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Cancer drug resistance: redox resetting renders a way
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ABSTRACT
Disruption of redox homeostasis is a crucial factor in the development of drug 

resistance, which is a major problem facing current cancer treatment. Compared with 
normal cells, tumor cells generally exhibit higher levels of reactive oxygen species 
(ROS), which can promote tumor progression and development. Upon drug treatment, 
some tumor cells can undergo a process of ‘Redox Resetting’ to acquire a new redox 
balance with higher levels of ROS accumulation and stronger antioxidant systems. 
Evidence has accumulated showing that the ‘Redox Resetting’ enables cancer cells 
to become resistant to anticancer drugs by multiple mechanisms, including increased 
rates of drug efflux, altered drug metabolism and drug targets, activated prosurvival 
pathways and inefficient induction of cell death. In this article, we provide insight into 
the role of ‘Redox Resetting’ on the emergence of drug resistance that may contribute 
to pharmacological modulation of resistance.

INTRODUCTION

Development of drug resistance is an important 
factor in the failure of anticancer therapeutic treatments 
[1]. Such resistance results from a variety of factors 
including individual variations in patients and somatic 
cell genetic differences in tumors. The ability to evade 
medicinal drugs is intrinsic to cancer cells. Reasons for 
acquisition of anticancer drug resistance include enhanced 
expression of transporters that increases anticancer drugs 
efflux, alterations in drug metabolism, mutations of drug 
targets and the activation of survival or inactivation of 
downstream death signaling pathways (Figure 1) [1]. 
Studies on cancer drug resistance mechanisms have 
yielded valuable information on how to circumvent 
resistance to improve cancer chemotherapy [1-3].

Reactive oxygen species (ROS) are chemical 
oxygen species with reactive properties, which comprise 

hydrogen peroxide (H2O2), the hydroxyl radical (•OH), 
superoxide(O2

-) and singlet oxygen (1O2) [4]. Under 
physiological conditions, cells are capable of maintaining 
a balance between cellular oxidants and antioxidants, 
called redox homeostasis. Submicromolar levels of ROS 
act as second messengers to regulate cell proliferation, 
cell death, and other cellular processes [5]. Excessive 
levels of ROS induce oxidative stress that leads to 
various pathological states, including aging, neurological 
disorders, and cancer [6]. In general, most tumors exhibit 
higher levels of ROS than normal tissues, thus promoting 
tumor progression and development [5]. Moreover, 
oxidative stress controls the efficacy of cancer treatments 
in multiple ways, including chemosensitivity, apoptosis, 
angiogenesis, metastasis and inflammatory responses [6]. 
However, when ROS concentrations become extremely 
high, they lead to tumor cell death [7]. Thus, a variety 
of drugs with direct or indirect effects on ROS induction 
have been used for effective cancer therapies (Table 1). 
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Table 1: Roles of anticancer treatments in regulating ROS levels
Name Mechanism of action Effects on ROS Cancer types Refs

Ionizing radiation

Photons or particles affect 
chemical bonds and produce 
highly ROS, which cause 
damage to DNA and other 
cellular components

Increases ROS production Different types of 
cancer [160]

Methotrexate Triggers ROS associated 
cell apoptosis Increases ROS production Different types of 

cancer [161]

Mitoxantrone Triggers cell membrane 
scrambling

Significant increases of 
ROS formation

Different types of 
cancer [162]

Tamoxifen Promotes cancer cell 
senescence Promotes ROS generation Breast, colon cancer [163]

Cisplatin Generation of nuclear DNA 
adducts

Induces a mitochondrial-
dependent ROS generation

Different types of 
cancer [164]

Paclitaxel (Taxol) Inhibitor of cell division Increases ROS production Different types of 
cancer [165]

Adriamycin
Reduces cell viability 
through initiating cell 
apoptosis and strong G2/M 
phase cell cycle arrest

Increases ROS production Different types of 
cancer [166]

Imatinib
Protein tyrosine kinase 
inhibitor that induce 
apoptosis 

Increases ROS production Different types of 
cancer [167]

Camptothecin Quinolone alkaloid that 
induces cytotoxicity Increases ROS production Different types of 

cancer [168]

Flavopiridol
Semisynthetic flavonoid that 
inhibits cyclin-dependent 
kinases

Increases ROS production Leukemia [169]

6-thioguanine UVA photosensitizer Increases ROS production Skin cancer [170]

Procarbazine
Isolated DNA could be 
degraded by procarbazine in 
the presence of oxygen

Increases ROS production Lymphoma, primary 
brain cancers [171]

NOV-002 Glutathione disulphide 
mimetic

Alters intracellular GSSG/
GSH ratio

Lung, breast and 
ovarian cancer [172]

Sulphasalazine Inhibitor of cysteine/
glutamate transporter xCT

Reduces intracellular 
transport of cysteine 
required for GSH synthesis

Pancreatic and lung 
cancer

[173, 
174]

L-asparaginase Depletes glutamine Reduces GSH Leukemia, pancreatic 
cancer

[175, 
176]

Buthionine sulphoximine (BSO) Glutamate-cysteine ligase 
complex inhibitor

Inhibits de novo GSH 
synthesis

Ovarian and breast 
cancer, melanoma

[177, 
178]

Carboplatin Induction of cell cycle arrest Induction of ROS owing to 
ER stress

Different types of 
cancer [179]

Gefitinib
Selective epidermal growth 
factor receptor tyrosine 
kinase inhibitor

Activates FOXO3a and in 
turn reduces ROS

Different types of 
cancer [180]

Irinotecan Topoisomerases inhibitor Causes oxidative stress Different types of 
cancer [181]

