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ABSTRACT

Previous studies have shown that the bone marrow micro-environment supports 
the myeloproliferative neoplasms (MPN) phenotype including via the production 
of cytokines that can induce resistance to frontline MPN therapies. However, the 
mechanisms by which this occurs are poorly understood. Moreover, the ability to 
rapidly identify drug agents that can act as adjuvants to existing MPN frontline 
therapies is virtually non-existent. Here, using a novel predictive simulation approach, 
we sought to determine the effect of various drug agents on MPN cell lines, both with 
and without the micro-environment derived inflammatory cytokines. We first created 
individual simulation models for two representative MPN cell lines; HEL and SET-2, 
based on their genomic mutation and copy number variation (CNV) data. Running 
computational simulations on these virtual cell line models, we identified a synergistic 
effect of two drug agents on cell proliferation and viability; namely, the Jak2 kinase 
inhibitor, G6, and the Bcl-2 inhibitor, ABT737. IL-6 did not show any impact on the 
cells due to the predicted lack of IL-6 signaling within these cells. Interestingly, 
TNFα increased the sensitivity of the single drug agents and their use in combination 
while IFNγ decreased the sensitivity. In summary, this study predictively identified 
two drug agents that reduce MPN cell viability via independent mechanisms that was 
prospectively validated. Moreover, their efficacy is either potentiated or inhibited, by 
some of the micro-environment derived cytokines. Lastly, this study has validated the 
use of this simulation based technology to prospectively determine such responses.

INTRODUCTION

The tumor micro-environment is a complex system 
of host cells that work, inadvertently, to promote the 
growth of neoplastic cells. Host cells within a typical 
tumor micro-environment include fibroblasts, endothelial 
cells, and immune cells [1, 2]. Within the bone marrow, 
the tumor micro-environment also includes osteoblasts, 
adipocytes, and various hematopoietic cells [3]. In the 
bone marrow, the micro-environment provides both the 

physical support, as well as a number of soluble factors, 
that serve to enhance neoplastic cell growth. The physical 
support is in the form of direct cell-cell contact and comes 
via the interaction of various extracellular proteins such 
as cadherins and growth factor receptors. The soluble, or 
paracrine factors, include various combinations of growth 
factors, cytokines, and/or chemokines, that similarly 
enhance neoplastic growth. Moreover, not only does the 
tumor micro-environment support neoplastic cell growth, 
but it also promotes resistance to eventual therapeutic drug 

Research Paper



Oncotarget35990www.impactjournals.com/oncotarget

agents [1, 4-6]. As such, therapeutic regimens may be most 
effective when the neoplastic cells themselves are directly 
targeted with one drug and the tumor micro-environment 
is targeted with another.

The Philadelphia chromosome negative 
myeloproliferative neoplasms (MPNs) encompass 
polycythemia vera (PV), essential thrombocythemia 
(ET), and myelofibrosis (MF). There are approximately 
22 cases of PV, 24 cases of ET, and 1.46 cases of 
myelofibrosis for every 100,000 people, which amount 
to approximately 68,000 patients with PV, 74,000 with 
ET, and 4,500 with MF in the United States [7]. MPNs 
are characterized by similar pathological syndromes 
including excess production of blood cells from the bone 
marrow, pruritus, splenomegaly, and extramedullary 
hematopoiesis. Jak2 somatic mutations are found in 
about 95% of all PV patients and more than half of all 
ET and MF patients. Current frontline therapies for MPN 
include cyto-reductive agents such as hydroxyurea and 
the pan Jak1/2 small molecule inhibitor, Ruxolitinib [8]. 
Although these therapies provide significant palliative 
relief of some disease associated symptomologies, 
they do so for a relatively small percentage of treated 
patients. For example, in the case of Ruxolitinib, only 
22% of treated patients (11 of 51) exhibited clinical 
improvement and not a single patient exhibited either 
partial or complete disease remission [9]. A very recent 
report has perhaps identified a mechanism for the poor 
clinical response that has been observed with Ruxolitinib. 
Specifically, when Jak2-V617F expressing cells were 
exposed to Ruxolitinib in culture, the drug was able to 
significantly reduce MPN cell viability [10]. However, 
when the same cells were co-cultured with bone 
marrow stroma derived from MPN patients, the ability 
of Ruxolitinib to reduce Jak2-V617F cell viability was 
lost [10]. Interestingly, this was not observed when the 
same Jak2-V617F MPN cells were co-cultured with bone 
marrow stroma taken from non-diseased, age matched, 
control subjects [10]. One reported difference between 
the MPN and non-diseased stroma was that the levels of 
inflammatory cytokines were significantly elevated in the 
MPN samples [10]. Thus, these results suggest that bone 
marrow stromal derived factors play a significant role in 
protecting Jak2-V617F positive cells from Ruxolitinib-
induced cell death, thereby highlighting the role of the 
bone marrow micro-environment not only in the MPN 
disease pathogenesis, but also in resistance to subsequent 
Jak2 targeted therapies.

