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ABSTRACT

Defined as stable cell-cycle arrest, cellular senescence plays an important role 
in diverse biological processes including tumorigenesis, organismal aging, and 
embryonic development. Although increasing evidence has documented the metabolic 
changes in senescent cells, mitochondrial function and its potential contribution to 
the fate of senescent cells remain largely unknown. Here, using two in vitro models 
of cellular senescence induced by doxorubicin treatment and prolonged passaging of 
neonatal human foreskin fibroblasts, we report that senescent cells exhibited high 
ROS level and augmented glucose metabolic rate concomitant with both morphological 
and quantitative changes of mitochondria. Furthermore, mitochondrial membrane 
potential depolarized at late stage of senescent cells which eventually led to apoptosis. 
Our study reveals that mitochondrial hyper-function contributes to the implementation 
of cellular senescence and we propose a model in which the mitochondrion acts as 
the key player in promoting fate-determination in senescent cells.

INTRODUCTION

Cellular senescence, defined as an irreversible 
arrest of cell proliferation [1], has important functional 
implications in tumorigenesis and organismal aging 
[2–3]. Latest studies have also reported that cellular 
senescence plays non-pathological roles in embryonic 
development and regeneration [4–7]. Diverse stimuli such 
as replicative exhaustion, genotoxic stress and oncogene 
activation are able to trigger cellular senescence [2]. 
Therefore, depending on the inducers, cellular senescence 
can be classified as replicative senescence, stress-
induced senescence and oncogene-induced senescence 
(OIS) [2–3]. While replicative senescence is due to 
telomere attrition, stress-induced and oncogene-induced 
senescence are independent of telomere shortening 
therefore being collectively termed as premature 
senescence. Senescent cells are characterized by a set 
of biomarkers that include morphological changes, 
senescence-associated β-galactosidase (SA-β-gal) 

activity, tumor suppression network activation involving 
p53 and p16/Rb pathways, senescence-associated 
heterochromatin foci (SAHF), and senescence-associated 
secretory phenotype (SASP) [1, 4].

SASP including a diverse array of cytokines, 
chemokines and proteases endows senescent cells with 
the ability to exert non-autonomous biological functions 
through paracrine effects [3]. This robust protein secretion 
function suggests that the metabolism senescent cells is 
highly active. Mounting studies have documented that 
senescent cells induced by various stimuli exhibited 
profound alterations in their metabolism and bioenergetics. 
For example, senescent lymphoma cells induced 
by doxorubicin treatment display a highly glucose-
consuming and energy-producing profile [8]. Metabolic 
and proteomic analysis has shown that OIS cells manifest 
altered fatty acid metabolism, an anti-Warburg effect of 
glycolysis and nucleotide deficiency [9–13]. On the other 
hand, senescence induced by nucleotide deficiency which 
triggers replication stress can be bypassed by inactivation 
ATM through restoration of glucose and glutamine 
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metabolism [14], suggesting that metabolic changes are 
not only the consequences of senescence, but also may 
play a causative role.

Mitochondrion is a key organelle for metabolism. 
Respiratory complexes in the mitochondrion produce 
important co-factors and metabolites not only used in 
cellular respiration reactions but also required for other 
essential cellular functions [15]. Studies have shown 
that mitochondrial dysfunction not only induces cellular 
senescence but also drives organismal aging through 
mechanisms implicating mitochondrial reactive oxygen 
species (ROS), AMPK and etc [16–19]. In addition, 
studies have also reported the implication of mitochondrial 
metabolism enzymes like malic enzymes (ME1/2) [20], 
malate dehydrogenase (MDH1) [21] and pyruvate 
dehydrogenase (PDH) [22] in cellular senescence.

Mounting studies have correlated mitochondrial 
elongation with the establishment of cellular senescence. 
Inhibition of mitochondrial fission promotes their 
elongation and the establishment of cellular senescence, 
and processes that stimulate mitochondrial fission have 
been shown to reduce senescence-associated phenotypic 
changes [23–25]. During senescence, the fission 1 (FIS1) 
protein is down-regulated leading to mitochondrial 
elongation [27–28]. Knockdown of FIS1 [25] or depletion 
of the membrane associated ring finger C3HC4 5 
(MARCH5), a mitochondrial E3 ubiquitin ligase [29], 
promotes mitochondrial elongation and induction of 
senescence. Overexpression of FIS1 in senescent cells 
is able to reverse both mitochondrial elongation and 
appearance of senescent phenotypes, suggestive of its 
involvement in the process [27]. Therefore, sustained 
mitochondrial elongation may promote senescence-
associated phenotypic changes that can be reversed by 
mitochondrial fission.