Etoposide Selective Topo II α inhibitor Increases ROS production Neuroblastoma, 
breast cancer [182]

Tunicamycin
Glycosylation inhibitor that 
causes protein accumulation 
in the ER

Triggers ER stress 
production Leukemia [183]

Thapsigargin

Sarco(endo)plasmic 
reticulum Ca2+ ATPase 
inhibitor that releases ER 
Ca2+ and stimulates Ca2+ 
influx

Triggers ER stress 
production Leukemia [183]
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Chloroethylnitrosoureas Alkylating agent that causes 
DNA damage Increases ROS production Melanoma tumors [184]

Temozolomide Alkylating agent Increases ROS production Brain cancer [185]

Celecoxib

Inhibits cyclooxygenase 
2 (COX2) activity but it 
also induces ER stress by 
causing leakage of calcium 
from the ER into the cytosol

Induction of ROS owing to 
ER stress

Colorectal cancer, 
myeloma, Burkitt’s 
lymphoma and 
prostate cancer

[186]

Nelfinavir
Originally developed as 
HIV protease inhibitor but it 
also induces ER stress by an 
unknown mechanism

Induction of ROS owing to 
ER stress

HPV-transformed 
cervical carcinoma, 
head and neck 
cancer, pancreatic 
cancer, melanoma 
and glioma

[187]

Bortezomib Proteasome inhibitor Induces ROS owing to ER 
stress

Mantle cell 
lymphoma, multiple 
myeloma

[188, 
189]

Anthracyclines (doxorubicin, 
daunorubicin or epirubicin)

Insert into the DNA of 
replicating cells and inhibit 
topoisomerase II, which 
prevents DNA and RNA 
synthesis.

Induce the generation 
of oxygen-derived free 
radicals through two main 
pathways: anon-enzymatic 
pathway that utilizes 
iron, and anenzymatic 
mechanism that involves 
the mitochondrial 
respiratory chain

Different types of 
cancer [190]

17-allylaminogeldanamycin
(17-AAG) HSP90 inhibitor

Decrease  protein 
homeostasis during 
oxidative stress by 
disrupting HSP90–client 
protein complexes and 
promoting the degradation 
of the client proteins

Breast cancer, non-
small-cell lung 
cancer

[191]

Capecitabine
Prodrug that is 
enzymatically converted to 
5-fluorouracil (5-FU) in the 
body

Decreases ROS production
Colorectal, breast, 
gastric, and 
oesophageal cancer

[192]

5-fluorouracil (5-FU)
Inhibits thymidylate 
synthetase and/or 
incorporates into RNA and 
DNA

Induces intracellular 
increase inO2·- levels

Colon cancer, rectum 
cancer, and head and 
neck cancer

[88]

Arsenic trioxide (As2O3) Reacts with cysteine 
residues on crucial proteins

Inhibits mitochondrial 
respiratory function, 
thereby increasing free 
radical generation

Leukemia, myeloma [193]

2-methoxyestradiol(2-ME) Metabolite of estradiol-17β
Induces free radicals
and loss of mitochondrial 
membrane potential

Prostate cancer, 
leukemia [194]

N-(4 hydroxyphenyl)retinamide 
(4-HPR) Synthetic retinoid derivative

Induces apoptosis through 
the production of ROS and 
mitochondrial disruption

Prostate cancer, 
breast cancer, 
neuroblastoma

[195]

PARP inhibitors Inhibit the action of the 
enzyme PARP

Reduce the capacity to 
repair ROS-induced DNA 
damage

Breast cancer [196]

Erastin
Down regulates 
mitochondrial VDACs and 
cysteine redox shuttle

Alters the mitochondrial 
membrane permeability and 
blocks GSH regeneration

RASV12-expressing 
tumor cells

[197, 
198]
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Nonetheless, some tumor cells can overcome drug-induced 
oxidative stress by enhancing their antioxidant systems, 
with the outcome that a new redox balance with a more 
higher ROS level is established, the process of ‘Redox 
Resetting’ (Figure 2). Such drug-induced redox resetting 
has recently been shown to result in drug resistance. For 
example, increased levels of reduced glutathione lead to 
elevated chemotherapeutic drug resistance in numerous 
cancers [8, 9]. 

Redox resetting has been implicated in drug 
resistance at multiple levels, including elevated drug 
efflux, altered drug metabolism and mutated drug targets 
[10, 11]. In addition, ROS-induced activation of survival 
signaling pathways and inactivation of downstream death 
signaling pathways can lead to drug resistance (Figure 1) 
[1, 12, 13]. Here, we focus on the effects of redox resetting 
on drug resistance mechanisms and on current research 
efforts to reveal the detailed mechanisms of resistance to 
cancer therapies.

INCREASED RATES OF DRUG EFFLUX

Drug export from cells is a primary cause of 
the cellular resistance to anticancer drugs and poses a 

significant threat to clinical tumor therapy. Several cell 
membrane transporter proteins have been implicated in 
drug resistance to commonly used chemotherapeutics by 
promoting drug efflux [1]. Among them, the ATP-binding 
cassette (ABC) transporter family is the most notable. 
There are 49 members of the ABC transporter family, 
but only multi-drug resistance protein 1 (MDR1), MDR-
associated protein 1 (MRP1) and breast cancer resistance 
protein (BCRP) have been studied extensively in relation 
to multidrug resistance (MDR) [10]. All three transporters 
have broad substrate specificity and promote the efflux 
of various hydrophobic cancer chemotherapeutics such 
as topoisomerase inhibitors, taxanes, and antimetabolites 
[14]. Here, we summarize the effects of redox reactions 
and redox signals on these three drug efflux transporters.

