known driver CRF relative to the total number of samples of 30 cohorts of tumors. (A cohort of lung tumors of 
unspecified histology was added to those of the 29 tumor types analyzed in our aforementioned work. Note that because it does not represent a 
new tumor type, the cohort under study still represents tumors from 29 cancer types.) B. The boxplots show the distribution of the enrichment 
for driver mutations of CRFs across all samples of each cohort (CDI, see text for details). The enrichment for driver mutations of CRFs in 
each sample was computed as the minus logarithm of the p-value of a Fisher’s exact test of the overrepresentation of mutations in driver 
CRFs in each sample through a contingency table. The tumor cohorts in both panels are sorted by decreasing CDI median value. Tumor type 
acronyms: BLCA: Bladder carcinomas; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; KIRC: Renal clear 
cell carcinoma; LGG: Lower grade glioma; DLBC: Difuse large B-cell linfoma; STAD: Stomach adenocarcinoma; LUSC: Lung squamous 
cell carcinoma; HNSC: Head and neck squamous cell carcinoma; CM: Cutaneous melanoma; UCEC: Uterine endometrioid carcinoma; 
LUAD: Lung adenocarcinoma; PA: Pilocytic astrocytoma; CLL: Chronic lymphocytic leukemia; ESCA: Esophageal carcinoma; MB: 
Medulloblastoma; HC: Hepatocellular carcinoma; BRCA: Breast carcinoma; COREAD: Colorectal adenocarcinoma; GBM: Glioblastoma 
multiforme; PAAD: Pancreatic adenocarcinoma; Lung: Lung cancer (histology unspecified); NSCLC: Non-small cell lung cancer; SCLC: 
Small cell lung cancer; MM: Multiple myeloma; NB: Neuroblastoma; PRAD: Prostate adenocarcinoma; KIRP: Kidney papillary carcinoma; 
AML: Acute myeloid leukemia; OV: Ovarian cystadenocarcinoma; THCA: Thryroid carcinoma.
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(Figure 2C) to implement the third step of the CRFs-ODA. 
First, we assessed whether mutations of any HNSC driver 
other than MLL2 correlated better with the collective 
expression shift of the genes in each oncomodule than those 
of MLL2. To do this, we collapsed the expression values of 
the genes in each oncomodule in each sample into a Zscore 
value reflecting the level of collective over or under-
expression of the module with respect to the population 
of all genes probed in the sample, through a Sample-
Level Enrichment Analysis (SLEA: [23] and Methods). 
We then separated up-regulated and down-regulated DE 

genes within each oncomodule to compute their SLEA, 
thus producing a Zscore matrix of eight rows (six from 
the genes in the oncomodules and two for the whole 
sets of up- and down-regulated DE genes), as presented 
in Supplementary Figure S1A. Next, we compared the 
Zscores of samples grouped according to the mutations of 
each HNSC driver. We found that the mutational status of 
MLL2 correlated better (Wilcoxon p-value smaller by more 
than 5 orders of magnitude; Supplementary Figure S1B) 
with the miss-regulation of the modules identified (mTOR, 
E2F1 and SF1) than that of any other HNSC driver.

Figure 2: Flow diagram of the CRFs-ODA A. A data matrix with samples as columns and genes as rows is used as input. The genes 
(30%) with the lowest variance are discarded. Then, samples are separated following the mutational state of the driver CRF under study 
(details in Methods). The expression change between the two groups of samples of the remaining genes is computed, and those with corrected 
p-values below threshold are considered differentially expressed (DE). B. DE genes are analyzed for enrichment for several genesets, such as 
transcription factor targets from Transfac, biological pathways from KEGG and Reactome and experimentally generated oncomodules from 
MSigDB. Genesets with significant overrepresentation of DE genes (oncomodules) are retained for analysis. C. Oncomodules are sorted 
according to several layers of information obtained from the literature and cancer genomics and perturbaomics databases (Methods), in a 
process we refer to as a scoring system.
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Secondly, we used the data in the Connectivity 
Map 02 [11], to search for gene signatures of response 
to therapeutic perturbations of cell lines that significantly 
correlate with the set of DE genes. The 154 differentially 
expressed genes identified in HNSC tumors upon mutations 
of MLL2 showed a significant negative correlation with 
genes miss-regulated in several cell lines upon treatment 
with the mTOR inhibitor rapamycin, as well as with 
vorinostat, trichostatin A and LY-294002 and a positive 
correlation with genes miss-regulated in response to 
diethylstilbestrol (top 5 results; Supplementary Table S6).