Despite increasing evidence showing a role 
of mitochondria in cellular senescence [30–31], the 
correlation between the morphological change of 
mitochondria and the metabolic signature of senescent 
cells remains unexplored. Senescent fibroblasts have been 
found susceptible to apoptotic signals [32], and ABT263, 
a specific inhibitor of the anti-apoptotic proteins BCL-2 
and BCL-xL, selectively kills senescent cells in culture in 
a cell type and species-independent manner by inducing 
apoptosis [33]. Combination of the synthetic nucleoside 
analog ganciclovir (GCV) with herpes simplex virus 
thymidine kinase (GCV-HSVtk) was effectively used to 
promote either the targeted formation or eradication of 
senescent cells via mitochondrial DNA (mtDNA) damage 
and caspase-dependent apoptosis, respectively [34]. 
Although senescent cells have long been thought to be 
the alternative cellular state to apoptosis [35–36], the final 
outcome of senescent cells remains to be examined.

In this study, we explored the bio-energetic profiles 
of therapy-induced senescence (TIS) using doxorubicin 
treatment and replicative senescence (RS) by prolonged 

passaging of human foreskin fibroblasts (HFFs), and 
characterized the morphological and functional changes 
of mitochondria during senescence. Our results showed 
that senescent cells display both morphologically and 
quantitatively changed mitochondria, accompanied 
by augmented glucose metabolic rate. Our results are 
consistent with the proposed role of mitochondrial hyper-
function and hypertrophy in driving organismal aging [37–
38]. Furthermore, we demonstrated that at the late stage 
of senescence, likely driven by the aggravated cellular 
oxidative stress, the mitochondrial membrane potential 
(MMP) became depolarized, which eventually led to 
apoptosis.

RESULTS

Doxorubicin treatment and prolonged passaging 
induce senescence in HFFs

Doxorubicin (Adriamycin), a DNA topoisomerase 
II inhibitor widely used as a potent antitumor drug [39], 
has been reported to induce a senescence-like phenotype 
known as tumor suppression therapy-induced senescence 
(TIS) [40]. In this study, we found that treatment 
with doxorubicin at 100 ng/ml for 12 hours induced 
morphological changes and SA-β-gal activity at day 4 
(Figure 1A). Pretreatment with ICRF 187, another DNA 
topoisomerase II inhibitor [41], partially blocked the effect 
of doxorubicin (Supplementary Figure S1), suggesting 
that doxorubicin exerted the effect primarily through 
inhibiting topoisomerase II. In addition, prolonged 
passaging of HFFs also led to significantly increased SA-
β-gal positivity at as early as passage 38 (P38) (Figure 
1B). Cellular proliferation and cell cycle analysis further 
confirmed that both doxorubicin treatment and replicative 
passaging resulted in reduced cell proliferation and cell 
cycle arrest (Figure 1C, 1D). Moreover, the doxorubicin-
treated and late-passage cells highly expressed SASP 
components such as IL-6, IL-8 and IL-1β (Figure 1E). 
Immunostaining results showed that, in contrast to the 
control, doxorubicin treated (unpublished data) and P38 
HFFs exhibited significantly increased 53BP1 andγ-
H2AX foci in the nucleus indicative of DNA damage [42] 
(Figure 1F). Western blot analysis further demonstrated 
the up-regulated expression of p21, suggestive of tumor 
suppression network activation in both doxorubicin-
treated and late-passage HFFs [43] (Figure 1G). Taken 
together, our results showed that doxorubicin treatment 
and prolonged passaging induce senescence of HFFs.

Senescent cells exhibited the elevated level of 
oxidative stress

Since oxidative stress can cause DNA damage 
which was considered to be a trigger of senescence [44–
45], we moved on to evaluate the cellular oxidative state 



Oncotarget28288www.impactjournals.com/oncotarget

by measuring ROS levels. Compared with the controls, 
senescent cells induced by both doxorubicin treatment 
and prolonged passaging possessed higher mitochondrial 

ROS level as detected by MitoSox [46], which likely 
contributed to the elevated total cellular ROS levels as 
measured by a fluorescent probe DCFH-DA (Figure 2A, 