Redox reactions promote conformational changes 
of the transporters

All ABC transporters contain four domains - 
two nucleotide-binding domains (NBDs) and two 
transmembrane domains (TMDs) (Figure 3) [15]. These 
four domains can be fused into multi-domain polypeptides 

Figure 1: General mechanisms of cancer drug resistance. The anticancer activity of a drug can be limited by reduced drug influx 
or increased drug efflux, changes in expression levels of drug target, mutation of drug target, and a lack of cell death induction.
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in a variety of ways. The driving force for drug 
transport is achieved by a switch between two principal 
conformations of the NBD dimer [16]. The conformations 
of ABC transporters are maintained by multiple chemical 
interactions, including covalent bonds—the intra- and 
inter-molecular disulfide bond formed between reactive 
cysteine residues [17]. The cellular redox status has a 
great impact on reversible disulfide bond formation and is 
essential for proper protein folding as well as transporter 
functions.

The drug transport activity of human MDR1 is 
correlated with the redox states of its two cysteine residues 
(Cys431 and Cys1074). The ATP hydrolysis activity 
is strongly inhibited by the covalent reaction of either 
of these two cysteine residues with N-ethylmaleimide 
(NEM), a sulfhydryl blocker [18]. These two cysteine 
residues are present in NBD1 and NBD2 (Figure 3A), and 
are located very close to the bound nucleotide. The ready 
formation of the intramolecular disulfide between Cys431 
and Cys1074 shows that the two nucleotide-binding 
sites of MDR1 are structurally very close and capable 
of intimate functional interactions, consistent with our 
current understanding of the catalytic mechanism [19].

MRP1 has a topological configuration similar to 
MDR1, whereas MRP1 has an additional membrane-
spanning domain located at the N-terminus, called MSD0 
[20]. The MSD0 functions as a plug that controls gating 

during drug transport (Figure 3B) [21]. Mutations at 
certain cysteine residues within MSD0 drastically reduce 
drug-transport activities [22, 23]. A previous study has 
identified that MSD0 is necessary for the dimerization 
of MRP1, which can be disrupted by treatment with 
dithiothreitol (DTT), a reducing agent [24, 25]. These 
data suggest that dimerization is formed through disulfide 
linkage between cysteine residues. Yang et al  [23] 
investigated the roles of Cys7 and Cys32, which are 
located in the MSD0 domain, in MRP1 dimerization 
(Figure 3B). Mutations at Cys7 caused conformational 
changes and prevented dimerization in MRP1 [26]. In 
addition to dimerization, cancer cells activate antioxidant 
systems after treatment of ROS-inducing anticancer drugs, 
including enhanced expression of glutathione (GSH), 
which can form glutathione S-conjugated molecules to 
facilitate drug efflux by MRP1 [27].

In contrast to the molecular structures of MDR1 
and MRP1, BCRP comprises six transmembrane domains 
and only one ATP-binding cassette, and is known as 
a ‘half-transporter’ [28]. Human BCRP exists in the 
plasma membrane as a homodimer due to disulfide-
bonded cysteine residues (Figure 3C) [29]. Treatment 
with 2-mercaptoethanol (2-ME) reduces the BCRP from 
homodimer to monomer [30]. Three of the cysteine 
residues, Cys592, Cys 603, and Cys608 in BCRP are 
located on the extracellular face between TMD5 and 

Figure 2: Comparisons of ROS level between different stages of tumor progression and tumor drug-resistance. While in 
normal cells ROS generation and antioxidants are in balance, increased ROS levels are hallmarks of cancer cells. Marked increase in ROS 
can be achieved by chemotherapeutic agents, resulting in irreparable cellular damages and cancer cell death. However, some cancer cells 
can develop drug resistance by redox resetting.
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Figure 3: Schematic diagrams showing the structures of MDR1, MRP1 and BCRP. All ABC transporters contain 
transmembrane and membrane-spanning domains. The disulfide bonds between the cysteine residues identified in the figure are required 
for maintenance of protein stability and transporter function.
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TMD6 (Figure 3C) [31-33]. Cys592 and Cys608 are 
critical for protein stability by intramolecular disulfide 
bond formation. Mutations at these two cysteine 
residues result in protein misfolding and degradation, 
thereby increasing drug sensitivity because of inefficient 
drug elimination [31-33]. Cys603 is implicated in 
intermolecular disulfide bond formation, resulting in 
dimerization of BCRP (Figure 3C). Mutation at Cys603 
prevents homodimerization [33]. However, functional 
analyses demonstrates that mutation at Cys603 do not 
change the transport activity of the drugs SN-38 and 
mitoxantrone, even though monomeric BCRP represents 
only a half-molecule of a functional ABC transporter [32]. 
Recently, Cys284, Cys374, and Cys438 are also reported 
to be involved in intramolecular disulfide bond formation 
and necessary for BCRP function [34].

