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Tumor refractoriness to anti-VEGF therapy
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ABSTRACT
Vascular endothelial growth factor (VEGF) has been identified as the most potent 

cytokine involved in tumor angiogenesis and metastasis formation. Clinical results of 
anti-angiogenic therapies targeting VEGF and its receptors are very modest, resulting 
in a moderate improvement of overall survival. The clinical outcome is associated with 
the development of resistance and the increased risk of invasion and metastasis. In 
this article, I have analyzed the principal mechanisms of resistance to VEGF pathway 
inhibitors, including normalization of tumor blood vessels, hypoxia, recruitment of 
inflammatory cells and immature myeloid cells, alternative mechanisms of tumor 
vessel formation, genomic instability of tumor endothelial cells. In this context, 
the concept and strategies of anti-angiogenic therapies should be extensively re-
considered and re-evaluated. In particular, rational combinations of anti-angiogenic 
agents based on pharmacokinetic and pharmacodynamics data are needed to 
overcome resistance and it is extremely important to determine the optimal duration 
and scheduling of anti-VEGF agents.

INTRODUCTION

The introduction of chemotherapy in 1950-60 
resulted in the development of curative therapeutic 
interventions for patients with solid and hematologic 
tumors. While chemotherapy in the neo-adjuvant setting 
has typically resulted in improved survival following 
surgical intervention, similar benefits with anti-angiogenic 
therapy remain largely untested.

Tumor cells and tumor-associated stroma are 
sources of vascular endothelial growth factor (VEGF), 
which is responsible of vascular proliferation and altered 
permeability of newly formed vessels [1]. Several 
strategies to inhibit VEGF-VEGF receptors (VEGFRs) 
signaling pathway for the treatment of cancer have been 
explored. In addition to monoclonal antibodies, alternative 
approaches of inhibiting VEGFRs by using anti-VEGFRs 
small receptor tyrosine kinase inhibitors (TKIs) have been 
explored (Table 1).

Even if the majority of pre-clinical studies have 
shown that the growth of all experimental tumors can be 
effectively inhibited by various anti-angiogenic agents, the 
clinical benefits of these treatments are relatively modest, 
because the drugs merely slow down tumor progression 

and prolong survival by only a few more months [2-4]. In 
multiple randomized phase III clinical trials, bevacizumab 
conferred a survival benefit only when administered in 
combination with chemotherapy. Examples of metastatic 
cancers where anti-angiogenic therapy failed to make a 
significant impact on overall survival include breast, 
melanoma, pancreatic and prostate.

Moreover, as it has been demonstrated in animal 
models, anti-angiogenic therapy caused marked regression 
of normal microvessels in endocrine glands (thyroid, 
adrenal glands, pancreatic islets) and in the liver, kidney 
and gastrointestinal wall [5, 6], and angiogenesis inhibitors 
can decrease the delivery of cytotoxic drugs [7]. 

It is important to note that when VEGF-targeted 
therapies are discontinued, the tumor vasculature ca 
become rapidly re-established [8]. These data suggest 
that prolonged use of VEGF-targeted therapy is necessary 
to achieve maximal therapeutic effect. An observational 
study has shown that continuation of bevacizumab 
treatment beyond progression was associated with greater 
benefit in terms of overall survival [9].

Intrinsic resistance is characterized by inefficacy 
of tumor treatment with anti-angiogenic anti-VEGF, 
fusion proteins that trap VEGF [10], and anti-VEGFRs 
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small receptor TKIs [11-13]. TKIs target VEGFR-1, 
-2, -3 signaling pathways and other members of the 
platelet-derived growth factor (PDGF) receptor and 
fibroblast growth factor (FGF) receptor families. In this 
context, TKIs inhibitors would be more effective than 
antibody-based therapy that solely target the VEGF 
pathway. Nevertheless, in acquired resistance, alternative 
mechanisms lead to activation of angiogenesis even when 
the target of the drug remains inhibited [14, 15].