Figure 1: Doxorubicin treatment and replicative passaging induce senescence in HFFs. A. Left and middle, at day 4, 60 000 
control and doxorubicin treated HFFs were reseeded into a 3.5-cm dish for SA-β-gal-staining 12h later. Right, percentages of SA-β-
gal-positive cells (**p <0.01, t-test, n = 3). Scale bar, 200 μm. B. Left and middle, SA-β-gal-staining of HFFs at P15 and P38. Right, 
percentages of SA-β-gal-positive cells (**p <0.01, t-test, n = 3). Scale bar, 200 μm. C. Left, The numbers of cells treated with or without 
100 ng/ml doxorubicin were counted at days 4 and 8, population doublings were calculated and plotted, n = 3. Right, P15 and P38 HFF cells 
were seeded at 60 000 cells/well into 6-well plates and counted for the indicated times, population doublings were calculated and plotted, 
n=3. D. Up, representative cell cycle analysis of HFFs treated with or without 100 ng/ml doxorubicin at day 4. Down, P15 and P38 HFF 
cells were seeded at 130 000 cells/6-cm dish and collected 3 days later for flow cytometry, n=3. E. Left, gene expression levels (quantitative 
real-time PCR) in control and doxorubicin-treated HFFs on day 4 (n = 3). Right, gene expression levels in HFFs at P15 and P38 (n = 3). F. 
Left, P15 and P38 cells were stained with by γ-H2AX and 53BP1 antibodies, respectively. Right, the percentages of γ-H2AX and 53BP1 
positive cells were quantified (**p < 0.01, t-test, n = 3). Scale bar: 50μm. G. Up, representative example of the p21 expression levels in 
control and doxorubicin-treated HFFs on day 4 (n = 3). Down, p21 levels in HFFs at P15 and P38 (n = 3).
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2B). Moreover, our qPCR analysis demonstrated the 
upregulated expressions of antioxidant genes including 
GPX1 (glutathione peroxidase 1), GSTA4 (glutathione 
S-transferase A4), and GSTM4 (glutathione S-transferase 
mu 4) in the doxorubicin-treated and later passage groups 
relative to the controls, suggesting that oxidative stress 
induced a defensive anti-oxidative response [47–48] 
(Figure 2C).

Senescent cells manifest both morphological and 
quantitative alterations of mitochondria

Mitochondrion is the powerhouse of the cell, 
generating chemical energy in the form of ATP to fuel the 
activities of the cell. Mitochondrial ROS are produced as a 

byproduct of ATP generation by oxidative phosphorylation 
due to electron leakage [49–51]. It prompted us to evaluate 
the mitochondrial modification in senescent cells induced 
by doxorubicin treatment and prolonged passaging. To 
examine the morphological changes of mitochondria in 
senescent cells, we stained the cells with Mito-Tracker 
Green, a mitochondrial fluorescent probe. We found 
that mitochondria in the senescent cells induced by both 
doxorubicin treatment and prolonged passaging exhibited 
much more enlarged and elongated morphology compared 
to that of the controls (Figure 3A, 3B). Moreover, flow 
cytometry analysis showed that the mitochondrial mass 
increased in the senescent cells compared to the controls 
(Figure 3C, 3D), which was confirmed by the increased 
mitochondrial DNA (mtDNA) copy number as shown 

Figure 2: Accelerated oxidative stress was detected in two models of cellular senescence. A. Left, relative fluorescence 
intensity of intracellular ROS measured by flow cytometry in control and doxorubicin-treated HFFs on days 4 and 8 (**p <0.01, t-test, n = 3). 
Right, representative mitochondrial ROS assessment by flow cytometry of MitoSox in control HFFs and HFFs treated with doxorubicin 
on days 4 and 8. B. Left, relative fluorescence intensity of intracellular ROS measured by flow cytometry in HFFs at P15 and P38 (**p 
<0.01, t-test, n = 3). Right, representative mitochondrial ROS assessed by flow cytometry of MitoSox in HFFs at P15 and P38. C. Left, gene 
expression levels (quantitative real-time PCR) in control and doxorubicin-treated HFFs on day 4 (n = 3). Right, gene expression levels in 
HFFs at P15 and P38 (**p <0.01, t-test, n = 3).



Oncotarget28290www.impactjournals.com/oncotarget

Figure 3: Senescent cells manifest mitochondria alteration both morphologically and quantitatively. A. Mitochondria 
morphology observation with structured illumination microscopy (SIM) technology in control and doxorubicin-treated HFFs on day 4 after 
stained with Mito-Tracker Green and Hoechst 33342 (n = 3). B. Mitochondria morphology observation with SIM technology in HFFs at 
P15 and P38 after stained with Mito-Tracker Green and Hoechst 33342 (n = 3). C. Fluorescence intensity assessment by flow cytometry in 
control and doxorubicin-treated HFFs on day 4 after stained with Mito-Tracker Green (*p < 0.05, t-test, n = 3). D. Fluorescence intensity 
assessment by flow cytometry in HFFs at P15 and P38 after stained with Mito-Tracker Green (*p < 0.05, t-test, n = 3). E. Left, increases 
in mtDNA copy number in doxorubicin-treated HFFs on day 4 compare with controls (*p < 0.05, t-test, n = 3). Right, increases in mtDNA 
copy number in HFFs at P38 compare with P15 (** p < 0.01, t-test, n = 3).
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by PCR analysis (Figure 3E). Taken together, our results 
showed that senescent cells exhibited increased number of 
mitochondria with distinct morphological features.

