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AbstrAct
Herein, we aimed at identifying global transcriptome microRNA (miRNA) changes 

and miRNA target genes in lung adenocarcinoma. Samples were selected as training (N 
= 24) and independent validation (N = 34) sets. Tissues were microdissected to obtain 
>90% tumor or normal lung cells, subjected to miRNA transcriptome sequencing and 
TaqMan quantitative PCR validation. We further integrated our data with published 
miRNA and mRNA expression datasets across 1,491 lung adenocarcinoma and 455 
normal lung samples. We identified known and novel, significantly over- and under-
expressed (p ≤ 0.01 and FDR≤0.1) miRNAs in lung adenocarcinoma compared to 
normal lung tissue: let-7a, miR-10a, miR-15b, miR-23b, miR-26a, miR-26b, miR-29a, 
miR-30e, miR-99a, miR-146b, miR-181b, miR-181c, miR-421, miR-181a, miR-574 and 
miR-1247. Validated miRNAs included let-7a-2, let-7a-3, miR-15b, miR-21, miR-155 
and miR-200b; higher levels of miR-21 expression were associated with lower patient 
survival (p = 0.042). We identified a regulatory network including miR-15b and miR-
155, and transcription factors with prognostic value in lung cancer. Our findings may 
contribute to the development of treatment strategies in lung adenocarcinoma.
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INtrODUctION

Global incidence data for cancers of the lung, 
bronchus and trachea estimates the occurrence of >1.8 
million new cases with >1.5 million deaths every year, 
worldwide [1]. In the United States, 2012 incidence 
data for non-small cell cancers of the lung and bronchus 
estimated the occurrence of 41.48/100,000 new cases 
with an annual death rate of 44.96/100,000 individuals. 
The 5-year relative survival was ~22% from 2005-2011, 
indicating that lung cancer remains as a leading cause of 
cancer death [2]. A new histopathological classification of 
lung cancer has been established, as treatment strategies 
for patients with advanced disease should rely on 
histology and tumor molecular genotyping. Among the 
two major histological types, Non-Small Cell Lung Cancer 
(NSCLC) comprise the majority (~85%) of cases and is 
divided into histological subtypes, the most common being 
adenocarcinoma. Invasive lung adenocarcinoma is further 
classified by histological subtyping analysis, to determine 
its predominant histological pattern of lepidic, acinar, 
papillary, micropapillary or solid; a micropapillary pattern 
has been associated with poor prognosis [3].

Advances in the treatment of patients with lung 
adenocarcinoma were made with the introduction of 
molecularly targeted approaches, such as the use of 
tyrosine-kinase inhibitors for patients with tumors 
containing activating, sensitizing EGFR mutations [4] and 
Crizotinib for ALK rearrangements [5]. Recent data from 
The Cancer Genome Atlas (TCGA) [6] and The Lung 
Cancer Mutation Consortium (LCMC) [7] demonstrated 
the importance of tumor genotyping in therapeutic 
decision for patients with lung adenocarcinoma. LCMC 
data showed that actionable mutations in genes such as 
EGFR, K-RAS, N-RAS, ALK, ERBB2, BRAF, PIK3CA, 
AKT, MEK1 and MET amplification, were found in 
>60% of lung adenocarcinomas and patients who 
received treatment guided by tumor genotyping lived 
longer compared to patients who did not receive targeted 
treatment [7]. Moreover, candidate driver mutations were 
found in TP53, KEAP1, NF1 and RIT1 in tumors lacking 
oncogene mutations [6]. Identification of genetic drivers is 
thus essential to establish efficient tumor genotyping at the 
diagnostic level, in order to tailor patient treatment.

Although several studies have identified driver 
mutations with a therapeutic role in lung adenocarcinoma, 
~40% of such changes are yet unidentified [8-10]. As 
molecularly targeted approaches have benefited a fraction 
of patients with specific tumor histology classification 
and genetics, the need remains to identify new targets for 
further improving treatment decisions.

miRNAs are small, non-coding RNAs (~18-22 
nucleotides) transcribed from DNA and with a role in 
gene expression regulation mainly leading to translational 
repression [11]. miRNAs play roles in multiple biological 
processes, such as embryonic development, cell 

proliferation and differentiation [11] and tumorigenesis, 
acting as oncogenes and tumor suppressor genes [12]. 
Deregulated miRNA expression has been associated with 
lung tumorigenesis [13-15]. To the best of our knowledge, 
ours is the first study on global transcriptome miRNA 
sequencing of lung adenocarcinoma from Brazilian 
patients, extending to validation in an independent sample 
set as well as across multiple high-throughput miRNA 
and gene expression datasets. By using stringent criteria 
on sample selection and data analysis, we were able to 
identify novel miRNAs that are deregulated exclusively 
in tumors and thus related to tumorigenesis.