Trials that have combined monoclonal antibodies 
and TKIs have given rise to an increase in the side 
effects profile, including hypertension, gastrointestinal 
perforation, hemorrhages, proteinuria, anemia, leucopenia, 
and thrombocytopenia.

NORMALIZATION OF TUMOR BLOOD 
VESSELS

In 2001, Rakesh Jain introduced the concept of 
“normalization” of tumor blood vessels by anti-angiogenic 
molecules [16]. VEGF inhibition could temporarily restore 
or normalize the function of tumor-associated vasculature, 
decreasing vascular permeability in conjunction with 
restoration of sustained pressure gradients, thereby 
enhancing systemic delivery of oxygen or perfusion 
of cytotoxic agents to intratumoral sites . Moreover, 
abrogation of VEGF signaling increases collagenase 
IV activity, leading to restoration of normal basement 
membrane , which generally in tumors has an abnormally 
thickness .

Moreover, tumor vascular normalization is 
accompanied by increased pericyte coverage. Pericyte 
deficiency could be partly responsible for vessel 

abnormalities in tumor blood vessels [17] and partial 
dissociation of pericytes [18, 19] contribute to increased 
tumor vascular permeability. 

Anti-angiogenic refractory tumors contained blood 
vessels with a investment of pericytes expressing alpha 
smooth muscle actin (α-SMA) [20]. Pericyte coverage 
promote resistance through direct support or paracrine 
interactions with endothelial cells and tumor vessels 
covered by pericytes are less sensitive to VEGF blockade 
[21]. Pericytes can activate compensatory PDGFR-
mediated pro-angiogenic signaling in anti-VEGF therapy 
[22]. Bergers et al. showed that combined treatment or 
pre-treatment with anti-PDGF-B/PDGFBR-β reducing 
pericyte coverage increases the success of anti-VEGF 
treatment in the mouse RIP1-TAG2 model [23]. However, 
extensive regression of endothelial cells was not observed 
in tumors after inhibition of PDGFR-β signaling [24]. 
After treatment of RIP1-TAG-2 tumors and Lewis lung 
carcinomas with VEGF-Trap, surviving pericytes may 
become more tightly associated with endothelial cells 
or have no apparent association with tumor vessels [25]. 
Treatment of RIP1-TAG2 tumors with anti-PDGFR-β 
antibody for three weeks reduces pericytes, increases 
endothelial cell apoptosis but does not seem to reduce 
tumor vascular density [26]. Treatment with a novel DNA 
oligonucleotide aptamer (AX102) that selectively binds 
PDGF-B led to progressive reduction of pericytes in Lewis 
lung carcinomas [27]. 

VEGFR-2 blockade can lead to the up-regulation of 
angiopoietin-1 (Ang-1)  that increases pericyte coverage 
of the vessels [28]. Ang-2 is responsible for blood vessel 
destabilization in vasculature surrounding tumors. In 
glioblastoma patients, the Ang-1/Ang-2 ratio correlates 

Table 1: Principal anti-VEGF molecules approved by FDA for anti-angiogenic cancer treatment
Name Target
Bevacizumab VEGF-A
Aflibercept VEGF-A
Axitinib VEGFRs
Cabozantinib VEGFRs
Regorafenib VEGFRs
Sorafenib VEGFRs
Sunitinib VEGFRs
Vandetanib VEGFRs
Pazopanib VEGFRs