Redox determine transporter gene expression

Apart from the conformational changes of those 
drug efflux pumps mentioned above, redox-induced 
overexpression of efflux pumps provides alternative 
‘gates’ by which drugs can be exported from cells. 
Overexpressed transporters have been frequently observed 
in many types of human malignancy, and correlated with 
reduced response to chemotherapeutic agents [35]. After 
treatment with anticancer drugs, redox signaling networks 
are activated to regulate these transporters expression in 
multiple layers, including transcriptional, translational, 
post-translational, and epigenetic levels.
Transcriptional regulation

Accumulating evidence shows that redox-sensing 
transcription factors take part in the transcriptional 
regulation of drug efflux transporters (Figure 4). Nuclear 
factor-erythroid 2 related factor 2 (NRF2), a redox-sensing 

Figure 4: Redox regulation of drug efflux transporters expression. (a) Oxidation of KEAP1 dissociates NRF2 from the complex, 
allowing the translocation and activation of NRF2; (b) Oxidative stress promotes the translocation of APE-1, facilitating transcription of 
numerous gene including MDRs, MRPs and BCRP; (c) FOXO can be activated by interacting with transportin through disulfide linkage 
under oxidative stress. The activation of these transcription factors contributes to the expression of drug efflux transporters.
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transcription factor, can bind to antioxidant response 
element (ARE) and regulates a broad spectrum of genes 
involved in redox balancing, glutathione synthesis, 
and drug detoxification [36]. AREs are identified in the 
promoter region of efflux transporters, such as BCRP and 
MRPs [36]. In general, NRF2 is anchored in the cytoplasm 
by Kelch-like ECH-associated protein 1 (KEAP1), 
which facilitates NRF2 ubiquitination and proteasomal 
degradation. Cys273 and Cys288 of KEAP1 are the 
crucial target residues for oxidation. Redox modifications 
dissociate KEAP1 from NRF2, allowing the translocation 
of NRF2 to the nucleus, where it transactivates target 
gene expression (Figure 4) [37]. Recent studies showed 
that higher levels of NRF2 could promote tumorigenesis 
and contribute to chemoresistance, suggesting a “dark 
side” of the NRF2 pathway [38-43]. For example, 
the expression of NRF2 is increased during acquired 
resistance to tamoxifen and doxorubicin in breast and 
ovarian cancer cells [44, 45]. Nuclear accumulation of 
NRF2 can lead to enhanced expression of ARE-containing 
genes including drug efflux transporters, which facilitate 
the development of drug resistance [46]. In addition, 
overexpression of NRF2 causes enhanced resistance to 
chemotherapeutic agents, including cisplatin, doxorubicin 
and etoposide [40]. Higher expressions of NRF2 and 
its target genes are associated with taxol resistance and 
anchorage-independent growth in MCF-7 and MDA-
MB-231 mammospheres compared to adherent cells 
[47]. Moreover, transport activities of several MRPs are 
activated by γ-glutamylcysteine synthetase (γ-GCS, the 
rate-limiting enzyme for GSH de novo biosynthesis), 
which can be induced by NRF2 [48].

Forkhead box O (FOXO) proteins, a family 
of transcription factors, are deregulated in several 
cancers including prostate, breast, glioblastoma, 
rhabdomyosarcoma, and leukemia [49]. As inactivation 
of FOXOs has been determined to be a crucial step 
in carcinogenesis, increasing their activity could be a 
potential therapeutic strategy for cancer treatment [49, 50]. 
FOXOs are not only responsible for the initial therapeutic 
response to anticancer drugs, but also involved in the 
acquisition of drug resistance (Figure 4) [51, 52]. Under 
continuous stress induced by anticancer drugs, FOXOs can 
elicit the expression of relevant genes for drug efflux and 
antioxidant defense, such as MDR1, MRP2, Mn-SOD and 
catalase [50, 53-55]. For instance, FOXO3 and FOXO1 
can induce MDR1 expression in adriamycin-resistant 
breast cancer cells and K562 leukemic cells [50, 54]. In 
addition, the promoter region of the human MRP2 gene 
contains four FOXO binding sites, and transcription of 
MRP2 gene is stimulated by overexpressed FOXO1 in 
MCF-7 cells [53]. FOXO1 expression is significantly 
upregulated in a paclitaxel resistant cells and further 
enhanced by exposure to paclitaxel [56]. Furthermore, 
FOXO1 overexpression has been frequently observed 
in cancer tissue samples obtained from chemoresistant 

patients [57]. Paradoxically, recent studies showed that 
FOXO3 expression levels were decreased in cisplatin-
resistant cells [58], and FOXO3 knockdown increased 
cell proliferation and enhanced resistance to cisplatin [59].

Ataxia telangiectasia mutated (ATM) is a serine/
threonine protein kinase that participates in activation 
of the DNA damage checkpoint, resulting in cell cycle 
arrest, DNA repair or apoptosis [60]. Recent studies 
have revealed a novel mechanism of ATM activation 
via direct oxidation [61, 62]. When ATM is activated 
by double-strand breaks (DSBs), the protein undergoes 
monomerization that requires free DNA ends and the 
Mre11-Rad50-Nbs1 (MRN) complex. By contrast, when 
ATM is activated by direct oxidation, oxidized ATM 
forms an active dimer covalently linked by intermolecular 
disulfide bonds [61]. Residue Cys2991 is crucial for ATM 
activation by oxidation. A C2991L mutant cannot be 
activated by H2O2 but can be normally activated by the 
MRN complex and DNA [61]. A recent study showed 
that both camptothecin and cisplatin treatment not only 
induced ATM activation, but also upregulated MDR-
related genes BCRP and MRP2 expression in NCI-H446 
cells. Moreover, cisplatin and camptothecin-induced 
BCRP and MRP2 upregulation can be suppressed by ATM 
inhibitors, indicating the role of ATM activation on MDR 
formation in lung cancer chemotherapy [63].
Post-translational regulation