rEsULts

Deregulated expression of miRNAs identified by 
mirNA-sequencing (mirNA-seq)

miRNA-Seq generated 13,135,522 reads with an 
average of 547,313 reads/sample. FastQC quality test 
showed that 96.1% (12,623,236.642) of reads had a 
Q-score ≥30 and were thus considered for further analyses. 
Overall unpaired sample analysis showed that 11 miRNAs 
were statistically significantly (p ≤ 0.01 and FDR ≤ 0.1) 
deregulated, including miR-486 under-expression and let-
7a-2, let-7g, miR-15b, miR-181b-1, miR-181b-2, miR-
23b, miR-26a-1, miR-26a-2, miR-26b and miR-93 over-
expression in the tumor compared to normal tissues. In 
addition, a paired-sample analysis (tumor and normal from 
same patients) showed that 22 miRNAs were statistically 
significantly deregulated (p ≤ 0.01; FDR ≤ 0.1); 8 
miRNAs (miR-486, miR-1247, miR-218-1, miR-181a-1, 
miR-181a-2, miR-328, miR-574 and miR-886) were 
down-regulated and 14 miRNAs (let-7a-3, miR-146b, 
miR-26a-1, miR-200b, miR-191, miR-181c, miR-10a, 
miR-155, miR-99a, miR-30e, miR-21, miR-425, miR-29a 
and miR-421) were up-regulated in the tumor compared 
to the normal tissue from the same patient. Notably, 
deregulated expression of miR-486 and miR-26a-1 were 
detected in both analyses (unpaired and paired samples), 
considering filtering criteria of p ≤ 0.01 and FDR ≤ 0.1. 
Statistically significantly deregulated miRNAs identified 
in unpaired and paired samples are shown in Table 1.

Experimental design and data analysis steps are 
outlined in Figure 1.

Integrative analyses of our data with published 
datasets

Differentially expressed miRNAs identified herein 
were integrated with previously published datasets. We 
found deregulated miRNAs that were also consistently 
reported by previous studies (we refer to these as 
“known”): 2 over-expressed: miR-21, miR-191 and 2 
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under-expressed: miR-218 and miR-486. Additionally, 
we identified deregulated miRNAs that were previously 
reported by at least one study (we refer to these as 
“reported”): 5 over-expressed: let-7g, miR-93, miR-155, 
miR-200b and miR-425, and 1 under-expressed: miR-328. 
The remaining deregulated miRNAs we identified have 
not been previously reported in lung adenocarcinoma 
compared to normal lung tissue (we refer to these as 
“novel”): 13 over-expressed: let-7a, miR-10a, miR-15b, 
miR-23b, miR-26a, miR-26b, miR-29a, miR-30e, miR-
99a, miR-146b, miR-181b, miR-181c, miR-421 and 3 
under-expressed: miR-181a, miR-574 and miR-1247. 

Statistical significance of overlap between our findings 
and consistently appearing miRNA reports was evaluated 
by hypergeometric test, resulting in p = 7.46E-5 and 
p = 1.48E-6 for over- and under-expressed miRNAs, 
respectively.

miRNA-gene targets network

Next, we analyzed deregulated miRNAs and 
validated consistency of differential expression of their 
targets. Comparison of our data with multiple publicly 

Table 1: Deregulated miRNAs in lung adenocarcinoma compared to normal lung tissues in unpaired and 
paired sample analysis.
mirNA LogFc P-value FDr
Unpaired samples
miR-486 -1.635 0.0004 0.0689
let-7g 0.8879 0.0015 0.0689
miR-15b 0.9831 0.0004 0.0689
miR-181b-2 0.9887 0.0009 0.0689
miR-23b 0.9479 0.0014 0.0689
miR-26a-1 0.9756 0.0014 0.0689
miR-26a-2 0.9595 0.0013 0.0689
miR-26b 1.0565 0.0009 0.0689
miR-93 1.203 0.0005 0.0689
let-7a-2 0.8844 0.0025 0.1052
miR-181b-1 0.9221 0.0027 0.1052
Paired samples
miR-486 -2.5430 8.8276E-12 1.805E-09
miR-1247 -2.6582 0.0003 0.0033
miR-218-1 -1.6175 0.0001 0.0043
miR-181a-2 -1.1145 0.0002 0.0079
miR-328 -1.4708 0.0004 0.0108
miR-181a-1 -1.1444 0.0006 0.0147
miR-574 -1.1719 0.0036 0.0503
miR-886 -1.3187 0.0046 0.0575
let-7a-3 0.4856 3.2638E-264 5.1692E-262
miR-146b 0.7012 0.0005 0.0147
miR-26a-1 0.7382 0.0043 0.0551
miR-200b 1.0898 0.0072 0.0864
miR-191 1.0935 0.0018 0.0307
miR-181c 1.1230 0.0041 0.0551
miR-10a 1.2858 0.0009 0.0208
miR-155 1.3089 0.0029 0.0418
miR-99a 1.4447 0.0028 0.0418
miR-30e 1.4926 0.00002 0.0011
miR-21 1.5219 0.0028 0.0418
miR-425 1.6206 0.0076 0.0005
miR-29a 1.6488 0.0001 0.0043
miR-421 1.7648 0.0085 0.0993

LogFC = log (base 2)fold change; FDR = false discovery rate. FDR ≤ 0.1, p ≤ 0.01. 
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available gene expression datasets allowed us to identify 
consistently deregulated genes in lung adenocarcinoma 
compared to normal lung tissues. We then assembled 
an interaction network between deregulated miRNAs 
and their target genes, including transcription factors 
participating on these interactions. We then analyzed 
statistical significance of enrichment of the downstream/
upstream neighborhoods of order 2 (n2

down/n
2

up) of 
deregulated miRNAs/genes by deregulated genes/
miRNAs. Since miRNAs act mainly as inhibitors, for 
down-regulated miRNAs only up-regulated genes were 
taken into consideration and for up-regulated miRNAs 
only down-regulated genes were considered. 