Predictive simulation modeling is an emerging 
technology in the realm of personalized medicine. A 
computational simulation avatar is created via genomic 
profiling information that is derived for a given cell 
line or patient biopsy. A digital library of molecularly 
targeted drugs is tested on this individual avatar (N=1), 
where drug agents are combined at different doses via 
simulation-based computation, resulting in analyses of 

the effects of a large number of drug combinations on 
various tumor phenotypes, including cell proliferation, 
apoptosis, and viability. A critical feature of this 
approach is that the drug library can be composed of 
drugs that have been approved for other indications and/
or new investigative drug agents. The assessment of drug 
impact can be done under variations of the bone marrow 
micro-environment from the paracrine perspective, and 
along with the genomics driven autocrine loops, can 
provide insight into factors that are interfering with 
drug response. Shortlisted drugs and drug combinations 
are then experimentally validated on immortalized cell 
lines that represent the disease of interest or patient cells 
ex vivo. This predictive simulation approach differs 
from other biological modeling methodologies in that 
it incorporates integrated cancer physiology networks 
that cover all disease phenotypes in the simulation 
and provides semi-quantitative outputs and trends 
[11-13]. The network is manually aggregated from 
experimental data and addresses issues of contradictory 
datasets via evaluation of both the quality and context 
of the experimental data. In addition, the network is 
continuously updated with information from new reports 
using a regression based engineering methodology with 
stringent quality control. Thus, this semiconductor 
engineering based methodology creates a dynamic 
and transparent disease physiology model that makes 
feasible, a large quantum of simulation based drug 
combination hypotheses that can then be prospectively 
validated.

Given the importance of the tumor micro-
environment on both MPN disease pathogenesis and 
drug resistance, we hypothesized herein that predictive 
simulation modeling could be employed in order to better 
understand the role of inflammatory cytokines on drug 
efficacy and resistance, and to develop a methodology to 
tease out the causal factors for enhancing or reducing the 
response of the prospectively validated shortlisted drug 
combinations. To test this, we selected two representative 
MPN cell lines, Human erythroleukemia 92.1.7 (HEL) and 
SET2, and obtained their genomic profile. The HEL cell 
is largely defined by the Jak2-V617F mutation, along with 
deletion of CDKN2A, RB1 and TP53 [14-16]; while the 
SET-2 cells are defined by Jak2 mutations as well as TP53, 
and additional mutations and copy number variations as 
reported in C-BioPortal [16]. Simulation avatars were 
then created for each cell line and the signaling networks 
were simulated, both with and without inflammatory 
cytokines tumor necrosis factor alpha (TNFα), interferon 
gamma (IFNγ) and interleukin 6 (IL-6). We identified 
two drugs (the Jak2 kinase inhibitor, G6, and the Bcl-2 
inhibitor, ABT737) that could significantly reduce MPN 
cell viability when used alone and their effects were 
synergistic when used in combination. Furthermore, we 
found that the inflammatory cytokine TNFα increased 
the sensitivity of the single drug agents and their use in 
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combination. On the other hand, IFNγ reduced sensitivity 
of the individual drugs while having no impact on the 
combination, while IL-6 was found to not impact the drug 
sensitivity in these profiles.

RESULTS

Predictive simulation modeling

The simulation model used herein includes 
representation of important signaling pathways implicated 
in cancer as detailed in the methods below (Figure 1). The 
SET2 and HEL cell line models that are representative of 
Jak2-V617F driven MPN were created as described in the 
methods. The mutation and copy number variation (CNV) 
aberration data for these cell lines were obtained from the 
literature and cancer portals such as Sanger and cBioportal 
[14-16, Appendix 1]. SET2 cells, besides having the Jak2-
V617F mutation, also has mutations in RPTOR, TP53, 
CCNA2, NOTCH2, EGF, MAP2K1 as well as multiple 
gene amplifications and deletions as listed in Appendix 
1. Definition for the HEL cell line obtained from Sanger 
comprised of mutations in Jak2, TP53, CDKN2A, as well 
as RB1 deletion and E2F1 amplification. There are also 
many CNVs (Appendix 1). Once defined, the cell line 

simulation models were validated at the biomarker and 
phenotype level against available experimental results on 
these cell lines.