Senescent cells harbored hyper-functional 
mitochondria

As the morphology of mitochondria is highly 
correlated with their functions [52], we went on to explore 
the mitochondrial functions in the senescent cells in these two 
models. We first measured the concentrations of ATP, one of 
the major functions of mitochondria. The ATP concentration 
in the doxorubicin-treated cells was significantly higher than 
that of the untreated cells at as early as day 2 and the increase 
sustained on day 8 (Figure 4A). The ATP concentration of the 
cells at P38 was also significantly higher than that of the cells 
at P15 (Figure 4A). Moreover, consistent with the increased 
ATP generation, our qPCR analysis demonstrated that the 
expression levels of key genes involved in mitochondrial 
oxidative phosphorylation such as COX8b, COXIV were 
upregulated in senescent cells [53] (Figure 4B).

To further examine the mitochondrial function, we 
used a Seahorse XF Analyzer to evaluate the metabolic 
profiles of mitochondrial respiration and glycolysis in 
both TIS and RS HFFs by assessing the time course of 
respiration of pyruvate as measured by OCR and ECAR 
[54–57]. Our results showed that basal respiration rate 
in doxorubicin-treated cells was significantly higher 
than that in the controls on day 4 after treatment 
(Figure 4C, 4D). After addition of oligomycin, an 
ATP synthase inhibitor [58], doxorubicin-treated cells 
displayed marked ATP turn-over accompanied by a 
significantly elevated ECAR level (Figure 4C, 4D). 
Furthermore, a striking increase in maximal respiratory 
capacity after addition of the proton ionophore FCCP 
[59] was observed, which resulted in a substantially 
higher reserve capacity (OCRMAXIMAL RESPIRATORY CAPACITY - 
OCRBASAL RESPIRATION) in doxorubicin-treated cells (Figure 
4C,D). Finally, after addition of the electron transport 
chain inhibitors antimycin-A and rotenone [60–61], 
doxorubicin-treated cells exhibited a remarkable 
decrease in mitochondrial respiration compared with 
the controls (Figure 4C, 4D). Similar results were also 
found in RS cells at P38 compared with control cells 
at P15 (Figure 4E, 4F), except that senescent cells in 
RS models were more prone to TCA cycle, whereas 
doxorubicin-treated cells showed stronger aerobic 
glycolysis dependency at basal respiration phase as 
indicated by OCR/ECAR (Figure 4C, 4E). Consistent 
with the ATP concentration results, the respiration rate 
of doxorubicin-treated cells on day 8 after treatment 
was also higher than that of the control (Supplementary 
Figure S2). Altogether, our results demonstrated that 
possibly driven by the increased number, mitochondria 
in senescent cells exhibited hyper-function, which could 
exacerbate the oxidative stress.

Late-stage senescent cells converted to 
undergoing mitochondria-associated apoptosis

As the mitochondrion is prone to oxidative 
damage [62–63], we suspected that as senescence 
advances, deteriorated oxidative stress may damage the 
mitochondria, which could lead to apoptosis. We first 
examined the senescence status of the cells in both TIS 
and RS models at the very late stage. We found that in TIS, 
more than 95% of doxorubicin-treated cells displayed SA-
β-gal staining positivity on day 21 after treatment (Figure 
5A), and almost 100% of the cells at P50 were SA-β-gal 
staining positive (Figure 5B). It suggests that cells in the 
cultures of the two models advanced to a full senescent 
status at this stage.

The mitochondrial membrane potential (MMP), 
a consequence of the electrochemical proton gradient 
maintained for the purpose of ATP synthesis [64–
65], is also an important indicator of mitochondrial 
function. Using the membrane-permeable dye JC-1, 
which indicates a high MMP by the formation of red 
fluorescent J-aggregates, at the same time displays MMP 
depolarization by forming a green fluorescent J-monomer 
[66], we further examined mitochondrial function during 
the progression of cellular senescence in these two models. 
Although on day 14, no obvious MMP depolarization was 
observed (Supplementary Figure S3), doxorubicin-treated 
cells on day 21 displayed strong green fluorescence of 
mitochondrial membrane in contrast to the red fluorescent 
signals in the untreated control (Figure 5C). In TIS model, 
while MMP depolarization was not observed at P16 or P45 
(Supplementary Figure S3), cells at P50 exhibited MMP 
depolarization as opposed to the cells at P15 (Figure 5C). 
Taken together, our results demonstrated depolarized 
MMP in the mitochondria at the late stage of cellular 
senescence.

As MMP has been reported to regulate matrix 
configuration and cytochrome c release during apoptosis 
[67–68], we further looked into apoptosis at late stage of 
cellular senescence. Flow cytometry analysis showed that 
a considerable proportion of apoptosis was detected in 
both senescent models at the late stage versus the early 
stage (Figure 6A, 6B). TUNEL assay further confirmed a 
high apoptosis rate in the late-stage senescent cells as well 
(Figure 6C, 6D). Altogether, our results suggested that the 
depolarized MMP in the mitochondria converted late-stage 
senescent cells to undergoing apoptosis.