Recently, it has been shown that biological 
pathways, or Gene Ontology (GO) terms may be falsely 
identified as significantly enriched even by target genes 
of randomly selected miRNAs [16, 17]. This effect 
originates from knowledge bias, due to which miRNA-
target pairs are discovered (e.g. computationally predicted) 
with a higher rate if the miRNA or target gene is known 
to be associated with specific biological processes (e.g. 
cell cycle) or diseases (e.g. cancer). Therefore, the rates 
of false positive and false negative (missing) miRNA-
target predictions are not distributed equally among the 
genes/miRNAs and depend on their biological properties, 
leading to accumulation of false predictions within 
certain biological contexts [16]. We assume that this 
problem is not affecting the results of the two enrichment 
analyses described above, since rates of false predictions 
are presumably equal among the deregulated vs. non-
deregulated miRNAs/target genes, which were identified 
experimentally and validated in independent sample 

cohorts.
We identified 11 miRNAs whose n2

down is 
significantly enriched (p < 0.05) by deregulated genes; 
deregulation of these miRNAs may play an important 
role in lung adenocarcinoma, leading to gene expression 
changes. Some of these miRNAs are consistently reported 
(miR-21, miR-191), or have been reported at least once 
(miR-200b, miR-93). The remaining miRNAs: miR-
15b, miR-23b, miR-29a, miR-30e, miR-146b, miR-181c 
are novel. We have applied two thresholds for statistical 
significance in order to identify genes whose upstream 
neighborhood was significantly enriched by deregulated 
miRNAs. Interestingly, we identified 705 genes whose 
n2

up was significantly enriched (p < 0.05) by deregulated 
miRNAs. Out of these 705 genes, we identified 148 
genes whose n2

up was significantly enriched (p < 0.001), 
involving at least two deregulated miRNAs. It is therefore 
reasonable to assume that deregulation of these 148 
genes may be due to the differential expression of their 
regulating miRNAs. The list of 148 genes is provided 
in Supplementary Table S1. Next, in order to construct 
the physical protein-protein interaction PPI network (as 
described below), we enforced the presence of at least two 
deregulated miRNAs in the upstream neighborhood of 
each of the 148 genes. 

Protein-protein interaction networks in lung 
adenocarcinoma, linking deregulated miRNA 
target genes

Using the 148 genes (miRNA-deregulated 
targets; Supplementary Table S1) we constructed the 

Figure 1: Experimental design.
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corresponding physical protein-protein network (see 
Methods). Resulting PPI network (Supplementary Figure 
S1) comprised 4,324 nodes, among which 469 (p = 
0.036, random network generation) comprise a list of 
“prognostic genes”, which are genes derived from lung 
prognostic signatures, downloaded from Cancer Data 
Integration Portal (CDIP) database (http://ophid.utoronto.
ca/cdip), and used earlier in [12]. We found that 58/148 
genes were directly connected by PPIs (p = 0.044, random 
network generation), showing that miRNA-deregulated 
targets are tightly connected on the PPI level. These 
miRNAs are highly interconnected in the PPI networks, 
coordinating the expression of several different proteins 
(Supplementary Figure S2).

Validation of deregulated expression of novel and 
known miRNAs in lung adenocarcinoma

TaqMan PCR validation was performed for all 
significantly deregulated miRNAs in an independent set 
of 22 lung adenocarcinoma samples and 12 normal lung 
tissues. Fourteen miRNAs showed concordant levels of 
expression between miRNA-Seq and TaqMan PCR data 
(Table 2). 5/14 miRNAs were under-expressed (miR-486, 
miR-181a-1, miR-181a-2, miR-218-1 e miR-886) and 9 
were over-expressed (let-7a-2, let-7a-3, let-7g, miR-15b, 
miR-26b, miR-200b, miR-155, miR-21, miR-425). 6/14 
miRNAs; let-7a-2, let-7a-3, miR-15b, miR-200b, miR-155 

and miR-21 were statistically significantly deregulated (p 
≤ 0.01; FDR ≤ 0.1) in tumor compared to normal in both 
miRNA-Seq and TaqMan PCR analyses (Table 2). 

Statistically significant correlations were identified 
between female gender and over-expression of let-7a-2 
(p = 0.0062), let-7a-3 (p = 0.0052) and miR-15b (p = 
0.0294). Over-expression of let-7a-2, let-7a-3 and miR-
15b was associated with poorly differentiated tumors (p 
= 0.0245). Interestingly, miR-21 levels were higher in 
tumors from patients who died of disease compared to 
patients who are alive with disease (p = 0.042) (Figure 2). 

