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ABSTRACT
Recent studies underscore important roles of intestinal microbiota and the 

bacterial lipopolysaccharides (LPS) production in the pathogenesis of liver disease. 
However, how gut microbiota alters in response to the development of steatosis and 
subsequent progression to nonalcoholic steatohepatitis (NASH) and hepatocellular 
carcinoma (HCC) remains unclear. We aimed to study the gut microbial changes 
over liver disease progression using a streptozotocin-high fat diet (STZ-HFD) induced 
NASH-HCC C57BL/6J mouse model that is highly relevant to human liver disease. The 
fecal microbiota at various liver pathological stages was analyzed by 16S rDNA gene 
pyrosequencing. Both UniFrac analysis and partial least squares-discriminant analysis 
showed significant structural alterations in gut microbiota during the development 
of liver disease. Co-abundance network analysis highlighted relationships between 
genera. Spearman correlation analysis revealed that the bacterial species, Atopobium 
spp., Bacteroides spp., Bacteroides vulgatus, Bacteroides acidifaciens, Bacteroides 
uniformis, Clostridium cocleatum, Clostridium xylanolyticum and Desulfovibrio 
spp., markedly increased in model mice, were positively correlated with LPS levels 
and pathophysiological features. Taken together, the results showed that the gut 
microbiota was altered significantly in the progression of liver disease. The connection 
between the gut microbial ecology and the liver pathology may represent potential 
targets for the prevention and treatment of chronic liver disease and HCC.

INTRODUCTION

 Chronic liver disease, one of the major causes of 
morbidity and mortality [1], is a highly dynamic process 
leading to liver fibrosis and cirrhosis, and eventually, 
hepatocellular carcinoma (HCC). The liver interacts 
directly with the gut through the hepatic portal and bile 

secretion systems. The intestinal epithelium, along with 
its colonizing bacteria, represents a first site of interactions 
between diet and the host immune system. This interaction 
can impact on the structure and composition of the gut 
microbiota [2], which in turn directly affects the gut-
immune homeostasis and intestinal permeability [3]. 
Imbalance of the gut microbiota is associated with a 
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number of hepatic diseases from lipid accumulation 
in hepatocytes to stellate cell activation, immune cell 
recruitment, and cancer development [4]. There is 
growing evidence that the pathophysiology and treatment 
of a wide array of liver diseases are likely to be strongly 
influenced by the nature and/or manipulation of gut 
microbiota [5]. Disruption of microbial and intestinal 
homeostasis is associated to the most prevalent chronic 
liver diseases: non-alcoholic fatty liver disease (NAFLD)/
nonalcoholic steatohepatitis (NASH), and alcoholic 
liver disease (ALD) [6, 7]. A recent study indicates that 
germ-free mice colonized with intestinal microbiota from 
mice with high fat induced hyperglycaemia developed 
hyperglycaemia. In contrast, mice colonized with 
intestinal microbiota from the mice with normoglycaemia 
did not [8]. Studies also suggest that germ-free mice are 
more susceptible to experimental liver fibrosis [9]. Studies 
have also demonstrated that intestinal inoculation with a 
single bacterium, Helicobacter hepaticus, can disrupt 
enterohepatic homeostasis and promote liver cancer [10]. 

Gut microbiota dysbiosis, especially the microbial 
translocation and their products such as endotoxin 
(lipopolysaccharides, LPS) across the intestinal gut barrier 
is common in patients with chronic liver diseases [11-13]. 
LPS, a major component of the outer membrane of Gram-
negative bacteria [14], has been demonstrated an early 
factor in the triggering of high-fat diet (HFD)-induced 
metabolic diseases [15]. For instance, HFD intake has been 
shown to be associated with elevated portal and systemic 
circulating levels of LPS [15]. Germ-free mice colonized 
with one LPS-producing bacterium, Enterobacter cloacae 
B29 isolated from a morbidly obese human’s gut induced 
obesity and insulin resistance with HFD, whereas the 
germ-free control mice on a HFD did not exhibit the same 
disease phenotypes [16]. These findings suggest a link 
between the gut microbiota-derived endotoxin and the 
pathogenesis of NAFLD, thereby evidencing a key role for 
the gut microbiota as an orchestrator of the gut-liver axis. 