As a third line of evidence to support and/or rank 
the detected oncomodules, we manually searched the 
literature for prior reports on the involvement of each CRF 
oncomodule in cancer. Specifically, we asked whether the 
miss-regulation of each oncomdule has previously been 
associated to: a) the activity of the CRF under study; b) the 
onset of tumorigenesis in the cancer type under analysis 
and/or; c) the onset of tumorigenesis in other tumor types. 
The three MLL2 oncomodules have previously been linked 
to cancer [24–26], with MTOR and E2F1 specifically 
involved in tumorigenesis in HNSC [27, 28]. Mutations 
of MLL2 [29] have also been associated to the miss-
regulation of E2F1.

As a fourth test, we asked whether the genes within 
each oncomodule are also miss-regulated in cancer cell 
lines with mutations of the CRF under study. To do this, 
we selected from the Cancer Cell Line Encyclopedia 
(CCLE) [10] all cell lines derived from tumors of the same 
cell type as the tumor type under analysis. Then, the cell 
line-wise Zscores of CRF oncomodules –representing the 
level of collective up- or down-regulation of each CRF 
oncomodule– were computed using the SLEA approach. 
Finally, the Zscores of cell lines bearing mutations of the 
CRF were compared to those of cell lines with the CRF 
unmutated. In the case of MLL2, because no information 
is available of the mutational status of MLL2 in the CCLE, 
this test could not be performed. (See results for other 
CRFs in Supplementary Tables S1–S5.)

For the fifth and final test, we asked whether the 
significant overlap between DE genes upon mutations of 
the CRF and the set of genes within an oncomdule under 

the control of a gene (e.g. under the regulation of E2F1) 
was also observed in cell lines subjected to analogous 
perturbations. We computed the overlap between the set 
of genes most extremely miss-regulated in cell lines after 
knock-down of the CRF (in experiments carried out by the 
Library of Integrated Network-based Cellular Signatures, 
LINCS, http://www.lincsproject.org) and those extremely 
miss-regulated upon knock-down of the gene controlling 
the oncomodule. Miss-regulated genes upon knock-down 
of MLL2 exhibit a significant overlap with those miss-
regulated by perturbing the cell lines via loss-of-function 
of MTOR, E2F1 and SF1 (P-values, 3.9×10−55, 7.5×10−58, 
and 3.5×10−23, respectively).

In summary, the majority of the tests in the scoring 
system corroborate that mTOR, E2F1 and SF1 oncomodules 
constitute good candidates to mediate the tumorigenic 
effects of driver mutations of MLL2 (see Discussion).

Further evidences of the involvement of the 
mTOR oncomodule in MLL2 mutated tumors

We determined that driver mutations of MLL2 and 
alterations of driver genes upstream the mTOR pathway 
in HNSC occur in mutual exclusivity (P-value=5.4×10−5; 
Figure 3A), suggesting that all of them result in the 
same downstream alteration of the mTOR oncomodule. 
We also found that patients with MLL2-mutated HNSC 
tumors with high expression of the 84 genes that are 
significantly up-regulated upon such mutations exhibit 
significantly worst survival than patients with tumors with 
low expression of these same genes and no mutations in 
any CRF (Figure 3B). This constitutes an indication that 
the signatures of miss-regulated genes associated to driver 
mutations of CRFs may also carry prognostic value.

On the basis of all prior observations, we 
hypothesized that MLL2 knockdown of a cancer cell 
line derived from a tumor type where MLL2 drives 
cancerogenesis should produce the same type of miss-
regulation of the mTOR oncomodule observed in 
head and neck primary tumors. Therefore, to simulate 
the downstream effects of loss of function mutations 
in MLL2 and to investigate their relationships with 

Table 1: MLL2 oncomodules detected in HNSC

Oncomodule Query size Term size Overlap size Adj. Pval

SF1 154 140 10 0.0019

mTOR 154 128 8 0.0118

E2F1 154 122 7 0.0247

Query size: Number of Differentially Expressed genes
Term size: Number of elements in the probed biological module
Overlap size: Number of elemens in the overlap between the set of differentially expressed genes and the sets of genes that 
form the probed biological module
Adj. Pval: P-value of the overrepresentation test correct for multiple testing
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alterations of the mTOR pathway, we carried out MLL2 
silencing with a specific short hairpin RNA in T24 human 
bladder cancer cells where the MTOR gene is not altered 
(Figure 3C, left panel). (We know that bladder carcinoma 
is one of the tumor types frequently driven by MLL2 
loss-of-function mutations: see http://www.intogen.org/
search?gene=MLL2&cancer=BLCA.) Since mTORC1 
activity is required for 4E-BP1 phosphorylation and 
mTORC2 for AKT phosphorylation, we analyzed the 

phosphorylation status of these two proteins in the 
absence of MLL2 by western blot. In agreement with 
the predictions resulting from our scoring system, the 
decrease in MLL2 expression, checked by quantitative 
PCR, resulted in increased mTORC1/2 activity (Figure 
3C, right panel), which in turn suggests that these 
cancer cells may be more sensitive to mTOR pathway 
inhibitors. To test this hypothesis, we treated T24 cells, 
with and without the MLL2 shRNA insertion, with 