DIscUssION

Herein, by applying stringent criteria to our 
miRNA-Seq and TaqMan PCR analyses, we identified 
and validated deregulated expression of miRNAs let-
7a-2, let-7a-3, miR-15b, miR-21, miR-155 and miR-
200b in lung adenocarcinoma compared to histologically 
normal lung tissues. Integrative analyses of our results 
allowed us to identify consistently deregulated miRNAs 
in lung adenocarcinoma across different high-throughput 
published datasets. We identified deregulated miRNAs that 
have not been previously reported in lung adenocarcinoma. 
The identification of novel miRNAs was possible mainly 
due to the use of very stringent sample selection criteria, 
having at least 90% of tumor or normal cells in the tissues 
used for deep sequencing and validation analyses. Among 

Table 2: Deregulated miRNAs in both miRNA-Seq and TaqMan PCR analyses.

mirNA
mirNA-seq
logFc P-value mirNA

tLDA
logFc P-value

let-7a-2 0.8844 0.0025 let-7a 2.3601 0.000*
let-7a-3 0.4856 3.2638E-264 let-7a 2.3601 0.000*
miR-15b 0.9831 0.0004 miR-15b 2.4022 0.000*
miR-200b 1.0898 0.0072 miR-200b 1.9404 0.000*
miR-21 1.5219 0.0028 miR-21 2.6311 0.001*
miR-155 1.3089 0.0029 miR-155 1.3294 0.010*
miR-486 -1.635 0.0004 miR-486 -3.9434 0.084
miR-181a-1 -1.1444 0.0006 miR-181a -0.8625 0.140
miR-181a-2 -1.1145 0.0002 miR-181a -0.8625 0.140
let-7g 0.8879 0.0015 let-7g 0.3918 0.143
miR-26b 1.0565 0.0009 miR-26b 0.5597 0.224
miR-218-1 -1.6175 0.0001 miR-218 -1.4699 0.386
miR-886 -1.3187 0.0046 miR-886-3p -1.1746 0.482
miR-425 1.6206 0.0076 miR-425-5p 0.1190 0.906

Test sample set: p ≤ 0.01 and FDR ≤ 0.1, as determined by EdgeR software.
Validation sample set: p ≤ 0.01 as determined by Expression Suite software.
*Statistically significantly deregulated miRNAs identified in both test and validation sets by transcriptome 
sequencing and TaqMan PCR analyses.
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the novel miRNAs, let-7a and miR-15b were identified 
and validated in an independent sample set. Deregulated 
miRNAs including novel, known and reported miRNAs 
(let-7a-2, let-7a-3, miR-15b, miR-21, miR-155 and miR-
200b) act by silencing the expression of tumorigenesis-
related genes.

Although validation data for other miRNAs was not 
statistically significant, both miRNA-Seq and TaqMan 
data showed concordant levels of miRNA expression in 
tumors compared to normal tissues. This lack of statistical 
significance may be due to differences in sample sources 
(fresh-frozen vs. formalin-fixed, paraffin embedded FFPE 
tissues) used for sequencing and validation analyses, 
respectively. FFPE tissues represent a valuable resource 
for cancer studies, as these samples can provide long-term 
patient follow-up, including information on treatment 
response and survival. Although formalin fixation causes 
nucleic acid degradation and cross linking of proteins to 
DNA, several studies reported useful and reproducible 
molecular genetic data using FFPE compared to 
frozen samples [18, 19]. This is likely due to improved 
RNA extraction protocols designed for FFPE tissues. 
Additionally, as miRNAs are small molecules and 
protected by the RISC complex, they are less susceptible 

to degradation [20, 21]. A previous study showed that the 
TaqMan Human MicroRNA Array platform is suitable for 
analysis of FFPE tissues with high reproducibility (r = 
0.95 between duplicates, p < 1e-5) [22]. Therefore, proper 
use of both frozen and FFPE tissues and controls is an 
important sample resource to improve statistical power in 
discovery and validation studies.

Our results showed increased levels of let-7a 
variants (let-7a2 and let-7a3) in lung adenocarcinoma. 
As let-7 family of miRNAs (let-7a, b, c, d, e, f, g and i) 
has been reported as under-expressed and suggested to 
repress cancer cell growth and proliferation, including 
lung squamous cell carcinoma [23-25], it remains to 
be investigated whether increased expression levels of 
let-7 family could have a role in lung adenocarcinoma. 
Landi et al. [26] showed higher levels of let-7 family 
members in adenocarcinoma compared to squamous cell 
carcinoma subtype. Considering let-7 tumor suppressive 
functions, let-7 family members may influence mostly 
lung squamous cell carcinoma than adenocarcinoma. 
Additionally, differential expression levels of let-7 family 
distinguished lung adenocarcinoma from squamous cell 
carcinoma [26]. Our data confirmed that increased let-7a 
levels may be specific to the adenocarcinoma subtype.

Figure 2: Kaplan-Meier survival analysis. Patients (training set) with tumors showing higher than average miR-21 expression levels 
had significantly poorer survival compared to patients who are alive.
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miR-15b over-expression was detected in the blood 
of patients with NSCLC and deregulated expression of 
miR-15b and miR-27b, combined, was able to distinguish 
patients with NSCLC from healthy individuals [27]. Novel 
miRNAs identified herein, including let-7a and miR-15b 
were correlated with lung adenocarcinoma compared 

with lung squamous cell carcinoma. Interestingly, miR-
15b/16-2 up-regulation was shown to activate genes 
involved in DNA repair pathways; PPM1D (WIP1; wild-
type p53-induced phosphatase 1) was shown as a direct 
target of miR-15b, suggesting that DNA damage response 
by miR-15b may be partially modulated by PPM1D 

Table 3: Clinical and histopathological data of patients (training and validation sets). 