DISCUSSION

Mounting studies have shown the important role of 
mitochondria in cellular senescence, and senescent cells 
show marked metabolic and bio-energetic alterations 
[8-12, 69-70]. Several studies have demonstrated 
that sustained mitochondrial elongation may promote 
senescence-associated phenotypic changes [27-29, 71]. 
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Figure 4: Hyper-functional mitochondria in two models of cellular senescence. A. Left, ATP concentrations in control and 
doxorubicin-treated HFFs on days 2, 4, 6 and 8 (**p <0.01, t-test, n = 3). Right, ATP concentrations in HFFs at P15 and P38 (**p <0.01, 
t-test, n = 3). B. Left, gene expression levels (quantitative real-time PCR) in control and doxorubicin-treated HFFs on day 4 (*p < 0.05, 
**p <0.01, t-test, n = 3). Right, gene expression levels in HFFs at P15 and P38 (**p <0.01, t-test, n = 3). C. Cellular respiration in control 
and doxorubicin-treated HFFs on day 4. Twelve OCR and ECAR measurements were taken over 2 h (3 basal respirations, 3 oligomycin-
sensitive respiration, 3 maximal respiratory capacities after FCCP, and 3 non-mitochondrial respirations after antimycin-A and rotenone); 
the X-axis describes the measurement number. D. Basal respiratory capacity, ATP production, proton leak, maximal respiratory capacity, 
spare respiratory capacity (%), non-mitochondrial respiration and coupling efficiency (%) of doxorubicin-treated HFFs on day 4 compared 
with control (*p < 0.05, **p <0.01, t-test, n = 3). E. Cellular respiration of HFFs at P15 and P38 analyzed as in (C). F. Basal respiratory 
capacity, ATP production, proton leak, maximal respiratory capacity, spare respiratory capacity (%), non-mitochondrial respiration and 
coupling efficiency (%) of HFFs P38 compared with P15 (**p <0.01, t-test, n = 3).
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Figure 5: MMP depolarization detection at the late stage of senescence in TIS and RS cells. A. Left and middle, control and 
doxorubicin treated HFFs were seeded at day 21 for SA-β-gal-staining. Right, percentages of SA-β-gal-positive cells (**p <0.01, t-test, 
n = 3). Scale bar, 200 μm. B. Left and middle, SA-β-gal-staining of HFFs at P15 and P50. Right, percentages of SA-β-gal-positive cells 
(**p <0.01, t-test, n = 3). Scale bar, 200 μm. C. Representative examples of the fluorescence pattern after staining with JC-1 in TIS cells on 
day 21 and RS HFFs at P15 and P50. CCCP, an apoptosis inducer used as a positive control. Left, red fluorescence emission under green 
excitation corresponding to J-aggregates. Middle, green fluorescence emission under blue excitation which corresponding to J-monomers. 
Right, JC-1 images were merged by Image-J. Scale bar, 50 μm. n = 3.
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Figure 6: Mitochondria-associated apoptosis occurs at the late stage of cellular senescence. A. Up, representative apoptosis 
assessment by flow cytometry in control and doxorubicin-treated HFFs on day 10, stained with Annexin V and PI (n = 3). Down, 
representative apoptosis assessment in RS HFFs at P15 and P38 analyzed as before (n = 3). B. Up, representative apoptosis assessment 
by flow cytometry in control and doxorubicin-treated HFFs on day 21, stained with Annexin V and PI. Down, apoptosis assessment in 
RS HFFs at P15 and P50 analyzed as before (n = 3). C. DNA fragmentation detected by TUNEL in control and doxorubicin-treated HFFs 
on day 21. Cells were stained with FITC-12-dUTP labeling mix and recombinant TdT enzyme along with DAPI. Apoptotic cells were 
visualized as green, and the nuclei as blue (**p <0.01, t-test, n = 3). Scale bar, 100 μm. D. DNA fragmentation detected by TUNEL in HFFs 
at P15 and P50 analyzed as in (C) (**p <0.01, t-test, n = 3). Scale bar, 100 μm.
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However, how mitochondria associated morphological and 
metabolic changes happen in senescent cells is not clear. 
Here, using two in vitro models of cellular senescence 
induced by doxorubicin treatment and prolonged 
passaging of neonatal human foreskin fibroblasts, we 
report that senescent cells exhibited high ROS level 
concomitant with the mitochondria in senescent cells 
displays morphological change of giant and elongate 
and quantitatively alteration as well as elevated glucose 
metabolic rate. Our results support the mitochondrial 
hyperfunction theory of aging [37–38].