Table 2: Top-scoring oncomodules detected across all tumor cohorts

Tumor type Driver 
CRFs

Top-
scoring 
module

Correlation 
with other 

driver

CM02 drug 
modules

Prior CRF 
relation

Prior 
tumor 
type 

specific 
relation

Prior 
cancer 

relation

Miss-
regulation 
in cancer 
cell lines

Overlap 
miss-

regulation 
CRF/

module

Overall 
score

HNSC MLL2
mTOR No rapamycin, 

vorinostat No Yes Yes NA Yes 5/6

E2F1 No No Yes Yes Yes NA Yes 5/6

HNSC NSD1

MEK No pioglitazone Yes Yes Yes NA NA 5/5

AKT1 No

trichostatin A, 
pioglitazone, 
LY-294002, 
rapamycin

No Yes Yes NA Yes 5/6

LUAD SMARCA4

SOX9 No estradiol No Yes Yes Yes NA 5/6

HSF No

monorden 
(radicicol), 
estradiol, 
15-dpj2, 

rapamycin

Yes Yes Yes No NA 5/6

KIRC PBRM1
p53 No LY-294002 Yes Yes Yes No Yes 6/7

ERBB2 No LY-294002 No No Yes No Yes 4/7

KIRC BAP1

Base 
excision 

repair
No vorinostat Yes Yes Yes No NA 5/6

CD 28 co-
stimulation No trichostatin A, 

geldanamycin No Yes Yes No NA 4/6

UCEC ARID1A
p53 Yes (p53) No Yes Yes Yes No NA NA

Cell-cell 
junction Yes (p53) raloxifene, 

mefloquine No Yes Yes No NA NA

Tumor type: The tumor types names follow the same acronyms as in Figure 1.
Driver CRFs: Driver CRFs investigated with the CRFs-ODA in each tumor type.
Top-scoring module: Selected oncomodule(s), with the highest score for their misregulation upon mutations of driver CRFs in each tumor type.
Correlation with other driver: Miss-regulation of the oncomodule correlates with mutations of other driver better that with the CRF.
CM02 drug modules: Modules miss-regulated in response to drug perturbations that significantly (anti-)correlate with oncomodules, according to 
Connectivity Map 02. Drug names appear in each case.
Prior CRF relation: Evidences of the relationship between alterations of the CRF and miss-regulation of the oncomodule exist in the literature.
Prior tumor type specific relation: Evidences of the relationship between miss-regulation of the oncomodule and the emergence of this tumor type exist 
in the literature.
Prior cancer relation: Evidences of the relationship between miss-regulation of the oncomodule and tumorigenesis exist in the literature.
Miss-regulation in cancer cell lines: The oncomodule appears significantly miss-regulated in cancer cell lines bearing mutations of the CRF with 
respect to others without mutations of any CRF.
Overlap miss-regulation CRF/module: A significant overlap exists in genes miss-regulated upon knock-down of the CRF and knock-down of the gene 
controlling the oncomodule in cell lines.
Overall score: Fraction of the tests that support the involvement of the oncomodule in tumorigenesis upon mutations of the CRF.
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everolimus and measured their growth rate through an 
MTT assay. As shown in Figure 3D, everolimus proved 
more effective in the inhibition of the growth of cells 
carrying the MLL2 shRNA.

Potential mechanisms of tumorigenesis of other 
driver CRFs

We identified oncomodules associated to the 
alterations of six CRFs in four cancer types (including 
MLL2 in HNSC). The results of the analyses are 
summarized in Table 2 and presented at length in 

Supplementary Tables S1 to S5. For example, while 
mTOR and E2F1 are the top-ranking oncomodules 
associated to mutations of MLL2 in HNSC, we found 
that oncomodules in the MEK/AKT1 axis are top-ranking 
in association to NSD1 mutations in the same cancer 
type. In the case of mutations of SMARCA4 in lung 
adenocarcinomas (LUAD), the top ranking oncomodules 
include SOX-9 and transcription factors of the HSF family, 
which have been linked to tumorigenesis before ([30]; 
Supplementary Table S2). In kidney clear cell carcinomas 
(KIRC) the top-ranking oncomodule associated to 
mutations of PBRM1 (the most frequently mutated KIRC 