 Taken together, there is compelling evidence 
that malmetabolism induced by intestinal microbiota 
dysbiosis is closely associated with the formation of 
fatty liver, fibrosis and liver cancer. This knowledge had 
led to growing interest in the intestinal microbiota as a 
new therapeutic target for the prevention and treatment 
of metabolic conditions including liver diseases [17-19]. 
Despite this considerable progress, the phylogenetic and 
functional compositions of gut microbiota associated with 
the liver disease progression and disease severity remain 
unclear. Understanding the link between the microbiota 
and the pathophysiology of liver diseases will help in the 
design of innovative therapies. 

 In this study, a streptozotocin-high fat diet (STZ-
HFD) induced NASH-HCC C57BL/6J mouse model 
[20], which is highly relevant to human liver disease 
progression was prepared. Nearly 100% of mice in the 
model group follow disease progression from steatosis to 

NASH, fibrosis, and finally HCC, making this model well 
suited for profiling fecal microbial changes along with the 
liver disease progression. The aim of this study was to 
define the changes in the fecal microbiota over the entire 
disease spectrum in the NASH-HCC mouse model.

RESULTS

General information about the animal experiment

 Phenotypes of steatosis, NASH, fibrosis, and HCC 
were successfully developed in the STZ-HFD group. STZ-
primed neonatal mice fed with HFD resulted in sequential 
histological changes from fatty liver (week 6), to NASH 
(week 8), fibrosis (week 12), and HCC at week 20 (Figure 
1A). The liver index (ratio of liver to body weight) showed 
that all mice in STZ-HFD group had higher liver indices 
than the controls (Figure 1B). Fasting plasma glucose 
and liver TG were significantly higher in the STZ-HFD 
group compared to controls (Figure 1C and 1D). Total 
lipids were increased in plasma in STZ-HFD group than 
in controls (Figure 1E). The levels of total bile acids were 
increased in STZ-HFD group in steatosis, fibrosis and 
HCC phase except for NASH phase (Figure 1F and 1G). 
The LPS levels in plasma, liver and feces were markedly 
increased in STZ-HFD group compared to controls (Figure 
1H, 1I and 1J and Figure 4).

Over-all structural changes of gut microbiota in 
STZ-HFD treatment

 To monitor shifts in the composition of fecal 
microbiota during development of NASH-HCC, high-
throughput bar-coded pyrosequencing was performed. In 
total, 933,820 raw reads were generated and a total of 755 
707 reads (average of 15743 ± 4907 S.D. reads per sample) 
were obtained for 48 samples after quality control. A total 
of 10 604 OTUs were then identified by grouping reads at 
the 97% similarity level. The Shannon diversity indices all 
reached stable values, indicating that bacterial diversity in 
these communities was mostly covered (Supplementary 
Figure S1A-D). The Rarefaction curves revealed that 
although new rare phylotypes would be expected with 
additional sequencing, most of the diversity had already 
been captured (Supplementary Figure S1E-H). 