Retrospective validation of virtual HEL and 
SET2 cell lines

In order to determine the confidence of the 
virtual MPN HEL and SET2 cell lines, we evaluated 
the correlation of predicted outcomes with that various 
known experimental datasets in the literature including 
Rubert et al. [17], Will et al. [16], and Pardanani et al. 
[18]. Figures 2A shows the predictive data for the effect 
of NVP-BSK805 (a Jak2 inhibitor) on the Jak2-V617F 
dominant SET2 cell line. In particular, the simulation 
modeling predicted increases of the apoptotic markers 
cleaved PARP, Caspases-3, -7 -,8 and -9, BIM as well as 
decreases in phosphorylated STAT5 and anti-apoptotic 
MCL1 (Figure 2A). These predictions aligned very well 
with the previously published experimental data for this 
cell line and this drug effect [17].

Figure 2B depicts the predictive simulation data 
of the effect of JAK Inhibitor-1 treated HEL cells. 
Specifically, the simulations predicted reductions of 
phosphorylated STAT5, AKT, and ERK, as well as 

Figure 1: Schematic diagram of ™CELLWORKS cancer cell platform. A high level schematic diagram of the key pathways 
including inputs such as growth factors, cytokines, kinases, adaptors, transcription and translation machineries; cellular processes such as 
protein homeostasis, oxidative and ER stress, DNA repair, epigenetic regulations, tumor metabolism, cell cycle regulation; and the various 
tumor phenotypes of proliferation, viability, metastasis, angiogenesis, immune regulation, apoptosis; present in the virtual tumor cell 
technology. The Cellworks Oncology Platform was customized to create the virtual MPN cell lines HEL and SET2.
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increased cleaved PARP. We found that the predictive 
data matched with the retrospective experimental results 
of JAK Inhibitor-1 treated HEL cells [16]. Will et al. also 
presented results on the enhancement of efficacy of JAK 
inhibitor-1 on apoptosis in SET2 cells, by the inclusion 
of the BCL2 inhibitor, ABT737 [16]. This combination 
of JAK inhibitor-1, along with BCL2 inhibitor ABT737, 
was therefore tested predictively on the virtual SET2 cell 
line. The predictive results are presented as Figure 2C. We 
found that the predictive results matched the experimental 
results [16], thereby validating the virtual SET2 cell line, 
retrospectively.

Pardanani et al. similarly tested the ability of the 
Jak2 kinase inhibitor, TG101209, to inhibit HEL cell 
proliferation [18]. Our predictive simulation modeling 
(Figure 2D) correlated very well with the previously 
generated experimental data [18], thereby validating the 
virtual HEL cell line in this regard.

Thus, when taken together, the data in Figure 2 
validated, on a retrospective basis, the virtual SET and 
HEL cell lines. Consequently, the avatars for these two 
cell lines can be digitally leveraged, in order to better 
understand MPN biology.

Prospective validation of predictive 
simulations and synergistic interaction 
between ABT737 and G6

The predictive simulation modeling and the 
subsequent therapeutic drug simulations indicated that the 
Bcl2 inhibitor, ABT737, and the pre-clinical Jak2 kinase 
inhibitor, G6, would be efficacious against Jak2 driven 
pathogenesis, when used alone and synergistically when 
used in combination. ABT737 is a BH3 mimetic and 
inhibits several proliferative genes including Bcl-2, Bcl-
xL, and Bcl-w [19]. G6 is a preclinical Jak kinase inhibitor 

Figure 2: Predictive vs. experimental correlation of various JAK inhibitors on HEL and SET2 cells. A. The predictive 
plot with % change in protein levels for the indicated disease markers expressed in SET2 cells after virtual treatment with BSK805. B. The 
simulation avatar predicted effect of JAK inhibitor-1 on pSTAT, pAKT, pERK, and cleaved PARP in HEL cells. C. The simulation avatar-
predicted dose response effect of JAK inhibitor-1, with or without ABT737, on apoptosis in SET cells. ‘C’ is the concentration of the drug 
at 60% on-target inhibition. D. Simulation avatar predictive dose response curve for the JAK inhibitor, TG101209, on HEL cell viability 
with varying the C concentration (60% on-target inhibition) from C/1000 to 10C.
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with a Jak selectivity profile of Jak2>Jak3>>Jak1>>>Tyk2 
[20]. The STAT selectivity profile for this compound is 
STAT5>STAT3>STAT1, and its principal mechanism of 
action is induction of apoptosis [21]. Figure 3A shows the 
ABT737 predictive simulation results indicting a dose-
dependent decrease on HEL cell viability, while Figure 
3B shows the validation of these results on cultured cells. 
Figure 3C shows the predictive simulation results of 
G6 on HEL cell viability while Figure 3D displays the 
prospective validation of those forecasts.