Table 2: Biomarkers to predict response to anti-VEGF inhibitors
Functional imaging
Hypertension
Circulating proteins (baseline plasma VEGF concentration and soluble VEGFR-2)
Circulating endothelial or tumor cells
Single nucleotide polymorphisms (SNPs)
Tumor biomarkers (CD31-positive tumor vessels; Tumor neuropilin 1 immunoreactivity; plasma levels of intercellular 
adhesion molecule-1)
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with survival [29] and vascular normalization, whereas 
high Ang-2 levels correlate with resistance to anti-VEGF 
therapy [30]. Blockade of VEGF signaling with the TKI 
cediranib significantly reduced levels of Ang-2 in some 
patients, even if the decrease was transient and modest 
[30]. Chae et al. expressed Ang-2 in an orthotopic glioma 
model and demonstrated that ectopic expression of Ang-2 
had no effect on vascular permeability, tumor growth, or 
survival, but it resulted in higher vascular density, with 
dilated vessels and reduced mural cell coverage [31]. 
When combined with anti-VEGFR-2 treatment, Ang-
2 destabilized vessels and compromised the survival 
benefit of VEGFR-2 inhibition by increasing vascular 
permeability, suggesting that VEGFR-2 inhibition 
normalized tumor vasculature, whereas ectopic expression 
of Ang-2 diminished the beneficial effects of VEGFR-2 
blockade by inhibiting vessel normalization.

The inhibitors of VEGF in the therapy of 
central nervous system malignancy normalize tumor 
vasculature and decrease tumor interstitial pressure, 
leading to an improved access of cyto-reductive drugs 
and radiotherapy efficacy, due to an increased oxygen 
delivery [32]. However, these agents may also restore 
the low permeability characteristics of normal brain 
microvasculature, counteracting beneficial effects. 

HYPOXIA

Hypoxia mediates immune cells recruitment and 
these cells concentrate at the tumor periphery, while in 
the tumor core hypoxia contributes to cancer cell escape 
by providing an aggressive selection for stem-like tumor 
cells. Most cancers are hypoxic at the beginning of therapy 
[33] and hypoxic areas are refractory to chemotherapy and 
radiotherapy and contribute to select tumor populations 
able to survive in poorly oxygenated niches and escape 
to metastatic sites and pro-angiogenic cancer stem cells 
(CSCs) [34].

VEGF blockade aggravates hypoxia, which up-
regulates the production of other angiogenic factors or 
increases tumor cell invasiveness [14, 35]. Tumor cells 
respond to hypoxia by becoming tolerant and modifying 
their metabolic characteristics to resist to low oxygenation 
[36]. Increased intratumor hypoxia induces the selection 
of more invasive metastatic clones of the cancer cells that 
are resistant to anti-angiogenic agents [37], through the 
production of pro-migratory proteins, such as stromal 
cell derived factor 1 alpha (SDF1-α) and hepatocyte 
growth factor- scatter factor (HGF-SF) and pro-invasive 
extracellular matrix proteins [38, 39]. Hypoxia generated 
by angiogenesis inhibition triggers pathways that make 
tumors more aggressive and metastatic and less sensitive 
to anti-angiogenic treatment, as demonstrated by Paez et 
al. [35], who used blocking VEGFR-2 antibodies to mouse 
models of pancreatic neuroendocrine carcinoma and 
glioblastoma, and found that cancers showed heightened 

invasiveness or metastasis.

RECRUITMENT OF INFLAMMATORY 
CELLS  AND IMMATURE MYELOID 
CELLS

Inflammatory cells act in concert with tumor 
cells, stromal cells, and endothelial cells to create 
a microenvironment that is critical for the survival, 
development, and diffusion of the neoplastic mass. These 
synergies represent important mechanisms for tumor 
development and metastasis by providing an efficient 
vascular supply and an easy escape pathway. The most 
aggressive human cancers, such as malignant melanoma, 
breast carcinoma, and colorectal adenocarcinoma, are 
associated with a dramatic host response composed of 
various inflammatory cells, including macrophages, mast 
cells and lymphocytes.

Therapy resistance may be mediated by the 
recruitment by tumor cells of tumor associated 
macrophages and mast cells [40], pro-angiogenic bone 
marrow-derived cells including CD11b+ Gr1+ myeloid 
cells [41] and Tie2+ monocytes [42], tumor associated 
fibroblasts (TAFs) [43] and production of alternative 
pro-angiogenic factors [44], including FGF-2 [45], 
interleukin-8 (IL-8)  [46], IL-17 [47], and ANG-2 [48]. 