MDR1 is a phosphorylation substrate for a number 
of protein kinases, including protein kinase C (PKC) 
and protein kinase A (PKA) [64]. PKA is shown to be 
activated by redox modifications through the formation of 
intramolecular disulfide bonds which cause a subcellular 
translocation, resulting in phosphorylation of established 
protein substrates [65]. PKC catalytic properties can be 
altered by redox mechanisms, which in turn influence 
the activity of MDR1 [66]. Activation of PKC has been 
reported to increase the phosphorylation of MDR1 
in multidrug-resistant cells [67] and decrease drug 
accumulation and sensitivity [68]. Conversely, treatment 
with PKC inhibitors has been shown to decrease the 
phosphorylation of MDR1, resulting in attenuated drug 
efflux activity and MDR1 drug binding [69].
Epigenetic regulation

The promoter region of MDR1 is highly GC-
rich and contains several CpG islands that are prone 
to be methylated for transcriptional silencing. Studies 
have demonstrates that the methylation status of 
the MDR1 promoter is correlated with MDR1 gene 
transcriptional activity [70-72]. The methylation is 
catalyzed by DNA methyltransferases (DNMTs) and 
use of S-adenosylmethionine (SAM) as a methyl donor. 
SAM is the first metabolite in the methionine cycle 
catalyzed by S-adenosylmethionine synthetase (also 
known as methionine adenosyltransferase, MAT). The 
activities of MATs are profoundly correlated with redox 
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conditions, through the maintenance of a homotetrameric 
conformation [73]. The methionine cycle is the 
primary source of cysteine, a precursor of GSH in the 
transsulfuration pathway. Intracellular GSH levels are 
essential in the maintenance of methylated DNA. GSH 
depletion by hepatotoxin bromobenzene results in a 
reduction of intracellular methionine pools and genome-
wide DNA hypomethylation [74].

ALTERED DRUG METABOLISM

Besides increased rates of drug efflux, altered drug 
metabolism is another important resistance mechanism, 
including drug inactivation or deficient drug activation. 
The redox resetting induced by anticancer drugs may 
hinder the therapeutic effects by such mechanisms. 
Antioxidant systems can directly inhibit the antitumor 
activity of some anticancer agents, such as paclitaxel [75], 
bortezomib [76] and radiation therapy [77]. For example, 
buthionine sulphoximine (BSO) significantly increases 
paclitaxel cytotoxicity through ROS accumulation [75]. 

Figure 5: 5-FU resistance in cancer cells by TYMS oxidation. The fluoropyrimidines (5-FU) are broken down into three 
metabolites, fluorodeoxyuridine monophosphate (FdUMP), fluoro-deoxyuridine triphosphate (FdUTP) and fluorouridine triphosphate 
(FUTP). The principal mechanism of action of 5-FU is the inhibition of thymidylate synthase (TYMS), but alternative pharmacodynamic 
pathways acting through incorporation of drug metabolites into DNA and RNA. TYMS can also be activated through direct oxidation that 
leads to 5-FU resistance.
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Also, platinum drugs, which generate extremely high ROS 
levels, can be inactivated by GSH [78].

Alternatively, the cellular redox state is correlated 
with enzymic expression required for the conversion 
of antimetabolites, such as 5 fluorouracil (5-FU) and 
methotrexate, to their most active forms [79, 80]. 
Capecitabine is a fluoropyrimidine prodrug that is 
converted into 5-FU by thymidinephosphorylase [81]. The 
gene encoding thymidinephosphorylase can be inactivated 
by DNA methylation, thereby causing capecitabine 
resistance [82]. These epigenetic alterations have been 
shown to be induced by H2O2, where DNMT1 binds more 
tightly to chromatin after H2O2 treatment and then alters 
the methylation status of CpG regions [83]. As observed 
in the case of the topoisomerase inhibitor irinotecan, 
the inactivation by UDP glucuronosyl transferase 1 
(UGT1A1) is induced by the redox-sensing NRF2-KEAP1 
pathway [84]. Epigenetic silencing can also promote drug 
activity, and the expression of UGT1A1 is reduced by 
DNA methylation of the promoter. Therefore, in this case, 
promoter methylation promotes irinotecan activity [85, 
86].

ALTERATIONS IN THE DRUG TARGETS

Drug response and resistance are also determined 
by alterations in the drug target, such as mutations or 
changes in expression level. The deregulated or prolonged 
production of cellular oxidants has been linked to 
mutations (induced by oxidant-mediated DNA damage), as 
well as modification of gene expression [87]. Thus, target 
alteration is more likely to happen with anticancer drugs 
that induce high ROS levels.

The fluoropyrimidine 5-FU is widely used 
in the treatment of a variety of cancers, including 
colorectal, breast, and aerodigestive tract cancer 
[88]. It is converted intracellularly to three active 
metabolites: fluorodeoxyuridinemonophosphate 
(FdUMP), fluorodeoxyuridinetriphosphate (FdUTP) and 
fluorouridine triphosphate(FUTP) (Figure 5).These active 
metabolites disrupt RNA synthesis and the function of 
thymidylate synthase (TYMS). TYMS plays a crucial 
role in catalyzing deoxyuridylate (dUMP) to thymidylate 
(dTMP), which provides the sole intracellular de novo 
source of dTMP [89]. Human TYMS protein can 
specifically bind to its own TYMS mRNA and functions 
as a translational repressor. The RNA binding activity is 
determined by its redox state. In the presence of reducing 
agents, the RNA binding activity of TYMS protein is 
significantly enhanced. In contrast, treatment of TYMS 
protein with the oxidizing agent diamide inhibits RNA 
binding [90]. These results demonstrate that the oxidation 
of TYMS, resulting in loss of translational repressor 
function, could lead to 5-FU resistance in cancer cells.