 Compared with the controls, the STZ-HFD group 
exhibited lower alpha-diversity based on the number 
of observed species (t test, P = 0.005, 0.056, 0.006, 
and 0.003, respectively, at week 6, 8, 12 and 12). Other 
diversity indexes, including phylogeny-based metrics 
(PD Whole Tree) and Chao1 richness estimate were also 
measured. Results showed similar trends in comparative 
richness between groups. Compared with controls, STZ-
HFD group exhibited significantly lower alpha-diversity 
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Figure 1: Pathophysiological features of NASH-HCC model mice. A. H&E stained liver sections from control (week 6) mice 
and NASH-HCC mice at week 6, 8, 12 and 20. Original magnifications × 200. B. Liver index (ratio of liver to body weight (%)) at week 6, 
8, 12 and 20. C. Fasting plasma glucose at week 6, 8, 12 and 20. D. Liver TG at week 6, 8, 12 and 20. E. Plasma total lipids level at week 
6, 8, 12 and 20. F. Plasma total bile acids (TBA) at week 6, 8, 12 and 20. G. Liver total bile acids (TBA) at week 6, 8, 12 and 20. H. Plasma 
LPS level at week 6, 8, 12 and 20. I. Liver LPS level at week 6, 8, 12 and 20. J. Fecal LPS level at week 6, 8, 12 and 20. *, p < 0.05; **, p 
< 0.01, compared to controls.
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as indicated by Chao1 (t test, P = 0.004, 0.004, 0.006, and 
0.04, respectively) and PD Whole Tree (t test, P = 0.048, 
0.10, 0.05, and 0.03, respectively) (Supplementary Figures 
S2A and S2B). 

 Beta diversity metrics also showed strong 
groupings of samples from the control and STZ-
HFD group with statistically significant (p = 0.004). 
Unweighted PCoA revealed that the gut microbiota 
structure changed significantly in response to STZ-HFD 
treatment. STZ-HFD-related differences were mainly 
observed along the first principal coordinate (PCoA1), 
which accounted for the largest proportion (16.9%) 
of total variation (Figure 2A). This was confirmed by 
unweighted UniFrac Distance Matrix analysis, which 
first separated animals into two clusters corresponding 
to groups treated with or without STZ-HFD (Figure 2B). 
In all cases, clustering was supported by high cophenetic 
correlation coefficients (r = 0.89). UniFrac distances 
(a phylogenic-based, taxonomy-independent metric) 
between samples within one group were always smaller 
than any between-group comparisons, and PCoA of these 
distances showed that samples from each group clustered 
together (Figure 2). PCoA2, accounting for 7.5% of total 
variance, predominantly reflected age-related changes in 
gut microbiota composition. Weighted UniFrac PCoA 
was also used to discriminate the microbiota composition 
of the different groups, although no sharp separation 
was observed (Figure 2C), the largest variation was also 

explained by the treatment of STZ-HFD as revealed by 
weighted UniFrac Distance Matrix analysis (Figure 2D).

SparCC-derived co-abundance network analysis

 Extensive inter-species interactions exist in 
microbial communities [21]. Such interactions can thus 
be potentially reflected by the co-occurrence and co-
exclusion patterns inferred from abundance profiles 
of phylotypes [22]. To obtain a measure of association 
between OTUs while incorporating their abundance with 
the progression of liver pathology, we inferred SparCC 
correlation coefficients using a recently described method 
that is robust for analyzing relative-abundance data [23]. 
We identified 15184 associations that had a p value less 
than 0.05; 11628 were positive (r ≥ 0.6) and 3556 were 
negative (r ≤ −0.6) from over 400,000 relationships were 
observed in total. We transformed the SparCC correlation 
measure into a network (Figure 3). The edge connecting 
each pair of nodes was the co-occurrence estimate 
inferred from the relative abundance profiles of species, 
which ranged from -0.768 to 0.941, suggesting strong 
co-exclusion and co-occurrence relationships between 
phylotypes.

Figure 2: The overall gut microbiota structure change and taxonomic and functional variations in the mouse gut 
microbiota. A. and C. A principal-coordinates (PCoA)-based characterization of overall community structure for mice from control 
group and STZ-HFD group at all-time points. QIIME was used to compute microbial β diversity with the unweighted (A) and weighted 
(C) UniFrac analysis. Sample similarities were projected onto two dimensions using principal coordinates. B. and D. Clustering of gut 
microbiota based on distances between the groups, calculated by multivariate analysis of variance tests of the first 48 PCs of unweighted 
(B) and weighted (D) UniFrac distance and conducted using DendroUPGMA. Cophenetic correlation coefficient value was 0.89 and 0.91, 
respectively. E. Relative abundance of major phyla across 48 fecal microbiota from mice in control. F. Relative abundance of major phyla 
across 48 fecal microbiota from mice in STZ-HFD group.
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Key OTUs responding to STZ-HFD intervention