Figure 3: Further evidences supporting the involvement of mTOR in tumorigenesis upon mutations of MLL2. A. Mutual 
exclusivity of driver alterations of MLL2 and genes upstream and in the mTOR pathway. (Mutex p-value: 5.4×10−5) B. Loss-of-function 
mutations of MLL2 concomitant with miss-regulation of its related DE genes possess predictive survival value. HNSC tumors were 
separated in two groups: those bearing mutations of MLL2 and concomitant miss-regulation of related down-regulated genes (red curve), 
and those without mutations of MLL2 and no sign of down-regulation of the same genes. (A) Left panel. The levels of MLL2 of lysates of 
T24 cells infected with an irrelevant short hairpin RNA (shControl) or specific for MLL2 (shMLL2) were checked by real-time quantitative 
RT-PCR (qRT-PCR). Gene expression was normalized against an endogenous control and represented as RNA levels relative to those 
obtained in shControl-infected cells, which was set to 1. Right panel. The lysates were analysed by western blot with an anti-P-4E-BP1, 
4E-BP1, P-AKT, AKT and Tubulin antibodies. (B) Knock-down of MLL2 increased T24 cells sensitivity to everolimus treatment. The 
proliferation of both shControl and shMLL2 cells treated with everolimus in the course of 3 days (three replicates in each point) is presented 
relative to the proliferation of shControl and shMLL2 untreated cells, respectively. The units in the abscissa represent a proliferation ‘fold 
change’.
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driver, [31] are genes in the p53 pathway (Supplementary 
Table S3). On the other hand, genes related to base-
excision repair mechanisms constitute the top-ranking 
oncomodule related to driver mutations of BAP1, another 
frequently mutated CRF in KIRC (Supplementary Table 
S4). While genes within the p53 pathway are significantly 
enriched for DE genes in uterine endometriod carcinomas 
(UCEC) bearing mutations of ARID1A and unmutated 
ones, collective differences in expression of genes in the 
pathway correlate more significantly with driver mutations 
of TP53 (Supplementary Table S5). Mutations of TP53 
thus constitute a much simpler explanation of the observed 
miss-regulation of genes under its control, and we accept 
it under Occam’s razor.

DISCUSSION

We developed a CRFs-ODA to prioritize sets 
of functionally related genes miss-regulated upon 
somatic mutations of driver CRFs (oncomodules). We 
applied it to 11 cohorts of tumors analyzed by TCGA, 
and identified top-ranking oncomodules associated 
to 5 CRFs in 3 cancer types. To our knowledge, 
this constitutes the first systematic analysis of the 
oncomodules that become miss-regulated upon 
mutations of driver CRFs across cancer types. We 
focused on the top-ranking oncomodules associated to 
mutations of MLL2 in HNSC to illustrate the validity 
of our approach, and we made predictions on how 
the perturbation of the oncomodules could render the 
tumors sensitive to certain anti-cancer drugs. Using 
the Connectivity Map 02, for instance, we found that 
drugs inhibiting mTOR (Rapamycin) and histone 
de-acetylases (HDAC inhibitors) could constitute 
candidates to indirectly target MLL2-deficient tumors. 
Previous studies have shown that Vorinostat enhances 
the ability of mTOR inhibitors to induce cell death 
[32]. We also made other observations that support the 
mechanistic relationship between the loss of function 
of MLL2 and the miss-regulation of genes in the 
mTOR pathway in tumorigenesis, such as the mutual 
exclusivity of mutations across them. In addition, 
we experimentally observed that –as predicted by 
this hypothetic mechanistic relationship– the loss of 
function of MLL2 in cell lines derived from tissues in 
which MLL2 drives tumorigenesis renders tumor cells 
more sensitive to mTOR inhibitors. Note that neither 
the in silico predictions resulting from our scoring 
system nor the experimental results that back them 
are able to demonstrate the existence of a direct link 
between MLL2 and the mTOR pathway. Our results 
could also be due to synthetic lethality. Rather than 
as an experimental validation of this particular link 
bettwen loss-of-function mutations of MLL2 and the 
miss-regulation of the MTOR module –which, outside 
the scope of our study, must be undertaken by the 

cancer research community– this result lends support 
to the validity of our approach.

Description of the oncogenic modules related to five 
CRFs in three tumor types with biologically meaningful 
results, together with all the information produced by the 
CRFs-ODA and –in particular– the scoring system on 
each of them are available to cancer genomics researchers 
as Supplementary Tables S1–S5. These results constitute 
a pool of hypotheses on the mechanisms through which 
MLL2, NSD1, SMARCA4, PBRM1, and BAP1 may 
trigger the malignization of cells in HNSC, LUAD, 
and KIRC. We envision that these hypotheses be tested 
experimentally, and in particular that indirect therapeutic 
strategies proposed by the strategy be essayed for their 
potential use in clinical settings. We also envision that 
the strategy we have developed in this study be used to 
explore the tumorigenic mechanisms of other CRFs –and 
eventually other driver– as larger multidimensional cancer 
genomics datasets become available from new and bigger 
sequencing studies.