Variables Total Number 
(training) N (%) Total Number

 (validation) N (%) p-value

Age (years)   
Median (range) 66.8 (43-83)  58.0 (10-84)
Mean 65  60.5 0.30
Gender   
Male 8 47 12 55
Female 9 53 10 45 0.64
Tobacco use  
Yes 10 59 15 68
No 7 41 7 32 0.55
Alcohol use  
Yes 5 29 7 32
No 12 71 15 68 0.87
Histology   
Adenocarcinoma 17 100 22 100 1.00
tumor grade   
Well differentiated 2 12 1 4
Moderately differentiated 11 65 14 64
Poorly differentiated 4 23 7 32 0.64
T category   
T1-T2 15 88 13 59
T3-T4 2 12 9 41 0.05
Nodal status   
Negative (N0) 12 71 11 50
Positive (N1, N2, N3) 5 29 11 50 0.20
Distant metastasis   
Yes 4 24 2 9
No 13 76 20 91 0.22
tumor stage   
Ia/Ib, IIa/IIb 13 76 12 55
IIIa/IIIb, IV 4 24 10 45 0.16
Outcome   
Alive with disease 7 42 10 45
Dead of disease 10 58 12 55 0.79

There are no statistically significant differences between clinical characteristics of patients in the training and 
validation sets.
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inhibition [28]. PPM1D encodes a serine/threonine 
phosphatase that plays a role in dephosphorylation of 
several DNA damage-response proteins such as ATM, 
ATR, p38MAPK, CHK1 and CHK2 [29]. MAPK and 
PI3K pathways activation was associated with known 
mutations in a small fraction of lung adenocarcinomas, 
suggesting other mechanisms of pathway activation 
during tumorigenesis [6], which could include post-
transcriptional regulation by miRNAs.

Over-expression of miR-21 and mir-200b was 
detected in tumor and sputum of patients with early stage 
lung adenocarcinoma; a 4-miRNA signature (including 
miR-21 and miR-200b) distinguished patients with 
adenocarcinoma and squamous cell carcinoma from 
healthy individuals, with higher specificity and sensitivity 
for the adenocarcinoma subtype [30]. Interestingly, miR-
21 over-expression and PTEN protein under-expression 
were associated with low sensibility to TKIs Gefitinib 
or Erlotinib and low survival of patients with NSCLC. 
Increased miR-21 and decreased PTEN expression was 
detected in Gefitinib-resistant cell lines with a reduced 
sensibility to Gefitinib due to PTEN inhibition and AKT/
ERK activation while miR-21 inhibition was able to 
restore sensitivity to treatment [31]. We found that higher 
miR-21 levels were significantly associated with poorer 
patient survival. miR-21 has been identified as over-
expressed in glioblastoma and to play a role in apoptosis, 
since suppression of miR-21 triggered activation of 
caspases 3 and 7 and increased programmed cell death in 
glioblastoma cells [32] thus demonstrating that miR-21 
over-expression contributes to glioblastoma oncogenesis 
by silencing apoptosis-related genes. 

miRNAs regulate pathways associated with disease 
progression and metastasis, such as TGF-β signaling, 
which activates transcription factors responsible for 
epithelial to mesenchymal transition (EMT). miR-200 
family plays an important role in EMT through inhibition 
of CDH1, ZEB1 and ZEB2 (Zinc finger E-box binding 
homeobox) [33]. miR-200b over-expression inhibited 
the transcriptional repressor ZEB2 and CDH1 in breast 
carcinoma cells. ZEB2 cooperates with TGF-β signaling 
and EMT through CDH1 [34]. Although ZEB1/CDH1 are 
repressed by miR-200b, restoration of ZEB1 expression 
in breast cancer cells expressing miR-200b was unable to 
modify their metastatic potential, suggesting additional 
mechanisms underlying metastasis [35].

Wnt/β-catenin signaling has been associated with 
miR-155 in liposarcoma; CK1α (casein kinase 1α), a 
key regulator of Wnt/β-catenin pathway, is targeted by 
miR-155, leading to β-catenin signaling and CCND1 
activation, cell proliferation and liposarcoma progression 
[36]. miR-155 up-regulation has been reported in lung 
adenocarcinoma [37], detected in serum from patients 
with advanced-stage (IV) NSCLC and associated with 
low patient survival [38]. miR-155 may be a potential 
therapeutic target in cancer, as in vitro and in vivo 

data showed efficient delivery of anti-miR-155 in a 
hepatocellular carcinoma cell line [39]. miRNAs control 
gene expression either directly [40] or indirectly by 
targeting its upstream transcription factors. We showed a 
complex miRNA-transcription factor regulatory network 
composed, in part, of novel, differentially expressed 
miRNAs (miR-15b, miR-23b, miR-29a, miR-30e, miR-
146b, miR-181b, and miR-181c).