 PLS-DA scores plot showed that different groups 
were clearly separated (Supplementary Figure S3). Based 
on the variable importance in the projection (VIP>1) 
and the p values from Mann-Whitney U test (p < 0.05), 
378 OTUs responding to STZ-HFD treatment were 
identified (Supplementary Figure S4). OTUs belonging 
to Bacteroides spp. (19 OTUs), Bacteroides vulgatus (5 
OTUs), Atopobium spp. (1 OTU), Parabacteroides spp. (1 
OTU), Xylanibacter spp. (2 OTUs), Lactobacillus spp. (1 
OTU), Clostridium spp. (1 OTU), Sarcina spp. (2 OTUs), 
Dehalobacterium spp. (1 OTU), Pseudobutyrivibrio spp. 
(2 OTUs), Oscillibacter spp. (1 OTU), Oscillospira spp. (1 
OTU), Ruminococcus spp. (1 OTU), Subdoligranulum spp. 
(9 OTU), Allobaculum spp. (1 OTU), Methylosinus spp. (1 
OTU), Desulfovibrio spp. (3 OTU), Allobaculum sp id4 (1 
OTU), Clostridium cocleatum (1 OTU) were significantly 
increased, whereas Akkermansia spp. (1 OTU), Alistipes 

spp. (29 OTUs), Barnesiella spp. (75 OTUs), Blautia 
spp. (1 OTU), Lactobacillus spp. (5 OTUs), Odoribacter 
spp. (73 OTUs), Parabacteroides spp. (2 OTUs), 
Paraprevotella spp. (21 OTUs), Parasutterella spp. (35 
OTUs), Prevotella spp. (54 OTUs) were significantly 
decreased.

Phylogenetic profiles of gut microbiota

 Phylotypes with a median relative abundance 
larger than 0.01% of the total abundance in either the 
control group or the STZ-HFD group were included for 
comparison. Taxonomy-based analysis at the phylum 
level, Bacteroidetes and Firmicutes dominated the fecal 
microbial communities of both groups. Compared with the 
controls, the STZ-HFD mice had fewer Bacteroidetes and 
Proteobacteria, but higher levels of Firmicutes, Tenericutes 
and Actinobacteria (Figures 2E and 2F).

Taxonomy-based comparison at the genus level 

Figure 3: SparCC network plot of co-abundance and co-exclusion correlations between OTUs. Nodes represent OTUs 
involved in either significant co-abundance (red edges) or co-exclusion (blue edges) relationships, with the magnitude of the correlation 
expressed as the intensity of the respective edge colors. The color of each node indicates the genus of the OTUs. Only significant correlations 
(two-sided pseudo p ≤ 0.05 based on bootstrapping of 100 repetitions) with an absolute correlation magnitude ≥0.6 are presented. 
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Figure 4: Gut microbiota changes are closely associated with the LPS , pathophysiological features, and commensurate 
with progression of liver pathology. A. Heat map showing the relative abundance of major species for eight compact subgroups from 
week6, week 8, and week 12 to week 20. B. LPS levels in plasma, liver and feces were significantly increased. *, p < 0.05; **, p < 0.01, 
compared to controls. C. A correlation analysis was performed between gut microbiota and LPS and pathophysiological features, which 
revealed a range of correlation coefficients among the interactions between gut microbiota and LPS and pathophysiological features, 
ranging from 1.0 (maximum positive correlation) to -1.0 (maximum anticorrelation) and 0 (no correlation). Shades of dark red and dark 
blue represent positive correlation and negative correlation, respectively (see color bar scale).
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further showed that, Bacteroides was the dominant 
phylotype in both groups, but was significantly increased 
in STZ-HFD mice (Supplementary Figure S5). Of 
the remaining genera, Roseburia, Subdoligranulum, 
Clostridium, Anaerotruncus, Oscillibacter, Mucispirillum, 
Coprobacillus, Xylanibacter, Pseudobutyrivibrio, 
Escherichia_shigella, Oscillospira, Peptococcus, Sarcina, 
Shuttleworthia, Papillibacter, Desulfovibrio, Atopobium, 
Anaerosporobacter, and Allobaculum were enriched in 
STZ-HFD group, whereas Barnesiella, Odoribacter, 
Parasutterella, and Moryella were dominant in the control 
group. 