TAFs generated PDGF-C, which is involved 
in tumor refractoriness to anti-angiogenic therapy, as 
demonstrated by the use of neutralizing antibodies anti-
PDGF-C ameliorate TAF-resistant induced angiogenesis 
[49]. Moreover, cancer-associated inflammatory cells 
trigger a catabolic pathway that causes severe adipose and 
muscular atrophy [50].

A clear involvement of IL-8 has been reported in 
anti-VEGF tumor resistance in sunitinib-treated renal 
carcinoma [46]. IL-17 mobilizes the granulocyte-colony 
stimulating factor (G-CSF)-dependent recruitment of 
CD11b+Gr1+ immature myeloid cells, involved in anti-
VEGF tumor refractoriness [47]. Human late-stage breast 
cancers expressed several angiogenic cytokines in contrast 
to earlier stage lesions, which preferentially expressed 
only VEGF [51].

ALTERNATIVE  MECHANISMS OF 
TUMOR VESSEL FORMATION

Other modes of tumor vascularization, including 
intussusceptive microvascular growth (IMG), 
vasculogenic mimicry, vascular co-option, differentiation 
of CSCs into endothelial cells, and vasculogenic vessel 
growth, might be less sensitive to VEGF blockade.

IMG generates vessels more rapidly with a less 
metabolic demand as compared to sprouting angiogenesis 
and is a putative strategy that tumors can use for rapid 
adaptation to milieu changes. No endothelial cell 
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proliferation is required for IMG: endothelial cells 
only increase their volume and IMG occurs through 
the splitting of the existing vasculature by transluminal 
pillars or transendothelial bridges (Figure 1) [52]. Tumors 
might prefer IMG during anti-angiogenic therapy as it is 
faster and metabolically more feasible as compared with 
sprouting angiogenesis [8]. IMG occurs in several tumors, 
including colon and mammary carcinomas, melanoma, 
B-cell non Hodgkin’s lymphoma, and glioma [53-57]. 
Treatment of mammary carcinoma allografts with a TKI 
results in transient reduction in tumor growth rate with 
decreased tumor vascularization followed by post-therapy 
relapse with extensive IMG, and the switch to IMG 
improves the perfusion of the tumor mass [58]. 

Maniotis et al. [59] described for the first time a 
new model of formation of vascular channels by human 
melanoma cells and called it “vasculogenic mimicry” to 
emphasize the de novo generation of blood vessels without 
the participation of endothelial cells and independent of 
classical angiogenic factors, including FGF-2 and VEGF 
[59]. In vitro stimulation with VEGF do not enhance 
vasculogenic mimicry [60] and it has been proposed that 
vasculogenic mimicry might be dependent by CSCs [61]. 

In vascular co-option, tumor cells have immediate 
access to blood vessels, as it occurs in in site of metastases 

or in densely vascularized organs, including brain, lung, 
liver, and initiate blood-vessel-dependent tumor growth as 
opposed to classical angiogenesis. Tumor cells co-opt and 
growth as cuffs around adjacent vessels [62]. The co-opted 
vessels initiate an apoptotic cascade mediated by Ang-2 
followed by regression of the co-opted vessels. Shortly 
after regression, hypoxic tumor cells expressing VEGF 
up-regulate the angiogenic response [62]. Treatment 
of glioma with a monoclonal antibody anti-VEGFR-2 
induces co-option of quiescent cerebral vessels [63] and 
treatment of cerebral melanoma metastasis with the TKI 
ZD6474 is associated with increase in vessel co-option 
[64]. 

CSCs reside in a vascular niche in close proximity 
to blood vessels named as CSC niche [65], and generate 
angiogenic factors to stimulate tumor angiogenesis; 
tumor vasculature, in turn, supports CSC self-renewal 
and maintaining. CSCs produce high levels of VEGF in 
both normal and hypoxic conditions [66]. Moreover, CSCs 
recruit endothelial precursors for revascularization and 
tumor re-growth [67, 68]. 