Drug target changes through epigenetic events 
have also been shown to be involved in resistance to 

cytotoxic chemotherapy drugs in a range of tumor cells. 
Hypermethylation of the DNA promoter regions of the 
drug targets results in cell resistance to anticancer drugs, 
such as cisplatin and carboplatin [91, 92]. In addition, 
methylation of genes involved in apoptosis, including 
the DNA mismatch repair (MMR) gene human mutL 
homolog 1 (hMLH1), can occur in drug-resistant tumor 
models. This has led to the concept that the use of a DNA 
demethylating agent such as 2′-deoxy-5-azacytidine 
in combination with anticancer drugs may reverse this 
resistance mechanism [93].

INEFFECTIVE INDUCTION OF CELL 
DEATH

Following the action of an activated drug on its 
cellular target, the therapeutic outcome is then determined 
by the next key process; the response of cancer cells to 
drug treatment. Generally, oxidative stress causes by 
anticancer drugs in turn leads to some cellular damage 
(e.g., DNA damage) that is tightly coupled to the induction 
of cell death. Nevertheless, some intrinsic redox adaptive 
responses can be triggered to enable the cancer cells to 
survive through inhibition of cell death and activation of 
cellular survival pathways, thus providing a mechanism of 
resistance to treatment with anticancer agents [7].

Deregulation of apoptosis

It is well known that resistance to apoptosis is a 
hallmark of cancer [94]. Thus, deregulation of apoptosis 
will protect cancer cells from cell death caused by drug-
induced cellular damage. Cleavage of caspase-3 is known 
to play a central role in apoptosis. Substantial evidence 
reveals that the activity of caspase-3 is inhibited via 
redox modifications [95]. Caspase-3 has been found to 
be constitutively S-glutathionylated in human umbilical 
vein endothelial cells (HUVECs) [96]. Upon tumor 
necrosis factor α (TNFα) stimulation, de-glutathionylation 
of caspase-3 occurs mediated by glutaredoxin (Grx). 
Knockdown of Grx notably inhibit TNFα-induced 
cell death owing to attenuated caspase-3 cleavage, 
concomitant with enhanced caspase-3 S-glutathionylation 
[96]. Mutations of key S-glutathionylation sites of 
caspase-3 (C163S, C184S, and C220S) enhance cleavage 
compared with wild-type caspase-3 [97]. Furthermore, 
S-glutathionylated caspase-3 inhibits its cleavage by 
caspase-8 in vitro (Figure 6) [97]. In addition, caspase-3 
can also be S-nitrosylated at Cys163 [98]. Upon the first 
apoptosis signal (Fas) ligation, de-nitrosylated caspase-3 
leads to caspase-3 activation (Figure 6) [99]. Collectively, 
the higher ROS levels in drug-resistant cells may 
contribute to their escape from apoptosis by caspase-3 
S-glutathionylation and S-nitrosylation.

Upon Fas ligand (FasL) binding, Fas interacts 



Oncotarget42750www.impactjournals.com/oncotarget

with Fas-associated protein with death domain (FADD) 
and procaspase 8 or 10, to form an active death 
inducing signaling complex (DISC) [100]. The FADD 
and procaspase-8 interaction can be inhibited by Flice 
inhibitory protein (FLIP) through competitive binding 
to FADD [100, 101]. Intriguingly, the activity of FLIP 
is shown to be enhanced by S-nitrosylation [102]. Loss 
of S-nitrosylation increases FLIP degradation, which in 
turn facilitates DISC complex formation, and results in 
activation of the downstream apoptosis cascade (Figure 6) 
[102]. FLIP have been shown to be involved in cisplatin-
resistance to bladder cancer cells [103]. Also, fibroblast 
growth factor receptor 4 (FGFR4) has been indicated to be 
an inducer of chemoresistance in colorectal cancer through 
regulation of FLIP expression [104]. Thus, inhibition of 
FLIP may be a promising therapeutic strategy in numerous 
drug-resistant cancer scenarios [105]. Taken together, 
these studies described herein highlight that apoptosis 
is deregulated at multiple layers via redox-associated 
mechanisms.

Activation of autophagy

Autophagy plays paradoxical roles in acquired 
resistance to anticancer drugs. On one hand, cytotoxic 
drug treatment triggers persistent autophagy, which will 

produce excessive cellular damage and even lead to cell 
death, thus attenuating the drug resistance activity of 
cancer cells [106]. On the other hand, autophagy has a 
role in maintaining cancer cell survival during conditions 
of stress and might mediate resistance to anticancer 
therapies [107, 108]. For example, co-administration 
of cisplatin and an autophagy inhibitor chloroquine 
significantly suppress tumor survival whereas cisplatin 
monotherapy fails to show anticancer activity in nude 
mice xenografts using EC109/CDDP cells [109]. Another 
study demonstrated that in chronic lymphocytic leukemia 
(CLL), autophagy was induced by multiple stimuli and 
acted as a mechanism of resistance against flavopiridol, an 
endoplasmic reticulum (ER)-stress-mediating agent [110]. 