The most abundant species in both control group 
and STZ-HFD group were primarily from the Bacteroides 
genus. The species Bacteroides spp., Bacteroides vulgatus, 
Bacteroides uniformis, Clostridium spp., Clostridium 
xylanolyticum, Clostridium fusiformis cm973, Roseburia 
spp., Allobaculum sp id4, Subdoligranulum spp., 
Anaerotruncus spp., Oscillibacter spp., Xylanibacter 
spp., Mucispirillum schaedleri, Pseudobutyrivibrio spp., 
Desulfovibrio spp., Dehalobacterium spp., Oscillospira 
spp., Sarcina spp., Atopobium spp., and Peptococcus spp. 
were increased in abundance in the STZ-HFD group. Of 
the species that decreased the most in abundance in the 
STZ-HFD group were Parasutterella spp., Bacteroides 
acidofaciens, Odoribacter spp., Barnesiella spp., Moryella 
spp., Paraprevotella spp., Lactobacillus intestinalis, and 
Akkermansia spp. (Figure 4). 

Key phylotypes of the gut microbiota changes 
commensurate with progression of liver pathology

 Our data demonstrated that the gut microbiota 
changed significantly in mice responding to STZ-HFD 
treatment (Figure 2 and Supplementary Figure S4). Those 
significantly altered gut microbiota were compared among 
STZ-HFD group at week 6, 8, 12 to week 20. For Gram-
positive bacteria, the relative abundance of Firmicutes 
OTUs (%) in fecal samples was 25.05 at week 6, 26.47 
at week 8 and increased to 44.20 at week 12 and then 
decreased to 34.89 at week 20 in STZ-HFD mice, whereas 
the relative abundance of Actinobacteria OTUs (%) were 
at very low level at week 6 (0.09), and then increased 
to 0.83 at week 8, 0.15 at week 12 and 0.20 at week 20. 
For Gram-negative bacteria, the relative abundance of 
Bacteroidetes OTUs (%) was decreased gradually from 
week 6 (66.48), week 8 (52.41), week 12 (47.40) to week 
20 (41.16) and the relative abundance of Proteobacteria 
OTUs (%) was about the same level at week 6 to week 
12 (0.85, 0.83, 0.80, respectively) but increased at 
week 20 (1.20). The Firmicutes/Bacteroidetes ratio was 
gradually increased from week 6 (0.39) to week 8 (0.717) 
to week 12 (1.034) to week 20 (1.011). Further analysis 
at the genus level revealed that the relative abundance 
of OTUs (%) of Allobaculum was gradually increased, 

whereas Bacteroides and Paraprevotella were gradually 
decreased along with the liver disease progression. The 
relative abundance of OTUs (%) of Desulfovibrio was 
significantly increased at week 8 compared to it at week 6 
and remains the same level at week 12 and 20 as at week 
6. The decreased abundance of Bacteroides was associated 
with a reduction in sequences assigned to Bacteroides 
spp. and Bacteroides vulgatus. The increased abundance 
of Allobaculum was associated with an increase in 
sequences assigned to Allobaculum spp. and the increase 
in Desulfovibrio was associated with an increase in 
sequences assigned to Desulfovibrio spp.. 

Correlation between the gut microbiota and LPS 
and host pathophysiological features

 Spearman correlation analysis between the gut 
microbiota change and LPS concentration in plasma, liver 
and feces and the host pathophysiological features listed 
in Figure 1 showed that Akkermansia spp., Christensenella 
spp., Coprococcus clostridium phytofermentans, 
Lactobacillus intestinalis, Moryella spp., Oscillibacter 
spp., Paraprevotella spp., and Parasutterella spp. were 
significantly negatively correlated with LPS in plasma, 
liver and feces and pathophysiological features, and 
Atopobium spp., Bacteroides acidifaciens, Bacteroides 
spp., Bacteroides uniformis, Bacteroides vulgatus, 
Clostridium cocleatum, Clostridium xylanolyticum, and 
Desulfovibrio spp. were significantly positively correlated 
with LPS in plasma, liver and feces and pathophysiological 
features (Figure 4).