Mitochondria have long been connected with 
both apoptosis and cellular senescence. Mitochondrial 
DNA damage induced apoptosis in senescent cells has 
been previously reported [34]. Although senescent cells 
have been thought to be an alternative cellular state 
to apoptosis, the fate of senescent cells has rarely been 
tracked. In our study, we found that hyper-functional 
mitochondria could be both the accomplice and victim of 
elevated ROS in senescent cells. Together they formed a 
vicious cycle which led to damaged mitochondria with a 
depolarized MMP at late stage of senescence and finally 
induced apoptosis of senescent cells. Our study reveals 
that mitochondrial hyper-function contributes to the 
implementation of cellular senescence and we propose a 
model in which the mitochondrion acts as the key player 
in promoting fate-determination in senescent cells. It 
supports the mitochondrial hyper-functional theory of 
organismal aging [72].

Doxorubicin at a high concentration is known to 
induce apoptosis [39], but the concentration we used here 
did not cause evident apoptosis in HFFs even 10 days after 
treatment (Figure 6A). Our results showed that, despite 
elevated metabolic rate, senescent cells neither developed 
impaired MMP nor underwent obvious apoptosis until the 
very late stage (Figure 5 and Figure 6). It suggests that 
along with the progression of senescence, the accumulated 
damage to mitochondria could be responsible for the cell 
fate transition.

Understanding the energy metabolism of senescent 
cells will provide insights into understanding the 
molecular mechanisms regulating cellular senescence, 
and targeting the metabolism of senescent cells may 
be able to control both the implementation of cellular 
senescence and the fate of senescent cells. In this study, we 
confirmed the involvement of mitochondria in senescence 
and their contribution to its implementation. Although 
the molecular mechanisms behind hyper-functional 
mitochondria have not been explored in this study, our 
results support the mitochondrial hyperfunction theory 
of organismal aging suggest that pathways involved in 
should be targeted for prospective treatment [73]. We also 
propose a model in which the reciprocal influence of ROS 
and hyper-functional mitochondria may play a key role 
in determining the fate of senescent cells. Base on this, 
strategies aimed at overloading mitochondria might be 

applicable to accelerate the elimination of senescent cells 
by inducing their apoptosis.

EXPERIMENTAL PROCEDURES

Cell culture and treatment

Neonatal human foreskin fibroblasts (HFFs) from 
the ATCC were maintained in DMEM high-glucose 
medium (Corning) supplemented with 10% HyClone fetal 
bovine serum (Thermo Scientific) at 37°C under 5% CO2. 
In the TIS model, cells were seeded at 1×103/cm2 in 10-cm 
culture dishes. Twenty-four hours after seeding, cells were 
incubated in complete medium with or without 20 μM 
ICRF-187 (Selleck Chemicals) for 24h and then the media 
was changed. Cells were incubated in complete medium 
with or without 100 ng/ml doxorubicin (Sigma-Aldrich) 
for 12 h, cultured in fresh complete medium and recorded 
as day 0. Cells were then prepared for experiments with 
regular medium changes at different time points. RS was 
induced by serial passaging of HFFs at a ratio of 1:3 and 
seeded at ~6 000 cells/cm2 in 10-cm dishes every 4-7 days.

SA-β-gal staining

Cells were counted and seeded onto 6-well plates at 
55 000 cells/well before staining. About 12 h after seeding, 
cells were fixed in 0.2% glutaraldehyde for 10 min at room 
temperature, washed twice with phosphate-buffered saline 
(PBS) for 5 min each time, and then stained with X-gal 
staining solution (1 mg/ml X-gal, 40 mmol/l citric acid/
sodium phosphate, 5 mmol/l potassium ferricyanide, 5 
mmol/l potassium ferrocyanide, 150 mmol/l NaCl, 2 
mmol/l MgCl2) at pH 6.0 overnight. Images were captured 
with an Olympus IX71 microscope (10× magnification). 
SA-β-gal-positive cells were counted in 3-5 randomly 
selected images and the percentages of SA-β-gal-positive 
cells were averaged for statistical analysis.

Cell cycle analysis

About 2 × 106 cells were fixed with cold 70% 
ethanol for 1h at 4°C. Cells were then incubated in freshly 
prepared staining solution consisting of 0.1% Triton X-100 
(Sigma), 5 ug/ml PI, and 50 ug/ml DNAse-free RNAse A 
(Sigma) for 30 minutes at 37°C. Cells were then analyzed 
on flow cytometer. Cell cycle distribution was determined 
with the MultiCycle AV-DNA Analysis program.

Population doubling assay

In TIS model, 55 000 cells were plated in 10-cm 
dish and treated as before. Then cells were collected at 
different time points and counted by a hemocytometer. 
Population doubling levels (PDL) were calculated using 
the equation PD = log(Nf/N0)/log2 where Nf equals the 
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number of final cells and N0 equals the number of initial 
cells. Data were expressed as cumulative PDL from 3 
independent experiments. In RS models, 330 000 cells 
were seeded in 10-cm dishes and counted at different time 
points, then PDL were calculated as in TIS models.