MATERIALS AND METHODS

Data download and processing

Mutations in driver genes in 6792 tumors from 
29 cancer types to carry out the mutational landscape 
analysis, were downloaded from IntOGen [1, 33]. (We 
added to the mutational frequency analysis a cohort of lung 
tumors of unknown histology. See Figure 1A.) Both the 
expression data and the mutational information used in the 
differential expression analysis were retrieved from TCGA 
through the import capability of the Gitools program [34]. 
Expression data for 3583 tumor samples form 12 different 
cancer types was already normalized and median-centered. 
The sets of functionally related genes used in enrichment 
analyses (see below) were downloaded from MsigDB [21, 
22]. They encompassed TRANSFAC transcription factor 
targets, KEGG and REACTOME biological pathways 
and experimental oncogenic signatures. The Cell lines 
expression and mutational data used in the scoring section 
was downloaded from the Cancer Cell Line Encyclopedia 
[10]. Genes in cell lines with knocked-down CRFs and 
other genes were obtained from the Library of Integrated 
Network-based Cellular Signatures (LINCS; http://www.
lincsproject.org/) program.

Differential expression analysis

The variance of every gene across all the samples 
available, regardless of their mutational status was 
computed. The 30% of the genes with lowest variance 
were discarded. Next, the samples were divided into two 
groups, one group contained the samples with protein 
affecting mutations (PAMs) in the CRF under study, 
while the other was composed of the samples with no 
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mutations of CRFs. Then, a Wilcoxon test comparing 
the expression of every gene between these two groups 
was performed. The resulting p-values were subjected to 
multiple test correction using the Benjamini Hochberg 
FDR method. The expression comparison, p-value 
correction and filtering was carried out using Gitools [34]. 
Finally, genes with an adjusted p-value lower than 0.05 
were considered as differentially expressed. When the 
number of differentially expressed genes was higher than 
1000, the adjusted p-value threshold was raised to 0.01. If 
the resulting list of differentially expressed genes had still 
more than 1000 genes the adjusted p-value threshold was 
raised again to 0.001.

Enrichment analysis

Hypergeometric tests followed by the corresponding 
multiple test correction were performed between the 
differentially expressed genes and every one of the sets of 
genes of functionally related genes mentioned in the first 
section. Tests with an adjusted p-value lower than 0.05 
were considered statistically significant.

Construction of oncogenic modules and sample 
level enrichment analysis

We constructed oncogenic modules, i.e., sets 
of genes differentially expressed in coherence with 
the occurrence of driver mutations in the CRF under 
analysis and related with cellular functions. Each 
oncogenic module contained differentially expressed 
genes overlapping sets of genes that were significant in 
the previously described enrichment analysis. Genes in 
these sets which exhibited raw p-values lower than 0.05 
in the differential expression analysis, but discarded due 
to the multiple test correction, were added back to the 
oncogenic module. Each oncogenic module inherited 
its name from the original gene set which significantly 
overlapped the differentially expressed genes. Next, 
every oncogenic module was divided into two subsets 
of genes, one containing the up-regulated genes, and the 
second one, with the down-regulated genes. The resulting 
subsets of genes were used as input for the Sample Level 
Enrichment Analysis (SLEA; [23]) implemented in 
Gitools [34].

Correlation of the miss-regulation of oncogenic 
modules with other drivers

A list of cancer driver genes mutated in 5 or more 
samples from the differential expression analysis was 
retrieved. Next, a SLEA using as input the expression 
data used in the differential expression analysis and 
as gene sets those built as explained in the SLEA 
section was performed. Every one of the genes in the 
list of cancer driver genes with more than 5 mutations 

mentioned above was used to group the samples 
according to its mutational status, then performing a 
group comparison of the Z scores resulting from the 
SLEA. Thus, a p-value per cancer driver gene per gene 
set was obtained. Finally, these p-values were ranked to 
check whether the most significant p-value corresponded 
to the CRF under study. If so, the modules received a 
positive score.

Miss-regulation of oncomodules in cancer cell 
lines

Cell lines data corresponding to cell lines derived 
from the same tissue than the tumor type under study were 
selected. Cell lines expression data was used to perform a 
SLEA with the gene sets built as described in the SLEA 
section. Thus, a Z score per gene set per cell line was 
obtained. Next, cell lines were grouped according to the 
mutational status of the CRF under study and Z-scores 
were compared using a Wilcoxon test between the two 
groups, followed by a multiple test correction (Benjamini-
Hochberg FDR method). Modules whose Z scores group 
comparison appeared to be statistically significant received 
a positive score.

Overlap of genes miss-regulated upon knock-
down of CRFs and oncomodules in cell lines

We analyzed the overlap between the genes that 
become miss-regulated when a CRF is knocked-down with 
those miss-regulated when the gene controlling each of the 
oncomodules detected to be associated with the CRF is 
knocked-down. Genes miss-regulated upon knock-down 
of a gene were obtained from the experiments carried 
out in cell lines by the LINCS program (see above). We 
require that the genes appear as extremely miss-regulated 
in at least two knock-down experiments to include them 
in the sets to test the significance of the overlap. We only 
carried out this test when the oncomodule in question was 
unequivocally under the control of a gene, rather than 
describing a biological process and at least one knock-
down experiment had been carried out within LINCS of 
the CRF and the gene controling the module. We then 
probed the significance of the overlapping set of genes 
through a Fisher’s test.