We identified 705 genes which have been 
consistently reported as deregulated in lung 
adenocarcinoma and whose upstream neighborhood was 
significantly enriched by differentially expressed miRNAs. 
Of these 705 genes, 148 genes may be deregulated due to 
the differential expression of their regulatory miRNAs, 
since these genes passed stringent statistical data analysis 
criteria. Notably, 48 of these 148 genes are found in 
lung cancer prognostic signatures identified through the 
Cancer Data Integration Portal (CDIP) database. Among 
the 19 transcription factors identified herein (EGR1, 
AP2C, FLI1, TAL1, GATA2, HMGA1, ERG, JUN, FOS, 
GCR, NFYA, TYY1, MEF2A, VDR, P63, JUND, NF2L2, 
HXA5 and EPAS1), HMGA1 (high mobility group AT-
hook 1) chromatin remodeling protein is highly expressed 
in poorly differentiated, aggressive tumors (reviewed in 
[41]), and has been identified as a lung cancer prognostic 
gene [42]. Increased HMGA1 gene and protein expression 
was identified in NSCLC; HMGA1 protein over-
expression was associated with disease stage, tumor grade, 
T category, nodal status and distant metastasis; patients 
with tumors over-expressing HMGA1 had lower survival 
[43] indicating that HMGA1 may have prognostic value 
in NSCLC.

miRNAs identified herein may be subjected to 
functional validation studies in order to assess their 
individual role in lung tumorigenesis. However, it is 
important to emphasize that functionality measures 
of individual miRNAs may be linked to the global 
functionality and coordinated actions of miRNA-regulated 
gene networks [44].

Our data corroborate known information on 
deregulated expression of miRNAs and identify novel 
deregulated miRNAs in lung adenocarcinoma. Novel 
miRNAs identified in tumors from Brazilian patients 
is a unique aspect of our study. Our data thus provide a 
distinctive and valuable contribution to the understanding 
of miRNA deregulation in lung adenocarcinoma. Our 
findings may lead to further clinical relevance by 
contributing to the development of novel therapeutic 
strategies for patients with lung adenocarcinoma.
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MATERIALS AND METHODS

Ethics statement

This study was performed in accordance with 
the ethical standards and to the Declaration of Helsinki 
and according to national and international guidelines. 
Our study has been approved by the Research Ethics 
Boards of the Faculty of Medicine, UNESP, Botucatu, 
SP (4319/2012), AC Camargo Hospital, São Paulo, SP 
(1573/11) and Barretos Cancer Hospital, Barretos, SP 
(75907). Informed consent was obtained from all patients 
before sample collection.

Patient samples

Inclusion criteria were patients >18 years old, 
histopathological diagnosis of lung adenocarcinoma, 
untreated before surgery. Exclusion criteria were patients < 
18 years old and with diagnosis of other diseases. Samples 
were selected as training and validation sets. Training 
set samples (N = 24) were prospectively collected from 
surgeries performed at AC Camargo Hospital, SP (N = 17 
lung adenocarcinoma samples and 7 histologically normal 
lung tissues from same patients). Prospectively collected 
samples were immediately frozen in liquid nitrogen and 
kept at -80°C until RNA extraction. Validation set samples 
(N = 34) were retrospectively obtained (2000-2012) 
from the Pathology Department, Faculty of Medicine, 
UNESP, Botucatu, SP and Barretos Cancer Hospital, 
Barretos, SP. Validation set samples comprised FFPE 
tissue blocks from lung adenocarcinoma (N = 22) and 
histologically normal lung tissues from same patients (N 
= 12). We aimed at identifying global miRNA expression 
changes in lung adenocarcinoma through transcriptome 
sequencing followed by TaqMan quantitative real-time 
PCR validation. Table 3 shows the detailed clinical and 
histopathological data of patients.

rNA extraction

Fresh-frozen tissues were subjected to frozen 
section analysis, performed by an expert lung pathologist 
(JD), in order to ensure the presence of >90% tumor or 
normal cells in samples collected by surgery. Fresh-
frozen tissue samples were macrodissected, before RNA 
extraction, in order to isolate tumor or normal cells and 
samples were fragmented and lysed using the Precellys 
24 lysing/homogenization system (Berting Technologies, 
Rockville, MD, USA) for 10s at 6,500 rpm. RNA 
extraction was performed using the miRNeasy Mini Kit 
(Qiagen, Hilden, Germany), following the manufacturer’s 
protocol. Samples obtained from FFPE tissue blocks 

were needle microdissected using the stereo microscope 
Leica EZ4 (Leica Microsystems, Wetzlar, Germany) 
before RNA extraction, in order to isolate the target tumor 
or normal cell populations. RNA from FFPE samples 
was isolated using the RecoverAll Total Nucleic Acid 
Isolation kit (Ambion/Life Technologies, Carlsbad, CA, 
USA), following a previously reported protocol with 
modifications to improve RNA yield [45]. RNA samples 
were quantified using NanoDrop 8000 (Thermo Fisher 
Scientific, Waltham, MA, USA) and quality was assessed 
using Bionalyzer 2100 (Agilent Technologies, Santa 
Clara, CA, USA), following the manufacturer´s protocol. 
RNA samples were stored at -80°C until use for library 
preparation.