Immunocytochemistry

Cells were fixed with 4% formaldehyde for 30 
minutes, washed with PBS for 5 min twice, and then 
blocked with PBS containing 1% BSA and 1% triton for 
1h at room temperature. Cells were then incubated with 
polyclonalγ-H2AX (Cell signaling), 53BP1 (a gift from 
Dr. Jun Huang’s laboratory at Life Science Institute, 
Zhejiang University) antibodies diluted in PBS containing 
1% BSA for 2h at room temperature. Cells were then 
washed with PBS and stained with a DyLight 488 goat 
anti-rabbit secondary antibody at 1/500 dilution. Nuclei 
were counterstained with DAPI (5 ug/ml; Beyotime, 
China). Images were captured with a laser scanning 
confocal microscope (Olympus DP70).

Quantitative real-time PCR

cDNA was prepared from total RNA using a 
Reverse Transcription Kit (Takara). Quantitative real-
time PCR was performed using 2×SIBR real-time PCR 
Pre-mixture (Takara) under the following conditions: 3 
min at 95°C followed by 40 cycles at 95°C for 10 s, 55°C 
for 30 s, and 50°C for 30 s using a CFX-Touch (Bio-Rad) 
sequence detection system. Data were normalized to the 
expression of a control gene (β-actin) for each experiment. 
Data represent the mean ± SD of three independent 
experiments.

The following primer pairs were used for 
quantitative real-time PCR:

IL-6: 5′-GGTACATCCTCGACGGCATCT-3′, 5′-GTG 
CCTCTTTGCTGCTTTCAC-3′;

IL-8: 5′-ATGACTTCCAAGCTGGCCGT-3′, 5′-TCCT 
TGGCAAAACTGCACCT-3′;

IL-1β: 5′-CCGCCTCAGCCTCCCAAAG-3′, 5′-GC 
AGTCTACACAGCTTCGGG-3′;

GPX1: 5′-CGGCCCAGTCGGTGTATGC-3′, 5′-CGT 
GGTGCCTCAGAGGGAC-3′; GSTA4: 5′-AGTTGTACA 
AGTTGCAGGATGG-3′, 5′-CAATTTCAACCATGGGC 
ACT-3′; GSTM4: 5′-TCATCTCCCGCTTTGAGG-3′, 
5′-CAGACAGCCACCCTTGTGTA-3′.

Measurement of intracellular ROS

Cells were incubated at 37°C in the dark with 
10μmol/l DCFH-DA diluted with serum-free DMEM 
for 10-15 min according to the manual from a ROS 
determination kit (Beyotime, China). Cells were then 
washed 5 times with PBS, harvested by trypsinization, 
and collected into 15-ml tubes by centrifugation (5 
min at 200×g) at room temperature with aspiration of 

the supernatant. Then the single-cell suspension was 
prepared and analyzed by flow cytometry (Cytomics FC 
500 MCL, Beckman Coulter) at excitation/emission of 
488/525 nm.

Measurement of mitochondrial ROS

Cells were incubated with 5 μM MitoSox Red, a 
mitochondrial superoxide indicator (Life Technology, 
M36008) for 30 min at 37°C in the dark. Cells were then 
washed three times in warm buffer, and a single-cell 
suspension was prepared and analyzed by flow cytometry 
(Cytomics FC 500 MCL, Beckman Coulter) at excitation/
emission of 510/580 nm.

Mitochondrial labeling for morphology 
observation and mass measurement

Cells were counted and 130 000 cells were then 
seeded into a 3.5-cm dish 12 h before labeling. For 
mitochondrial morphology observation, cells were stained 
by incubation with Hoechst 33342 (Yeasen, China) for 10 
min, after washed with three times in PBS, cells were 
then incubated with 1 μM Mito-Tracker Green (Life 
Technology, M-7514) for 10 min and observed at 350nm 
and 490 nm under a structured illumination microscopy 
(SIM). For mitochondrial mass detection, cells were 
collected and fluorescence intensity was analyzed by flow 
cytometry.

Mitochondrial DNA copy number quantification

DNA was isolated with the QIAamp DNA Mini 
Kit as described for cell extraction. Mitochondrial DNA 
content was measured by a multiplex real-time PCR 
method using an Applied Biosystems 7500 real-time 
PCR System (Applied Biosystems, Foster City, CA) 
with the final DNA concentration of 50 ng/μl. Data were 
normalized to the expression of a control gene (β-actin) 
for each experiment. Data represent the mean ± SD of 
three independent experiments. The following primer pairs 
were used for quantitative real-time PCR:

MT-ND1:
5′- CCCTAAAACCCGCCACATCT-3′, 5′- GAGC 

GATGGTGAGAGCTAAGGT-3′;
Actin:
5′- AGAGCTACGAGCTGCCTGAC-3′, 5′- AG 

CACTGTGTTGGCGTACAG-3′.