Figure 4A shows the predictive effect of the drugs, 
when used in combination, on HEL cell viability. The 
simulations predicted a synergistic relationship between 
the two compounds. To validate these data, we treated 

HEL cells with various combinations of ABT737 and G6, 
and subsequently measured HEL cell viability. We found 
that the experimental results closely paralleled the virtual 
simulations and thus validated the predicted results (Figure 
4B). In order to determine if the relationship between 
ABT737 and G6 was in fact synergistic, we simulated 
various dosages of G6 and ABT737 in combination, in 
order to identify the minimum concentration that could 
achieve at least 50% reduction in cell viability. The 
results from these simulation studies are plotted in the 
isobologram shown in Figure 4C. The isobologram plot 
has the concentration of the Jak2 inhibitor, G6, on the 
y-axis and the concentration of the BCL2 inhibitor on the 
x-axis. The red line connects the IC50 concentrations of 

Figure 3: Prospective validation of predictive simulations and synergistic interaction between ABT737 and G6. A. The 
virtual HEL cell line was simulated with increasing concentrations of ABT737 (C/10 to 8C) and the percent of viable cells was plotted as 
a function of drug concentration. ‘C’ is the predicted concentration of the drug at 60% on-target inhibition. B. Prospective validation of the 
drug effect whereby HEL cells were treated with the indicated concentrations of ABT737 and viability was measured three days later. Each 
data point was measured in triplicate. C. The virtual HEL cell line was simulated with increasing concentrations of the JAK inhibitor (C/10 
to 8C), G6, and the percent of viable cells was plotted as a function of drug concentration. ‘C’ is the predicted concentration of the drug 
at 60% on-target inhibition. D. Prospective correlation of the G6 effect whereby HEL cells were treated with the indicated concentrations 
of G6 and viability was measured three days later. Each data point was measured in triplicate. Shown is one of three (B) or two (D) 
representative results.
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the two drugs. Combinations of the drugs at the varied 
doses indicates that a combination of Jak2 inhibitor, along 
with BCL2 inhibitor at half the IC50 G6 dose, along with 
1/3rd of the ABT737 dose, indicated by the black cross 
on the left, could achieve the same 50% inhibition as the 
individual IC50 doses. Similarly 1/3rd of G6 dose with half 
of the ABT737 dose, as indicated by the black cross on the 
right, also gave an IC50 inhibition, indicating that these two 
drugs are synergistic in reducing HEL cell viability.

Collectively, predictive cellular modeling and 
subsequent drug simulations indicated that ABT737 
and G6 would significantly decrease HEL cell viability 
when used individually, and synergistically, when used in 
combination. The subsequent prospective validation on 
cultured HEL cells validated those predictions. As such, 
these studies validate the virtual HEL cell line and how 
two investigative drug agents affect it.

Inflammatory cytokines modulate the effects of 
ABT737 and G6 on cell viability

Cytokine storm is a common syndrome within 
MPN patients. It is characterized by increased levels 
of inflammatory cytokines, both in the bone marrow 
and the peripheral blood [22-25]. Within the bone 
marrow, inflammatory cytokines such as IL-6 and TNFα 
contribute to a number of deleterious actions including the 
development of drug resistance. For example, previous 
reports have shown that inflammatory cytokines, per se, 
can render MPN cells resistant to Jak kinase inhibitors 
including Ruxolitinib and atiprimod [10, 26]. Interestingly, 
because of the distinct mechanisms of actions for ABT737 
and G6, our predictive simulation modeling indicated 
these investigative drugs would not be adversely affected 
by inflammatory cytokines. To explore this, we first 

Figure 4: Prospective validation of predictive simulations avatars and synergistic interaction between ABT737 and 
G6. A. The virtual HEL cell line was simulated with the indicated concentrations of ABT737 (fixed dose of drug IC25 and IC50 viability) 
and dose response of varying dose of G6 with ‘C’ being the predicted concentration of the drug at 60% on-target inhibition, and cell viability 
was then plotted as a function of drug concentrations. B. Prospective validation of the drug effects on cultured HEL cells treated with the 
indicated concentrations of ABT737 and G6. Cell viability was then measured three days later. Each data point was measured in triplicate. 
Shown is one of three representative results. C. An isobologram showing the IC50 concentrations of the two drugs (red line), plotted as 
a function of individual drug concentrations. The black crosses indicate the sub-IC50 concentrations that were required to reduce the cell 
viability by one-half, thereby indicating synergy between ABT737 and G6.
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examined receptor expression for IL-6, TNFα, and IFNγ, 
on both SET-2 and HEL cells. We found that both cell 
lines lacked IL-6 receptor expression so therefore, this 
cytokine would serve as an appropriate negative control. 
However, both cell lines were found to express the 
appropriate compliment of receptors for both TNFα and 
IFNγ. Moreover, our predictive simulations indicated that 
these two inflammatory cytokines would not hinder the 
actions of ABT737 and G6. Figure 5A shows the predicted 
effect of G6 on SET-2 cell viability, both in the presence 
and absence of IL-6. Given the lack of IL-6 receptor 
expression on SET-2 cells, our simulations indicated that 
IL-6 would not impact the ability of G6 to reduce SET-
2 cell viability. This was confirmed experimentally when 
SET-2 cells were treated with increasing concentrations 
of G6, both in the presence and absence of IL-6 (Figure 
5B). With respect to HEL cells, our predictive modeling 