mirNA transcriptome sequencing (mirNA-seq) 
and bioinformatic data analysis

RNA (1µg) from training set samples (N = 24) 
was used for library preparation, cluster generation and 
miRNA-Seq using the MiSeq system (Illumina, San 
Diego, CA, USA) at the Laboratory of Biotechnology, 
University of São Paulo (USP), Piracicaba, SP. Sequencing 
comprised in vitro cloning of RNA fragments in a solid 
platform. MiSeq platform generated 50bp single-read 
fragments. Briefly, library preparation used the TruSeq 
Small RNA Sample Preparation kit (Illumina, San Diego, 
CA, USA); 1µg RNA was used for adaptor ligation, which 
contains a ligation site for the sequencing primer, used to 
identify samples comprising an RNA pool and another 
ligation site for the flow cell primers, which are used for 
fragment amplification by PCR. cDNA libraries were 
obtained by PCR amplification following 11 cycles of 
98°C for 30s, 98°C for 10s; 60°C for 30s; 72°C for 15s and 
72°C for 10 min. Libraries were subjected to agarose gel 
electrophoresis for miRNA isolation; cDNA samples were 
then ethanol precipitated and quantified using Qubit 2.0 
Fluorometer (Invitrogen/Life Technologies, Carlsbad, CA, 
USA). In the clustering step, fragments ligated to adaptors 
were denatured for double strand separation, allowing 
single strand molecules to bind primers in the flow cell and 
to produce multiple copies of specific fragments by solid 
phase PCR amplification. Transcriptome sequencing was 
performed using the MiSeq Reagent Kit v2 (50 cycles). 
All steps followed the manufacturer´s instructions.

Data analysis included reads quality assessment 
using FastQC [46] and reads cleaning assessment by 
CutAdapt [47]. Reads alignment was performed based 
on hg19 reference genome (https://genome.ucsc.edu/cgi-
bin/hgTracks?hgsid=12832096&chromInfoPage=) using 
Bowtie1 [48] followed by HT-Seq [49] for annotation and 
quantification of aligned sequences. Data normalization 
[50] and miRNA differential expression analysis were 
performed using edgeR (Bioconductor/R) v.3.0 [51-53].
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Integrative bioinformatic analysis of published 
mirNA data sets

Our goal was to integrate our miRNA-Seq findings 
with miRNA expression changes in lung adenocarcinoma. 
We have summarized results of the 8 different studies 
comparing miRNA expression in lung adenocarcinoma 
and normal tissues [30, 37, 54-59] (Supplementary Table 
S2). Full text and (if applicable) Supplementary Data 
were carefully examined and miRNAs with significantly 
altered expression were extracted from each study. 
miRNA names were standardized according to the miRNA 
database miRBase (v.19) [60]. Based on data provided, 
all miRNAs were classified as either over- or under-
expressed, and ranked according to reported statistical 
significance. Examining 8 studies we obtained 16 different 
rankings, 8 rankings for over- and 8 for under-expressed 
miRNAs. To identify consistently deregulated miRNAs, 
rankings were subjected to robust rank aggregation 
analysis implemented as R package RobustRankAggreg 
(v.1.1) [61]. This analysis detects miRNAs that are 
ranked consistently better than expected under null-model 
assuming that all studies are non-informative and input 
rankings thus contain only randomly ordered miRNAs. 
Using this analysis we assigned p-values as significance 
scores to each reported miRNA. The stability of resulting 
significance score was then assessed by the leave-one-
out validation, in which the same analysis was repeated 8 
times, each time excluding one of the rankings. Acquired 
p-values from each round were finally averaged into 
corrected p-value. Finally, miRNAs whose corrected 
p-value was less than 0.05 were further considered as 
consistently deregulated. Consistently reported miRNAs 
overlapping with those we identified herein, we referred 
to as “known”. miRNAs reported by at least one of the 
previous studies and overlapping with those we identified, 
we referred to as “reported”. miRNAs identified herein 
that were not reported by any of the studies are referred 
to as “novel”.

Integrative bioinformatic analysis of published 
gene expression data sets

We have analyzed 10 publicly available gene 
expression datasets [30, 62-69] and GSE31547 
(Supplementary Table S3), from studies on primary 
human lung adenocarcinoma and containing at least 
one histologically normal tissue sample for comparison. 
To enable uniform processing and analysis and to 
improve comparability of results, we chose only datasets 
produced using Affymetrix platforms. Each dataset 
was first separately normalized and summarized using 
Bioconductor project’s package gcrma (GeneChip Robust 
Multiarray Averaging v.2.36.0) (http://watson.nci.nih.gov/
bioc_mirror/packages/2.13/bioc/html/gcrma.html) [70]. 

For each individual dataset, we then evaluated differential 
gene expression using Bioconductor’s limma package 
(v.3.18.13) [71]. Based on expression fold change, genes 
were classified as either over- or under-expressed, and 
then ranked according to statistical significance, which 
was evaluated by q-value (adjusted p-value). Analyzing 
10 datasets, we obtained 20 unique rankings, 10 for over- 
and 10 for under-expressed genes. To identify consistently 
deregulated genes, obtained rankings were subjected to 
the same robust rank aggregation analysis as described 
for miRNA expression datasets, including leave-one-out 
cross-validation of the results. Genes with p < 0.05 were 
considered as consistently deregulated.