Ricci-Vitiani et al. demonstrated that in vitro culture 
of glioblastoma stem-like cells in generated a progeny 
with phenotypic and functional features of endothelial 
cells [69]. Moreover, orthotopic or subcutaneous injection 

Figure 1: 3D (a-d) and 2D (a’-d’) scheme depicting the generation of transluminar pillar by IMG. Simultaneously 
protrusion of opposing capillary walls into the vessel lumen (a,b; a’, b’) results in creation of interendothelial contact zone (c; c’). In a 
subsequent step the endothelial bilayer becomes perforated and the newly formed pillar core got invaded by fibroblasts (fb) and pericytes 
(Pr), which lay down collagen fibrils (Co in d’). [Reproduced from 52].
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of glioblastoma stem-like cells in immunocompromised 
mice generated large anaplastic tumor xenografts, showing 
a vessel wall formed by human endothelial cells derived 
from glioblastoma stem-like cells whereas tumor derived 
endothelial cells formed large anaplastic tumors in 
secondary recipients [69].

Postnatal vasculogenesis may contribute to tumor 
vascular supply throughout endothelial precursor cells 
(EPCs), which circulate from bone marrow, migrate 
and differentiate in the stromal environment of tumors 
[70]. High levels of VEGF produced by tumors result 
in the mobilization of bone marrow-derived EPCs in the 
peripheral circulation and enhance their recruitment into 
the tumor vasculature [70].

GENOMIC INSTABILITY OF 
TUMOR ENDOTHELIAL CELLS AND 
REVERSIBILITY OF RESISTANCE

Comprehensive genomic analysis of tumors 
demonstrates significant genetic intra- and inter-tumor 
heterogeneity [71]. St Croix et al. [72], were the first to 
show that colorectal cancer endothelial cells overexpress 
specific transcripts as a result of qualitative differences 
in gene profiling compared with endothelial cells of the 
normal colorectal mucosa. Further studied in glioma [73] 
and in invasive breast carcinoma [74] demonstrated a 
distinct gene expression pattern related to extracellular 
matrix and surface proteins characteristic of proliferating 
and migrating endothelial cells, and pointed to specific 

roles for genes in driving tumor angiogenesis and 
progression of tumor cells. Moreover, endothelial 
cells isolated from various tumors acquired genotype 
alterations, leading to altered anti-angiogenic targets 
and resistance [75], and proximity of tumor cells and 
endothelial cells within the tumor microenvironment may 
be responsible for the genotype alterations [76]. 

Development of a resistance-like phenotype to 
sorafenib by human hepatocellular carcinoma cells 
is reversible and can be delayed by metronomic UFT 
chemotherapy [77]. The continued administration of 
bevacizumab beyond progression still results in a small 
significant overall survival [78], suggesting that the 
resistance if reversible and raising the possibility of re-
treating with the same of an alternative VEGF-A inhibitor.

PREDICTIVE MARKERS

Predictive markers of angiogenesis or anti-
angiogenesis are needed to demonstrate the activity and 
efficacy of anti-angiogenic agents in clinical trials and 
for the future monitoring of anti-angiogenic treatments in 
clinics. There are currently no validated biomarkers for 
selecting patients that benefit from the treatment with anti-
angiogenic agents from those patients that will not.

VEGF and VEGF isoforms expression levels 
serve as a predictive marker for selecting cancer patients 
who are likely to benefit from anti-VEGF therapy [79]. 
Elevated levels of sVEGFR-1 prior to treatment were 
associated with a poor outcome from bevacizumab in 
rectal carcinoma, hepatocellular carcinoma, and metastatic 

Figure 2: Principal mechanisms involved in refractoriness to anti-VEGF therapy.
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colorectal carcinoma patients [80, 81]. Increased 
VEGFR-1 levels may induce increased pro-angiogenic 
signaling by placental growth factor (PlGF) when VEGF 
is blocked [79]. Circulating levels of the chemokine 
SDF1α rise in patients who evade various anti-VEGF 
therapies including rectal carcinoma with bevacizumab, 
glioblastoma multiforme with cediraninb, hepatocellular 
carcinoma with sunitinib, and soft tissue sarcoma with 
sorafenib [82]. However, measurement of circulating 
markers is difficult to standardize across different centers 
due to technical issues associated with sample handling 
[83].