indicated that IL-6 would similarly be without effect 
while TNFα would potentiate the effect of G6 on reducing 
HEL cell viability (Figure 5C). This was confirmed 
experimentally whereby the IL-6 was found to be without 
effect whereas TNFα increased the sensitivity of the 
cells to concentrations of G6 that were between 1 - 10 
μM (Figure 5D). When ABT737 was modeled into the 
simulations, we found that TNFα potentiated the effect 
of not only G6, but also the combination of G6 and 
ABT737 (Figure 6A). When this was tested in cultured 
cells, we observed a similar result (Figure 6B). IFNγ on 
the other hand decreased the sensitivity of G6, post a 
threshold concentration when used alone (Figure 6B), and 
did not show much impact on the efficacy when used in 
combination.

Overall, the results in Figures 5 and 6 indicate that, 
rather than diminishing the inhibitory potential of G6 and 

Figure 5: Inflammatory cytokines differentially affect the efficacy of G6. A. The virtual SET2 cell line was simulated with 
the indicated concentrations G6, both in the presence and absence of IL-6. ‘C’ is the predicted concentration of the drug at 60% on-target 
inhibition. The percent of viable cells was then plotted as a function of G6 concentration. B. Prospective validation of the IL-6 effect on 
cultured SET2 cells whereby the percent of viable cells was plotted as a function of G6 concentration, both in the presence and absence of 
IL-6. Each data point was measured in triplicate. Shown is one of three representative results. C. The virtual HEL cell line was simulated 
with the indicated concentrations of G6, both in the presence and absence of either IL-6 or TNFα. The percent of viable cells was then 
plotted as a function of G6 concentration. D. Prospective validation of the cytokine effect on cultured HEL cells whereby the percent of 
viable cells was plotted as a function of G6 concentration, both with and without cytokine. Each data point was measured in triplicate. 
Shown is one of three representative results.
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ABT737, TNFα in fact augments them while IFNγ and 
IL6 did not show much impact. Thus, the combination 
therapy of G6 and ABT737 is not only highly effective at 
reducing HEL cell viability, but also withstands cytokine 
induced drug resistance normally caused by TNFα.

DISCUSSION

Dysregulated Jak2 kinase signaling has been 
implicated in a number of human pathologies including 
hypertension, diabetes, and cancer [27]. Within the bone 
marrow, dysregulated Jak2 signaling is known to be a 
causative agent in MPN [27, 28]. The constitutive Jak2-
dependent signaling drives excessive proliferation and 
differentiation of cells within the myeloid lineage. With 
respect to potential drug therapies, unfortunately, over 
the past few years, six Jak2 small molecule inhibitors 
have been abandoned in clinical studies for either a 
lack of efficacy and/or severe adverse events [29, 30]. 
These include drugs developed by Lilly (Gandotinib), 
Bristol-Myers Squibb (BMS-911543), Sanofi Aventis 
(Fedratinib), Cephalon (Lestaurtinib), AstraZeneca 
(AZD1480) and Exelixis (XL019). Moreover, for the 
only FDA approved Jak2 inhibitor, Ruxolitinib, studies 

have clearly demonstrated an acquired drug resistance 
that involves inflammatory cytokines [10, 26]. Thus, 
identifying therapeutic agents that can reduce MPN cell 
viability, especially in the face of inflammatory cytokines 
present in the bone marrow microenvironment, is highly 
desirable. Here, we used predictive simulation modeling 
in order to identify drug agents that could not only 
reduce MPN cell viability, but do so despite bone marrow 
derived inflammatory cytokines. To this end, we found 
that the Jak2 kinase inhibitor, G6, and the Bcl-2 inhibitor, 
ABT737, significantly reduced MPN cell viability when 
used alone, and their effects were synergistic when 
used in combination. Furthermore, we found that the 
inflammatory cytokine, TNF-α, increased the sensitivity 
of the single drug agents and their use in combination. 
As such, these results have defined a novel set of drug 
agents that have a differentiating element when compared 
to currently available front line therapies; namely, an 
ability to be more, rather than less potent, in the face of an 
inflammatory cytokine in the form of TNF-α.