Redox resetting has been shown to regulate 
autophagy at multiple levels. To start with, high 
cellular ROS accumulation has been widely proven 
to induce autophagy [111]. In response to ER stress 
induced by tunicamycin, but not thapsigargin, NADPH 
oxidase 4 (Nox4)-mediated production of H2O2 leads 
to cytoprotective autophagy in HUVEC cells [112]. 
Treatment with either the antioxidant N-acetyl-L-cysteine 
(NAC) or catalase hinder the conversion of LC3-I to 
LC3-II which is a key step in autophagy induction, 
thereby decreasing the formation of LC3-II positive 
autophagosomes, and reducing starvation-induced protein 

Figure 6: ROS-induced deregulation of apoptosis. S-nitrosylation of FLIP inhibits the interaction between procaspase-8 and 
FADD, leading to inactivation of caspase-8. S-glutathionylation and S-nitrosylation of caspase-3 inhibit cleavage to the active form. The 
high ROS level in drug-resistant cells may contribute to escape from apoptosis by S-nitrosylation of FLIP, as well as S-glutathionylation 
and S-nitrosylation of caspase-3.
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degradation [113]. The activity of Atg4, which has been 
shown to be involved in the processing of LC3, has also 
been proved to be sensitive to H2O2 [113]. However, 
antioxidant activity is also essential for autophagy 
induction. For example, overexpression of catalase 
increases LC3-II levels in both HCT116 cells and H460 
cells with low levels of endogenous catalase [114, 115]. 
Inhibition or knockdown of catalase attenuates LC3-II 
accumulation in HCT116, H1299 as well as WI38 cells 
[114, 115]. Due to the paradoxical roles autophagy plays 
in cancers, a better understanding of how redox regulation 
distinguishes between the survival-supporting and death-
promoting roles of autophagy is necessary [116].

DNA damage repair

The anticancer activity of most chemotherapy 
drugs relies on the induction of DNA damage in rapidly 
cycling tumor cells with inadequate DNA repair [117]. 
The cellular response to DNA damage is either repair or 
cell death. Therefore, the DNA damage repair capacity of 
cancer cells has a significant influence on the efficacy of 
DNA-damaging drugs.

The redox environment is capable of directly 
modulating DNA repair. One of the initial pieces of 
evidence is that both an increase in 8-oxoguanine (8-oxoG) 
and a reduction in DNA repair occurs in vitro following 
treatment with cadmium [118]. This is subsequently shown 
to be due to cysteine modification of 8-oxoguanine DNA 
glycosylase 1 (OGG1) [119]. Furthermore, an interaction 
between OGG1 and poly (ADP-ribose) polymerase 1 
(PARP-1), a sensor of DNA damage involved in DNA 
repair, has recently been described [120]. This interaction 
is enhanced by oxidative stress and can stimulate 
PARP-1 activity [120]. Oxidative stress also causes the 
translocation of the Y-box binding protein (YB-1) to the 
nucleus, where it has a stable interaction with nei-like 2 
protein (NEIL2) and increases NEIL2 activity in the base 
excision repair (BER) pathway [121]. A further example of 
redox regulation of DNA damage repair is the interaction 
between oxidized XRCC1 (x-ray cross-complementing 
group 1) and DNA polymerase b (Pol b) which is enhanced 
due to the formation of a disulfide bond [122].

Apurinic-apyrimidinic endonuclease 1 (APE-
1) is a versatile protein that has both DNA repair and 
transcriptional regulatory functions by facilitating 
transcription factors binding to DNA [123, 124]. 
Overexpression of APE-1 has been found in 
several cancers and are correlated with the tumor 
radiosensitivity [125]. For example, APE-1 contributes 
to radioresistance [126] and alkylating agent resistance 
[127] in human glioma cells, as well as also promotes 
resistance to radiation combined with chemotherapy in 
medulloblastoma, primitive neuroectodermal tumors 
and pediatric ependymomas [128]. Knockdown of APE-
1 dramatically sensitizes cancer cells to radiotherapy in 

pancreatic carcinoma [129]. APE-1 can be activated by 
nontoxic levels of ROS that promote translocation into the 
nucleus (Figure 4) [130]. ROS production following Ca2+ 

mobilization via purinergic receptors-induced extracellular 
ATP stimulation is responsible for the localization of APE-
1 [131]. Furthermore APE-1 phosphorylation by PKC 
after an oxidative challenge has been shown to increase 
the activity of the APE-1 redox domain [132].

In addition, the activities of other DNA-repair 
proteins such as Ku, ATM, and human replication protein 
A (RPA) have been also reported to be altered by the 
redox resetting. In the nonhomologous end joining 
(NHEJ) double-strand DNA repair pathway, Ku DNA 
binding is lower in an oxidizing environment, although 
the mechanism is not clear [133]. Ku is a heterodimer that 
encircles broken DNA ends during repair and can recruit 
the DNA-PK catalytic subunit (DNA-PKcs) [134]. The 
duration of binding of Ku to the DNA is needed to improve 
recruitment of DNA-PKcs to the DNA-PK complex [135]. 
Ku is inactivated during oxidative stress in glucose-6-
phosphate dehydrogenase (G6PD) null mutant Chinese 
hamster ovary cells [136]. ATM is subsequently activated 
through oxidation at specific cysteine residues [61]. 
Evidence also shows that ATM can promote an antioxidant 
response via regulation of the pentose phosphate 
pathway—one of the primary sources of NADPH [137]. 
An additional example of a DNA repair pathway protein 
involved in oxidative stress is human RPA. RPA is a 
DNA-binding protein involved in replication, repair, and 
recombination. In an oxidizing environment, the cysteines 
in the zinc-finger motif of the p70 subunit form disulfide 
bonds that impair its DNA binding [138].