Medical imaging techniques play an important role 
in the evaluation of anti-angiogenic treatment efficacy. 
Dynamic contrast-enhanced perfusion magnetic resonance 
imaging (MRI), perfusion computed tomography (CT) 
give only an indirect estimation of angiogenesis. New 
molecular imaging techniques can give an overall 
estimation of angiogenesis and anti-angiogenic therapy 
effects. These include nuclear imaging techniques 
such as positron emission tomography (PET), that 
uses paramagnetic nanoparticles to track angiogenesis 
by targeting avb3 integrin and sonography with novel 
contrast agents such as gas-filled microbubbles directed 
against specific target endothelial cell receptors and optical 
techniques.

INCREASE  OF METASTATIC 
POTENTIAL

VEGF pathway inhibition may change the natural 
history of tumor progression after anti-angiogenic therapy 
and include potential metastasis promoting effects. 
Short-term treatment with sunitinib prior to intravenous 
inoculation of breast and melanoma cells could accelerate 
metastasis and short survival, despite cessation of 
treatment [84]. Moreover, sunitinib increases metastasis 
in orthotopic mouse models of breast and colon cancer, 
whereas it does not promote metastasis in lung cancer 
[85]. Increased invasiveness might result from enhanced 
expression of various angiogenic cytokines induced by 
the treatment, such as VEGF and PlGF, or recruitment 
of EPCs  that promote the formation of a pre-metastatic 
niche [86]. Hypoxia-driven effects may be also involved, 
because hypoxia generated by angiogenesis inhibition 
triggers pathways that make tumors more aggressive and 
metastatic and less sensitive to anti-angiogenic treatment 
[35, 84]. Finally, VEGF-targeted therapy can allow an 
epithelial-mesenchymal transition, which could in turn 
promote increased invasion and metastasis [87].

CONCLUSIONS AND PERSPECTIVES

Mechanisms of resistance can be divided into non-
oncogenic and oncogenic, and these latter are associated 

with highly aggressive cancer phenotype [88]. Anti-
angiogenic treatment induces a reactive resistance which 
is mediated by the HIF/VEGF pathway, allowing both 
endothelial and cancer cells to resist to therapy [89]. 
Resistance to VEGF pathway inhibitors involves different 
mechanisms that are summarized in Figure 2. All of these 
mechanisms deserve further investigation in both animal 
models and in humans to clarify their significance and 
importance. 

The successful development of anti-VEGF targeted 
therapy will require a greater understanding of how tumors 
become vascularized and how they evade the effects of 
anti-angiogenic therapy. VEGF blockade aggravates 
tumor hypoxia, which up-regulates the production of 
other angiogenic factors in the tumor microenvironment. 
In this context, targeting VEGF and other pathways 
implicated in angiogenesis should result in more effective 
tumor growth inhibition. Moreover, rational combinations 
of anti-angiogenic agents based on pharmacokinetic 
and pharmacodynamics data are needed to overcome 
resistance and it is extremely important to determine the 
optimal duration and scheduling of anti-VEGF agents. It 
has been underlined the importance of the time interval 
of the normalization effects of anti-angiogenesis, the so-
called “window of normalization”[90]. Recently, Paez-
Ribes et al. [91] have demonstrated that metastatic effects 
of preclinical anti-angiogenic therapy with an antibody 
targeting mouse VEGFR-2 are prevented by concurrent 
chemotherapy. 

The identification of specific predictive biomarkers 
(Table 2) remains an important end-point even if 
biomarkers that are predictive of anti-VEGF therapy may 
be specific to different tissues and tumor subtypes.
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