In PV, >90% of the patients harbor the Jak2-V617F 
mutation and in most instances, this is both the key and 
only aberration. In such profiles, there is a Jak2 driven 
up-regulation of anti-apoptotic genes BCL2, MCL1, 

Figure 6: Inflammatory cytokines differentially affect the efficacy of ABT737 and G6. A. The virtual HEL cell line was 
simulated with the indicated concentrations G6 and ABT737, both in the presence and absence of either TNFα or INF-γ. The percent 
of viable cells for each condition was then plotted as a function of G6 concentration. B. Prospective validation of the cytokine effect on 
cultured HEL cells whereby the number of viable cells was plotted as a function of G6 concentration. Each data point was measured in 
triplicate. Shown is one of three representative results.
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BCL2L1 [18, 28]. There is also an increased activation of 
proliferative genes such as CCND1, CCNE1 and CCNA1 
and cell cycle kinases including CDK2/4 [31]. Figure 7 
depicts the signaling networks that are dysregulated in a 
model of Jak2-mediated pathogenesis and the impact of 
IL-6, IFN-γ, and TNF-α on those signaling networks. In 
addition, the schematic shows the nodes of inhibition for 
the BCL2 inhibitor ABT737 and Jak2 kinase inhibitor 
G6. In a Jak2-V617F driven profile, the Jak2 downstream 
signaling via STAT3, STAT5, PI3K/AKT, SHC1/ERK 
and STAT1 are activated [30, 31]. In this schematic of 
HEL cell signaling, besides the JAK2 mutation, there 
is also a loss of function mutation of TP53, deletion of 
RB1 and CDKN2A as well as amplification of E2F1, all 
leading to increased proliferation and viability. G6 inhibits 
the dominant Jak2 signaling in this Jak2 mutant driven 

network. BCL2, a key anti-apoptotic protein is activated 
downstream of the Jak2-V617 mutation via STAT3, 
STAT5, and NF-kB. Thus, inhibiting this downstream 
signal, along with a more direct inhibition of the driver 
pathway, synergize to inhibit cell proliferation and viability 
as we prospectively validated in MPN representative cell 
lines. One advantage of the G6 and ABT-737 combination 
therapy is that it synergizes by inhibiting both proliferation 
and viability; specifically, G6 inhibits the proliferative 
impact of the Jak2 mutation itself while ABT-737 targets 
the anti-apoptotic pathways. Moreover, the Jak2-V617F 
mutation activates multiple anti-apoptotic proteins, 
including MCL1. Inhibition of Jak2 by G6 inhibits MCL1 
via downstream inhibition of its transcription factors [21] 
and therefore contributes further to enhancing induction 
of apoptosis and reducing tumor cell viability. This also 

Figure 7: Scientific rationale schematic for the HEL disease network and the impact of the cytokines in the tumor 
microenvironment on the efficacy of G6 and ABT737 combination therapy. A network schematic depicting the key pathways 
and aberrations present in HEL cell line that has JAK2-V617F as a key driver mutation along with a mutation of P53, deletion of RB1 
and CDKN2A and amplification of E2F1. A constitutively activated JAK2 mutant activates various downstream pathway loops leading 
to activation of ERK, AKT and key transcription factors including STAT3, STAT5, NFkB, AP1 and others. This along with the other 
aberrations converge at a highly proliferative phenotype and increased cell viability. The cytokine modulated pathways are depicted in 
terms of how they interact with the JAK2 driven disease network. IFNγ and IL6 converge via JAK2 wild type signaling and therefore are 
not showing a significant impact in changing the outcome of G6 efficacy since JAK2 is mutated and constitutively activated. TNFα on the 
other hand activates NFkB, but also activates the pro-apoptotic pathway loop, thereby enhancing the efficacy of the JAK2 inhibitor and the 
combination. The inhibitors G6 and ABT737 are also shown inhibiting their respective targets and the schematic highlights the rationale for 
the use of these two drugs in combination in a JAK2-V617F driven MPN disease network.
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addresses the possible resistance mechanism that can arise 
when MCL1 expression increases subsequent to BCL2 
inhibition [32, 33].

Across the various cytokines measured in the 
plasma of MPN patients, eight chief cytokines have 
been described; MIP-1β, TNF-α, IL-6, GM-CSF, IFN-γ, 
G-CSF, IFN-α, and Rantes [24, 25, 34]. The observed 
concentration of these cytokines in MPN patients is 
higher than that in normal donors, consistent with other 
published reports [23]. Of these cytokines, we determined 
the impact of IL-6, TNF-α, and IFN-γ on our virtual cell 
lines, with subsequent experimental validation. Given the 
lack of IL-6 receptor expression on HEL and SET-2 cells, 
IL-6 was predictably without effect. The predicted and 
validated effect of IFNγ on drug efficacy was minimal. 
Lastly, we found that TNFα potentiated the efficacy of 
the drug agents when used either alone or in combination. 
As such, these studies define novel interactions between 
inflammatory cytokines and experimental drug efficacy, 
which can potentially be exploited for circumventing 
mechanisms of cytokine-induced drug resistance.