miRNA-transcription factor (TF) regulatory 
network

To identify targets of differentially expressed 
miRNAs and relationships among them, we integrated 
data from multiple independent sources into miRNA-
TF regulatory interactions. Knowledge of human TFs 
and their respective targets were obtained from four 
different databases, namely: ChEA (ChIP Enrichment 
Analysis) [72], ITFP (Integrated Transcription Factor 
Platform) [73], PAZAR [74], and TRED (Transcriptional 
Regulatory Element Database) [75]. These data 
were either downloaded as flat files (ITFP, PAZAR), 
manually collected (ITFP), or acquired from the web-
based interactive application (ChEA). Additional data 
were obtained from TF:target pairs from human fetal 
lung [76]. Names of TFs and their respective targets as 
obtained from these databases were first standardized 
according to HGNC symbol checker (HUGO Gene 
Nomenclature Committee; http://www.genenames.org/
cgi-bin/symbol_checker) and then concatenated into a 
single list comprising all the unique TF:target pairs. Those 
appearing in at least two sources were kept for further 
analysis, while the remaining ones were removed. We 
used mirDIP (microRNA Data Integration Portal, v.2.0; 
http://ophid.utoronto.ca/mirDIP) [77] to acquire list of 
targets of significantly deregulated miRNAs (p < 0.005 
and False Discovery Rate (FDR) < 0.01). In our search 
we considered only miRNA-target relationships among the 
top third of all predictions and from at least three different 
databases. Target gene names were standardized by 
HGNC symbol checker. As a result we obtained molecular 
interactions networks among differentially regulated 
miRNAs and their gene targets, either direct, or affected 
indirectly through their upstream TFs. Next, we integrated 
our data with previously published gene expression 
profiles to identify consistently deregulated genes in 
lung adenocarcinoma. For each deregulated miRNA, 
we evaluated statistical significance of enrichment of its 
downstream neighborhood of order 2 by deregulated genes 
(p-values calculated by hypergeometric test). Similarly, 
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for each consistently deregulated gene, we have evaluated 
statistical significance of enrichment of its upstream 
neighborhood of order 2 by deregulated miRNAs. Order 
2 neighborhoods were used rather than considering only 
the direct neighbors, since miRNA deregulation may affect 
the expression of its indirect targets through targeting 
transcription factors, while not involving alteration of 
the expression of a transcription factor itself. This is 
due to mechanisms of miRNA-mediated gene silencing 
that, depending on the target mRNA sequence, involves 
translational repression rather than mRNA degradation 
[40]. Data were visualized using NAViGaTOR 2.3.2 [78, 
79]. Original miRNA-TF-gene regulatory network in 
NAViGaTOR 2 XML file format (http://ophid.utoronto.ca/
navigator) is available at http://www.cs.utoronto.ca/~juris/
data/Oncotarget16).

Protein-protein interaction (PPI) network 
assembly and analysis

This analysis was performed to assemble PPI 
networks among gene targets of deregulated miRNAs. We 
used Interologous Interaction Database (I2D) (http://ophid.
utoronto.ca/i2d, v.2.3) [80, 81], a database of protein-
protein interactions for assembly of PPI networks among 
genes deregulated by differentially expressed miRNAs. 
Gene symbols were first converted to UNIPROT IDs by 
using Bioconductor’s annotation package (Carlson M. org.
Hs.eg.db: Genome wide annotation for Human. R package 
version 3.1.2; http://www.bioconductor.org/packages/
release/data/annotation/html/org.Hs.eg.db.html). We then 
used NAViGaTOR v.2.3.2 [79] to assemble PPI networks 
comprising genes and their direct neighbors as nodes, 
and direct physical protein interactions as edges. To test 
significance of the interconnectedness between the nodes 
of the obtained PPI network, we generated 1e+5 random 
PPI networks. Each random PPI network was generated 
using a set of 148 seed genes (same as the number of 
genes found deregulated by the differentially expressed 
miRNAs) randomly chosen from the miRNA-TF 
regulatory network, by the same procedure as described 
above. For each random network, we then measured the 
number of direct PPI connections between the seed genes, 
as found in I2D. The resulting empirical distribution of 
the number of direct connections was used to derive the 
statistical significance of interconnectedness in the actual 
PPI network. The same random networks were similarly 
used to test significance of the enrichment of the actual 
PPI network by the prognostic genes. Resulting network 
was visualized using NAVIGaTOR 2.3.2 [78,79], and 
is provided in NAVIGaTOR 2 XML file format (http://
ophid.utoronto.ca/navigator)  available at http://www.
cs.utoronto.ca/~juris/data/Oncotarget16).

Validation of mirNA expression

Significantly deregulated miRNAs were validated 
using a TaqMan® Array Human MicroRNA platform 
(Life Technologies, Foster City, CA, USA), as previously 
described [82]. We used the QuantStudio 12K system 
(Life Technologies, Foster City, CA, USA). Global data 
normalization was performed in Expression Suite software 
(Life Technologies, Foster City, CA, USA) and miRNA 
expression profiles were determined using RQ Manager 
v.1.2 software (Life Technologies, Foster City, CA, USA).

Statistical analyses

Statistical analyses were performed to correlate 
deregulated miRNA expression with clinical and 
histopathological data of patients. Categorical variables 
were described using frequencies and percentages and 
continuous variables were summarized using mean and 
median (range) values. We used Mann-Whitney test and 
Fisher´s exact test for comparisons between groups. The 
Kaplan-Meier method was used to estimate the curves 
from the observed survival times. The survival curves of 
any two groups were compared using the log rank test. 
Statistical analyses were performed by statistical software 
SAS version 9.3 for Windows (SAS Institute Inc., Cary, 
NC, USA). Statistically significant difference was defined 
as p < 0.05.
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