It has been established that the detection of MMR 
is associated with resistance to many, but not all, DNA-
damaging anticancer agents, such as monofunctional 
alkylating agents, cisplatin, and the antimetabolite 
6-thioguanine [139]. Alkylating agents, including the 
chloroethylnitrosoureas (carmustine [BCNU], lomustine, 
and fotemustine), temozolomide, and procarbazine, are 
commonly used for the treatment of malignant brain 
tumors [140]. These agents add alkyl groups to DNA 
causing DNA damage and apoptosis [141]. Resistance 
to alkylating agents through direct DNA repair by O6-
methylguanine methyltransferase (MGMT) remains a 
significant barrier to successful treatments of patients with 
malignant glioma [142, 143]. The relative expressions of 
MGMT in tumor cells may determine the response to 
alkylating agents [141]. Moreover, promoter methylation 
can silence MGMT expression in gliomas [144]. Recent 
studies showed that oxidative damage induced the 
formation of a large complex containing the DNMTs 
and polycomb repressive complex 4 (PRC4) members, 
which could lead to MGMT promoter methylation [145]. 
Early clinical studies showed that glioma patients with 
methylated MGMT promoters had a survival benefit 
treated with radiotherapy [146].
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TARGETING REDOX ALTERATIONS IN 
CANCER THERAPY

In general, cancer cells exhibit higher levels of ROS 
than normal cells that facilitate tumorigenesis and tumor 
progression. Therefore, the treatment of antioxidants can 
suppress cancer initiation or progression. A number of 
studies suggest that antioxidants could diminish cancer 
initiation by suppressing DNA damage and genomic 
instability. For example, ATM-deficiency-accelerated 
transgenic murine lymphomagenesis is suppressible 
by NAC [147]. Another study has also claimed that 
NAC slowed tumor progression in a p53-dependent 
mouse lymphomagenesis model, seemingly by reducing 
genomic instability [148]. Furthermore, a recent study has 
also observed that NAC and vitamin C have significant 
antitumorigenic effects in vivo. But in stark contrast to 
earlier studies, they found that the effect of NAC and 
vitamin C highly relied on hypoxia-inducible factor 1 
(HIF-1) rather than on reduction of genomic instability 
in a MYC-dependent lymphoma model [149]. However, 
other studies showed that supplementation with vitamin 
E significantly increased the risk of prostate cancer 
[150] and taking b-carotene, vitamin A or E supplements 
increased the incidence of lung cancer [151]. A recent 
study showing that NAC promotes melanoma progression 
supports these findings [152]. Likewise, a study showed 
that NAC increased melanoma metastasis in vivo through 
the small guanosine triphosphatase (GTPase) RHOA 
activation [153].

Based on the intrinsic oxidative stress of cancer 
cells, further ROS inductions have been shown to be 
efficient in preferentially killing malignant cells, with 
some showing promise in clinical studies. However, 
upregulated antioxidant capacity has been found in some 
cancer cells, especially those in advanced stages. This 
redox adaptation enables the cancer cells to survive under 
increased oxidative stress, and provides a mechanism 
of drug resistance. For example, elevated levels and 
activity of catalase are found in multidrug resistant HL-60 
leukaemia cells [154]. Upregulation of HMOX1, SOD1 
and GSH are found to be associated with arsenic trioxide 
resistance [155]. Also, several studies suggest that the 
resistance to doxorubicin, paclitaxel or platinum-based 
drugs, which induce intracellular ROS production, is 
correlated with increased antioxidant capacity [156, 157]. 

For those cancer cells that have adapted to higher 
level of oxidative stress by increasing their antioxidant 
capacity, simply ROS-generating agents treatment might 
not be effective. It is possible to combine ROS-generating 
drugs with compounds that restrain the cellular antioxidant 
capacity. For example, a combination of arsenic trioxide 
and 2-Me, a SOD inhibitor, shows significantly enhanced 
cytotoxic activity in primary chronic lymphocytic 
leukaemia (CLL) cells [158]. A combination of arsenic 
trioxide and ascorbic acid, mediating GSH depletion, are 

also reported to be effective for relapsed or refractory 
multiple myeloma in a clinical study [159]. 

CONCLUSIONS

Due to significant advances in the research arena 
in the last few decades, cancer drug resistance is now 
realized to be more complicated than originally conceived. 
The emergence of drug resistance is the result of dynamic 
battles between cancer cells and chemotherapeutic 
agents. Although new anticancer drugs will continue to 
be developed, it is anticipated that novel drug-resistance 
mechanisms will follow. Therefore, deciphering the 
intrinsic mechanisms of drug resistance induction may be 
an effective strategy to solve this significant problem in 
cancer therapy.

Redox resetting, which usually occurs in anticancer 
drug treatment, is a protective response from tumor cells 
that can buffer drug-induced stresses and damage by 
rebuilding redox homeostasis and activating multiple 
redox signaling pathways, thereby leading to drug 
resistance. The versatility of redox signaling is such that it 
can affect almost every cell and involve multiple signaling 
processes. Thus it is anticipated that redox signaling will 
continue to be an important stimulator in the development 
of drug resistance with new therapeutic agents. Therefore, 
it is essential to reveal and understand the molecular 
mechanisms underlying redox resetting-induced drug 
resistance.

Despite the universality of redox resetting in 
chemotherapeutic treatments, different agents for distinct 
cancer types, patients with individual variations, and 
genetic heterogeneity in tumors may lead to inequable 
situations. Therefore, only when we have screened and 
identified enough usable drug-resistant biomarkers related 
to redox resetting, will it be feasible to overcome drug 
resistance by monitoring and regulating the process of 
redox resetting. The use of modern genomic, proteomic 
and other omics techniques has dramatically promoted 
the ability to identify novel genes and signaling networks 
involved in tumor responsiveness to drug treatment. 
Moreover, high-throughput techniques combined with 
bioinformatics approaches has allowed the identification 
of genotypes and molecular signatures also aided the 
interrogation of clinical samples, facilitating the prediction 
of drug responses to certain drugs. These will provide 
abundant data that can be used to identify potential 
predictive biomarkers for patient stratification.
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