The predictive simulation modeling that was 
employed in this work integrates signal transduction, 
epigenetic regulation, protein homeostasis, metabolic 
pathways, and other phenotypes representing not 
just MPN, but all cancers (Figure 1). The platform as 
demonstrated in this study, has the ability to predict cellular 
outcomes and the subsequent identification of personalized 
therapeutic assets for any given profile, whether it is 
a cancer cell line such as those used herein or a human 
patient sample [11-13]. The workflow utilizes drug 
agents that can either be FDA approved (i.e., ABT737) 
or under investigation (i.e., G6). As such, FDA approved 
drugs can readily be repurposed for new indications 
which provides a rapid path to clinical translation, while 
investigational drugs can rapidly be screened in silico 
in various profiles and disease models across a large 
number of phenotypes and biomarkers. This can provide 
an in-depth insight into efficacy and mechanistic details 
without putting in extensive resource, time, and efforts 
into running experiments. The data provided herein have 
been used as the foundation for a personalized medicine 
approach for several hematological disorders. Specifically, 
peripheral blood and/or bone marrow samples are being 
collected from myelofibrosis, multiple myeloma, acute 
myeloid leukemia, acute lymphoblastic leukemia, and 
myelodysplastic syndrome patients under an IRB approved 
protocol (NCT02435550). After collection, the samples 
are being subjected to next-generation sequence (NGS) 
analysis, protein mutation analysis, and metabolomic 
analysis. The profiling data are then being fed into the 
predictive simulation modeling, where a short list of novel 
drug combinations is subsequently generated for each 
patient. The drug combinations are then being validated 
on ex vivo cultures using the same patient’s primary cells. 
The most efficacious therapy is then being tested in the 

patient. Consequently, the studies described in this current 
work have served as the basis for a hematological-based, 
precision medicine campaign that can readily be leveraged 
into other cancers as well.

In summary, this work identified two investigative 
drug agents that act significantly when used alone and 
synergistically when used in combination, to reduce the 
viability of two MPN model cell lines. We found that their 
efficacy is potentiated by some inflammatory cytokines 
that are typically elevated in MPN. Thus, by accurately 
predicting responses of cells to targeted agents a priori in 
context of their genomics and microenvironment, the in 
silico simulation model provides an innovative approach 
to precision medicine for not only MPN, but other 
neoplastic disorders as well.

MATERIALS AND METHODS

Cancer simulation model

The simulation experiments and analyses 
were performed using the predictive tumor model, a 
comprehensive and dynamic network of signaling, and 
metabolic pathways in the context of cancer physiology 
as described [35]. The simulation model used herein, as 
depicted in a very high level schematic of the network in 
Figure 1, includes growth factors like EGFR, PDGFR, 
FGFR, c-MET, VEGFR and IGF-1R; cytokine and 
chemokines like IL1, IL4, IL6, IL12, TNFα, IFNγ; 
GPCR mediated signaling pathways; mTOR signaling; 
cell cycle regulations; tumor metabolism; oxidative and 
ER stress; representation of autophagy and proteosomal 
degradation; DNA damage repair, p53 signaling and 
apoptotic cascade. The network also includes epigenetic 
regulation mechanisms and shows all the phenotypes 
that are modeled and can be assessed. The referenced 
current version of cancer model includes more than 
4700 intracellular biological entities and ~6500 reactions 
representing their interactions regulated by ~25000 kinetic 
parameters. This comprises a comprehensive and extensive 
coverage of the kinome, transcriptome, proteome, and the 
metabolome. There are 142 kinases and 102 transcription 
factors modeled in the system.

Simulation protocol

The simulation protocol for the testing of the drug 
combinations in the virtual MPN cell line models for HEL 
and SET2 in context of the different microenvironment 
based cytokine variation consisted of the following steps:

1. Control stage: The model is simulated for 50,000 
seconds simulation time during which the different 
species (biological entities including enzymes, receptors, 
metabolites etc.) attain a steady state concentration. This 
concentration is dependent upon the balance between 
the rate of reaction nodes producing the species and the 
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reaction nodes utilizing/degrading the species. This is the 
un-triggered control baseline.

2. Disease stage: At simulation time of 50,000 
seconds, the genomic aberrations for a profile (cell line or 
patient biopsy) is overlaid on the control network through 
representing the aberrations as increased or decreased 
expression/activity of genes or proteins to represent copy 
number variations and mutations respectively. The system 
is then simulated further to 125,000 seconds simulation 
time. During this time, the system attains a new steady 
state which aligns to the network dynamics of the tumor 
cell line or patient profile depending on the genomic input 
file.

3. Disease + Drug Stage: Once the disease baseline 
is created, the drug is introduced in the system at 125,000 
seconds by perturbing the target reaction nodes to 
represent the drug mechanism of action. The system is 
simulated further until 200,000 seconds simulation time. 
The percentage change seen in values of the biomarkers 
and phenotypes such as viability and proliferation index 
from the disease baseline give the read out for the 
therapeutic potential of the drug.