Mining prior knowledge on detected 
oncomodules

An exhaustive literature search was performed 
in order to assess whether the modules identified in 
the enrichment analysis had already been related with 
mutations in the CRF under study, the tumor type or 
cancer in general. Each one of these already identified 
relations was scored positively in case of being reported 
on literature.
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Detecting correlation between oncomodules and 
perturbation-response genesets

To fulfill the input format requirements of the 
Connectivity Map 02, the genes identified as differentially 
expressed in the differential expression analysis were 
divided into two subsets, containing the up and down 
regulated genes respectively. Also, the gene ids of the 
genes in this two subsets were converted from symbol to 
probe id (when more than a probe belonged to the same 
gene, all of them were added). Next the two subsets of 
genes were used as input to run CM02. The top 5 resulting 
drugs were selected, but only if the number of instances 
was higher greater or equal to 5 (or in other words, that 
had been tested at least 5 times varying the concentration, 
the cell-line or the batch). If any of this drugs had as target 
one of the modules identified in the enrichment analysis or 
had been related to it, the module was scored positively.

Mutual exclusivity test

We first manually selected genes within the PIK3CA 
pathway finalizing with signalling through MTOR. Then, to 
visualize and assess the significance of the mutual exclusivity 
of alterations of these genes, we once again employed 
Gitools [34] built-in capabilities. After automatically sorting 
the genes following the mutually exclusive pattern of their 
alterations, we carried out the Mutex test implemented in 
Gitools which permutes the alterations observed in each 
gene in the set across the samples in the cohort respecting the 
observed probability of alterations in each of them. Then, it 
assesses the likelihood that the number of samples affected 
by the observed pattern of alterations appeared by chance by 
comparing it to those resulting from the permutations and 
computing an empirical P-value.

Testing the sensitivity of MLL2-knocked down 
cells to everolimus

Compounds

Everolimus was purchased from Sigma-Aldrich.
Cell culture

Human T24 cell line was obtained from the 
American Type Culture Collection (Manassas, VA, 
USA). Cells were maintained in DMEM medium 
supplemented with 10% heat-inactivated fetal bovine 
serum, penicillin (100 IU ml−1), streptomycin (100 
mg×ml−1) and 4 mM glutamine (ICN, Irvine, UK) in a 
humified atmosphere of 95% air and 5% CO2 at 37°C. 
For lentiviral infection, HEK293T cells were used to 
produce viral particles. Cells were transfected (day 
0) by adding drop-wise NaCl together with a DNA 
mixture comprising 50% pLKO-shControl/shKMT2D 
(Mission library Sigma SHCLNG-NM_003482), 10% 

pCMV-VSVG, 30% pMDLg/pRRE and 10% pRSV rev 
and polyethylenimine polymer (Polysciences Inc) that 
were preincubated for 15 min at room temperature. The 
transfection medium was replaced with fresh medium 
after 24 h (day 1), and the cell-conditioned medium at 
day 2 was filtered and used to infect target cells with 8 
μg/mL polybrene. HEK293T cells were incubated with 
fresh medium for further 24 h, and a second infection 
with the conditioned medium and polybrene was 
performed on day 3. Infected cells were selected with 
puromycin for 72 h (2 μg/mL).

RNA analysis by quantitative RT-PCR 
(qRT-PCR)

After RNA extraction with TRIzol® reagent 
(Invitrogen), RNA was retrotranscribed with the 
transcription first-strand cDNA synthesis kit (Roche), 
and real-time quantitative PCR experiments were done in 
a Light Cycler PCR machine (Roche). This was used to 
verify the efficiency of the MLL2 KD.

Cell survival assay

Cells (5×104 cells per well) were grown in 24-
well plates and exposed to 100nM of the drug. The 
percentage of cell growth was determined using the 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro- 
mide (MTT) assay according to the manufacturer’s 
instructions.

Western blot analysis

Total cell lysates were obtained from cell cultures. 
Protein extracts were resolved by 10% SDS–PAGE and 
probed with anti-human, polyclonal P-Akt Thr308 (#9275, 
Cell Signaling), Akt (#9272, Cell Signaling), P-4E-BP1 
Thr37/46 (#9459, Cell Signaling), 4E-BP1 (#9452, Cell 
Signaling) and Tubulin (T9026, Sigma) antibodies. 
Immunoreactive proteins were visualised by enhanced 
chemiluminescence (Pierce, Rockford, IL, USA).

ACKNOWLEDGMENTS

AGP is supported by a Ramon y Cajal scholarship.

CONFLICTS OF INTEREST

None to declare.