ATP concentration assay

Cells in the TIS model were seeded at 1×103/cm2 
in 10-cm culture dishes. Forty-eight hours after seeding, 
cells were incubated in complete medium with or without 
100 ng/ml doxorubicin (Sigma-Aldrich) for 12 h and then 
cultured in fresh complete medium with regular medium 
changes. RS was induced by serial passaging of HFFs at a 
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ratio of 1:3 and seeded at ~6 000 cells/cm2 in 10-cm dishes 
every 4-7 days. For ATP concentration assay, medium of 
the cells at different time points was removed from the 
dishes and the cells were washed three times in ice-cold 
sterile PBS. The plates were incubated at 37°C for 5 min 
after each wash. Cells were scraped off the surface of the 
plates in 1 ml of PBS with plastic cell scrapers. The cell 
suspension was homogenized by repeated pipetting, and the 
entire volume of each dish was collected. The measurement 
of ATP concentrations was performed according to the 
instructions provided with the ATP luminescence kit (FL-
ASC, Sigma-Aldrich, St. Louis, MO), and normalized to 
protein content. Statistical significance was calculated using 
the two-tailed Student’s t-test.

Metabolic flux analyses

HFFs were cultured on XF-96 plates (Seahorse 
BioSciences, Billerica, MA, USA) at 6 000 cells/well. On the 
day of metabolic flux analysis, culture medium was changed 
to Krebs-Henseleit buffer (25 mmol glucose and 1 mmol 
pyruvate) at pH 7.4, and incubated at 37°C in a non-CO2 
incubator for 1 h. All medium and injection reagents used in 
assays were adjusted to pH 7.4. Using the XF96 metabolic 
analyzer (Seahorse BioSciences), baseline measurements 
of oxygen consumption rate (OCR) and extracellular 
acidification rate (ECAR) were sampled prior to sequential 
injection of the mitochondrial inhibitors oligomycin (1 
μM), FCCP (carbonyl cyanide 4-(trifluoromethoxy)-
phenylhydrazone) (0.8 μM), antimycin-A (5 μM), and 
rotenone (1 μM). OCR and ECAR were automatically 
calculated and recorded by the Seahorse software. After the 
assays, the protein level was determined for each well to 
confirm equal cell density per well.

Assessment of mitochondrial membrane 
potential variation

Cells were counted and 60 000 cells were seeded 
into each well of 6-well plates 12 h before experiments. 
After three washes with PBS, a JC-1 (5,5′,6,6′-tetrachloro-
1,1′,3,3′-tetraethyl-benzimidazolyl carbocyanine iodide) 
Kit (Beyotime, China) was used to assess the MMP 
by observation under a fluorescence microscope. For 
CCCP (Carbonyl cyanide 3-chlorophenylhydrazone) 
(Yeasen, China) treatment for positive control, the final 
concentration of 50 μM CCCP was used to incubate cells 
for 6 h before JC-1 assessment.

Annexin V for apoptosis assay

Apoptosis was measured by flow cytometry after 
the cells were harvested and stained with Annexin V 
conjugated with Alexa Fluor-647 and propidium iodide 
according to the protocol from the kit (Life Technology, 
A23204). Data are expressed as the percentages of 
Annexin V-positive and PI-negative cells (early apoptosis) 

and as the percentage of both Annexin V-positive and PI-
positive cells (late apoptosis or necrosis).

TUNEL (terminal deoxynucleotidyl transferase 
(TdT)-mediated dUTP nick-end labeling) assay

Cultured HFFs were counted and 60 000 cells were 
seeded on cover slips in each well of 6-well plates 12 h 
before experiments. After three washes with PBS, apoptotic 
cells in situ were identified and quantified at the single-
cell level according to the manufacturer’s instructions 
from a cell death detection kit (Roche Diagnostics 
GmbH, Mannheim, Germany). Then cells were rinsed 
with PBS, and the nuclei were stained with DAPI (Roche 
Diagnostics GmbH, Mannheim, Germany) for 5 min at 
room temperature. The samples were then observed using 
a fluorescence microscope. In the quantitative analysis, 
the ratio of apoptotic cells (TUNEL-positive) to total cells 
(DAPI-stained nuclei) was calculated using four random 
visual fields from each group. The images were quantified 
and analyzed using Image J.

Statistical analyses

The results are presented as the mean ± SEM of a 
minimum of three independent experiments. Statistical 
significance was determined by Student’s t-test. 
Differences of p <0.05 were considered significant.
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