4. Disease + Microenvironment + Drug: To the 
disease baseline we first add in the changed cytokine 
and chemokine paracrine inputs, either cumulatively 
or individually, and simulate to create the disease 
baseline variant with the microenvironment. The drug 
can then be simulated on this modified disease baseline 
in presence of the microenvironment factors to assess 
response, and compare against the response without the 
microenvironment factors.

Creation of cell line models

To create the MPN cell line models SET2 and 
HEL, we used the simulation protocol described above. 
Genetic profiles (mutation and CNV) of these cell lines 
were derived from sequencing and cytogenetic data in the 
literature. Data obtained from the cBioportal and Sanger 
databases were used as input files to trigger the system 
to a neoplastic disease state (Appendix 1 has the profile 
definitions). Oncogenic mutations are modeled as gain 
of function at the protein activity level and mutations 
in tumor suppressors are modeled as loss of function. 
Deletion and amplification aberrations are modeled by 
over-expressing or knocking down the expression of the 
gene at the level of its transcription. These representations 
of the genomic aberrations are input in the form of a bio-
assembly code and overlaid on the control network that is 
then simulated to achieve the dynamic disease state.

Disease phenotypes such as proliferation and 
viability indexes can be assessed to ascertain disease 
induction and severity. Disease phenotype indices are 
defined in the tumor model as functions of biomarkers that 
are involved in regulating these aspects of the tumor cell. 
The proliferation index is an average function of the active 

CDK-Cyclin complexes that define cell cycle check points 
and are key for regulating overall tumor proliferation 
potential. The biomarkers include: CDK4-CCND1, 
CDK2-CCNE, CDK2-CCNA and CDK1-CCNB1. The 
biomarkers have been given a certain weightage and 
permutations of the same have been tested to reach to an 
index definition that gives the maximum correlation with 
the experimentally reported trend for proliferation across 
a large number of studies.

The viability index is a ratio of two sub-indices: 
Survival over Apoptosis. The components for each of the 
sub-indices have been selected based on their regulation 
and convergence towards these endpoints. The biomarkers 
constituting the survival index include: AKT1, BCL2, 
MCL1, BIRC5, BIRC2 and XIAP. All these biomarkers 
have been well reported to supporting tumor survival. The 
apoptosis index comprises of: BAX, CASP3, NOXA and 
CASP8. The overall cell viability index is then calculated 
as a ratio of survival index/apoptosis index. The weightage 
of each biomarker is decided to achieve a maximum 
correlation with experimental trends for the end points.

Simulation of drug effect

To simulate the effect of a drug in the in silico tumor 
model, the targets and mechanism of action of the drug are 
determined from published literature and defined through 
a specialized syntax. The drug concentration is explicitly 
assumed to be post-ADME (Absorption, Distribution, 
Metabolism and Excretion), at the site of action and the 
dose response of the drug entails varying the percentage 
target inhibition of the primary drug target that could 
equate to different concentrations of the drug in the in vivo 
setting.

Experimental methods

Cell culture

HEL cells were purchased from ATCC (Rockville, 
MD). SET-2 cells were obtained from DSMZ 
(Braunschweig, Germany). The cells were cultured in 
RPMI-1640 medium containing 10% fetal bovine serum 
at 37°C in a 5% CO2 humidified atmosphere and passaged 
at least two times per week. The Jak2 inhibitor, G6, was 
obtained from the NIH/NCI drug repository (NSC33994). 
The Bcl2 inhibitor, ABT737, was obtained from Selleck 
Chemicals. The IL-6, TNFα, and IFNγ were purchased 
from R&D Systems (Minneapolis, MN).
Measurements of cell viability

Log phase cells were seeded in 96-well plates 
at 30,000 cells per well in 100 μl of media containing 
either 0.25% DMSO or varying concentrations of drug. 
Cell viability was determined 68-72 hours later via the 
CellTiter 96AqueousOne Solution Reagent from Promega 
(Madison, WI) according to the manufacturer’s protocol. 
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Specifically, 20 μl of reagent was added to each well and 
plates were incubated for 2-3 hours at 37oC and absorbance 
was then read at 490nm using a 96-well plate reader. Data 
are expressed as a percentage of vehicle-treated cells 
(0.25% DMSO), which was arbitrarily defined as 100% 
viable.
Statistics

All results were expressed as mean ± SD. Statistical 
comparisons were done using the Student’s t-test as well 
as a repeated measures analysis of variance followed by 
Bonferroni and Student-Newman-Keuls post hoc tests for 
multiple comparisons. P values of <0.05 were considered 
statistically significant. There is no statistical variation 
seen in the predictive results since it is based on a kinetic 
model that will achieve the same results with repeated 
perturbations. The variation can be seen by varying the 
perturbations/inputs.
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