GRANT SUPPORT

AGP is supported by a Ramon y Cajal grant (RYC-
2013-14554), funded by the Spanish Ministry of Economy, 
which also supports the publication of this article.



Oncotarget30758www.impactjournals.com/oncotarget

REFERENCES

1. Rubio-Perez C, Tamborero D, Schroeder MP, Antolín AA, 
Deu-Pons J, Perez-Llamas C, Mestres J, Gonzalez-Perez 
A, and Lopez-Bigas N. In Silico Prescription of Anticancer 
Drugs to Cohorts of 28 Tumor Types Reveals Targeting 
Opportunities. Cancer Cell. 2015; 27: 382–396. doi: 
10.1016/j.ccell.2015.02.007.

2. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, 
Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander 
ES, and Getz G. Discovery and saturation analysis of cancer 
genes across 21 tumour types. Nature. 2014; 505: 495–501. 
doi: 10.1038/nature12912.

3. Hanahan D, and Weinberg RA. Hallmarks of cancer: the 
next generation. Cell. 2011; 144: 646–7doi: 10.1016/j.
cell.2011.02.013.

4. Vogelstein B, Papadopoulos N, Velculescu VE, 
Zhou S, Diaz LA, and Kinzler KW. Cancer genome 
landscapes. Science. 2013; 339: 1546–5doi: 10.1126/
science.1235122.

5. Papamichos-Chronakis M, and Peterson CL. Chromatin and 
the genome integrity network. Nature Reviews Genetics. 
2013; 14: 62–75. doi: 10.1038/nrg3345.

6. Weissman B, and Knudsen KE. Hijacking the chromatin 
remodeling machinery: impact of SWI/SNF perturbations 
in cancer. Cancer Research. 2009; 69: 8223–8230. doi: 
10.1158/0008-5472.CAN-09-2166.

7. Shain AH, and Pollack JR. The Spectrum of SWI/SNF 
Mutations, Ubiquitous in Human Cancers. PLoS ONE. 
2013; 8: e55119. doi: 10.1371/journal.pone.0055119.

8. Gonzalez-Perez A, Jene-Sanz A, and Lopez-Bigas N. The 
mutational landscape of chromatin regulatory factors across 
4,623 tumor samples. Genome Biology. 2013; 14: r106. doi: 
10.1186/gb-2013-14-9-r106.

9. The Cancer Genome Atlas Research Network. 
Comprehensive genomic characterization defines human 
glioblastoma genes and core pathways. Nature. 2008; 455: 
1061–1068. doi: 10.1038/nature07385.

10. Barretina J, Caponigro G, Stransky N, Venkatesan K, 
Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, 
Sonkin D, Reddy A, Liu M, Murray L, et al. The Cancer 
Cell Line Encyclopedia enables predictive modelling of 
anticancer drug sensitivity. Nature. 2012; 483: 603–307. 
doi: 10.1038/nature11003.

11. Lamb J. The Connectivity Map: a new tool for biomedical 
research. Nature Reviews Cancer. 2007; 7: 54–60. doi: 
10.1038/nrc2044.

12. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis 
K, Sivachenko A, Carter SL, Stewart C, Mermel CH, 
Roberts SA, Kiezun A, Hammerman PS, McKenna A, et al. 
Mutational heterogeneity in cancer and the search for new 
cancer-associated genes. Nature. 2013; 499: 214–8. doi: 
10.1038/nature12213.

13. Gonzalez-Perez A, and Lopez-Bigas N. Functional impact 
bias reveals cancer drivers. Nucleic Acids Research. 2012; 
40: e169. doi: 10.1093/nar/gks743.

14. Tamborero D, Gonzalez-Perez A, and Lopez-Bigas N. 
OncodriveCLUST: exploiting the positional clustering of 
somatic mutations to identify cancer genes. Bioinformatics. 
2013; 29: 2238-44. doi: 10.1093/bioinformatics/btt395

15. Futreal A, Coin L, Marshall M, Down T, Hubbard T, 
Wooster R, Rahman N, and Stratton MR. A census of 
human cancer genes. Nature Reviews Cancer. 2004; 4: 
177–183. doi: 10.1038/nrc1299.

16. Tamborero D, Gonzalez-Perez A, Perez-Llamas C, Deu-Pons 
J, Kandoth C, Reimand J, Lawrence MS, Getz G, Bader GD, 
Ding L, and Lopez-Bigas N. Comprehensive identification 
of mutational cancer driver genes across 12 tumor types. 
Scientific Reports. 2013; 32650. doi: 10.1038/srep02650.

17. Schroeder MP, Rubio-Perez C, Tamborero D, Gonzalez-
Perez A, and Lopez-Bigas N. OncodriveROLE classifies 
cancer driver genes in loss of function and activating mode 
of action. Bioinformatics. 2014; 30: i549–55. doi: 10.1093/
bioinformatics/btu467.

18. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land 
S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, 
Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov 
B, et al. TRANSFAC and its module TRANSCompel: 
transcriptional gene regulation in eukaryotes. Nucleic 
acids research. 2006; 34:D108–10. doi: 10.1093/nar/
gkj143.

19. Kanehisa M, and Goto S. KEGG: kyoto encyclopedia of 
genes and genomes. Nucleic Acids Research. 2000; 28: 
27–30. doi: 10.1093/nar/28.1.27.

20. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, 
Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal 
B, Jupe S, Matthews L, et al. The Reactome pathway 
knowledgebase. Nucleic acids research. 2014; 42: D472–7. 
doi: 10.1093/nar/gkt1102.

21. Subramanian A, Kuehn H, Gould J, Tamayo P, and Mesirov 
JP. GSEA-P: a desktop application for Gene Set Enrichment 
Analysis. Bioinformatics. 2007; 23: 3251–3253. doi: 
10.1093/bioinformatics/btm369.

22. Liberzon A. A description of the Molecular Signatures 
Database (MSigDB) Web site. Methods in molecular biology. 
2014; 1150153–60. doi: 10.1007/978-1-4939-0512-6_9.

23. Gundem G, and Lopez-Bigas N. Sample level enrichment 
analysis (SLEA) unravels shared stress phenotypes among 
multiple cancer types. Genome Medicine. 2012; 4: 28. doi: 
10.1186/gm327.

24. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis 
K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, 
McKenna A, Shefler E, Ramos AH, Stojanov P, et al. The 
Mutational Landscape of Head and Neck Squamous Cell 
Carcinoma. Science. 2011; 333: 1157–1160. doi: 10.1126/
science.1208130.



Oncotarget30759www.impactjournals.com/oncotarget

25. Doghman M, Figueiredo BC, Volante M, Papotti M, 
and Lalli E. Integrative analysis of SF-1 transcription 
factor dosage impact on genome-wide binding and gene 
expression regulation. Nucleic Acids Research. 2013; 41: 
8896–907. doi: 10.1093/nar/gkt658.

26. Martin D, Abba MC, Molinolo AA, Vitale-Cross L, 
Wang Z, Zaida M, Delic NC, Samuels Y, Lyons GJ, and 
Gutkind JS. The head and neck cancer cell oncogenome: 
A platform for the development of precision molecular 
therapies. Oncotarget. 2014; 5: 8906–8923. doi: 10.18632/
oncotarget.2417.

27. Kerimoglu C, Agis-Balboa RC, Kranz A, Stilling R, 
Bahari-Javan S, Benito-Garagorri E, Halder R, Burkhardt 
S, Stewart AF, and Fischer A. Histone-methyltransferase 
MLL2 (KMT2B) is required for memory formation in 
mice. The Journal of neuroscience. 2013; 33: 3452–64. doi: 
10.1523/JNEUROSCI.3356-12.2013.

28. Dayalan Naidu S, Kostov R V, and Dinkova-Kostova AT. 
Transcription factors Hsf1 and Nrf2 engage in crosstalk for 
cytoprotection. Trends in pharmacological sciences. 2015; 
36: 6–14. doi: 10.1016/j.tips.2014.10.011.

29. Engelmann D, and Pützer BM. The dark side of E2F1: in 
transit beyond apoptosis. Cancer Research. 2012; 72: 571–
5. doi: 10.1158/0008-5472.CAN-11-2575.

30. The Cancer Genome Atlas Research Network. 
Comprehensive molecular characterization of human colon 
and rectal cancer. Nature. 2012; 487: 330–7. doi: 10.1038/
nature11252.

31. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, 
Butler A, Davies H, Edkins S, Hardy C, Latimer C, Teague J, 
Andrews J, Barthorpe S, et al. Systematic sequencing of renal 
carcinoma reveals inactivation of histone modifying genes. 
Nature. 2010; 463: 360–363. doi: 10.1038/nature08672.

32. Dong LH, Cheng S, Zheng Z, Wang L, Shen Y, Shen ZX, 
Chen SJ, and Zhao WL. Histone deacetylase inhibitor 
potentiated the ability of MTOR inhibitor to induce 
autophagic cell death in Burkitt leukemia/lymphoma. 
Journal of hematology & oncology. 2013; 6: 53. doi: 
10.1186/1756-8722-6-53.

33. Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, 
Tamborero D, Schroeder MP, Jene-Sanz A, Santos A, and 
Lopez-Bigas N. IntOGen-mutations identifies cancer drivers 
across tumor types. Nature Methods. 2013; 10: 1081–2. doi: 
10.1038/nmeth.2642.

34. Perez-Llamas C, and Lopez-Bigas N. Gitools: analysis 
and visualisation of genomic data using interactive heat-
maps. PloS One. 2011; 6: e19541. doi: 10.1371/journal.
pone.0019541.