As most members in Bacteroides and Desulfovibrio 
were LPS-producers, the results showed that the genus 
population of Bacteroides and Desulfovibrio and the 
species population of Bacteroides spp., Bacteroides 
vulgatus and Desulfovibrio spp. were increased markedly 
when compared to the corresponding controls and 
STZ-HFD treatment significantly increased the LPS 
concentration (Figure 4 and Supplementary Figure S6). 

DISCUSSION

 We have identified progressive alterations in gut 
microbiota associated with the development of liver 
disease. The alterations are characterized by significant 
increases in Firmicutes and Actinobacteria, and reduction 
in Bacteroidetes and Proteobacteria at phylum level. 
Significant alterations in gut microbiota were observed at 
the stage of liver steatosis and sustained throughout the 
spectrum of liver disease. These findings are consistent 
with the recent evidence that gut microbiota is a new 
crucial player in the complex chronic liver disease. 
Gut dysbiosis has been implicated in chronic metabolic 
disorders such as obesity, metabolic syndrome, diabetes, 
and cardiovascular diseases [24]. It is now also well 
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established that gut microbiota and chronic liver disease 
are closely interrelated. Our study provides the first 
characterization of dynamic changes in gut microbiota 
during hepatocarcinogenesis in mice that mimics the 
human liver disease progression from steatosis, NASH, 
fibrosis and finally to HCC.

Chronic liver disease encompasses a spectrum 
of hepatic pathology. We observed that TG levels were 
significantly increased in fatty liver, NASH, and fibrosis 
phases but were markedly reduced in HCC. It has been 
shown that TGs accumulate in hepatocytes in the early 
stages of NAFLD and the accumulation of which may be a 
protective mechanism to prevent progressive liver damage 
[25]. The reduced levels of TG in liver at HCC phase is 
likely due to inadequate TG synthesis from fatty acids 
[26]. Lipid accumulation in the liver is the major hallmark 
of NAFLD [27], which is demonstrated with the increased 
total plasma lipid level responding to STZ-HFD treatment. 
HFD can increase body weight, liver weight and liver to 
body weight ratio in mice [28], which is consistent with 
our findings of the significantly increased liver index in 
STZ-HFD mice. 

SparCC is a correlation methodology developed 
specifically for microbial data to eliminate the influence of 
compositional effects. SparCC network analysis suggests 
that not only members of the microbial communities, but 
also their co-abundance and co-exclusion relationships, 
were significantly altered in liver disease progression. 
The networks also highlight the potential importance 
of “minor” genera in the overall microbial interaction. 
Among the key phylotypes, the gut microbiota with 
positive or negative correlation with the LPS levels was 
similarly positively or negatively correlated with the 
pathophysiological features. The key phylotypes that were 
negatively correlated with LPS and pathophysiological 
features may include potentially beneficial bacteria that 
were found to be significantly decreased in model mice. 
Meanwhile, those key phylotypes that were positively 
correlated with LPS and pathophysiological features 
may comprise of potentially harmful bacteria that were 
significantly increased in model mice. Our study showed 
reduced microbial diversity and an increased ratio of 
Firmicutes to Bacteroidetes in the liver steatosis group, 
compared to the controls, which was maintained during 
the disease progression. Such a change at phylum level has 
been previously implicated in the pathogenesis of obesity 
in clinical and animal studies [29, 30]. We observed 
reductions in the abundance of gut barrier-protecting 
bacteria such as Lactobacillus spp. and increases in the 
abundance of Gram-negative endotoxin producing bacteria 
such as Bacteroides spp. and Bacteroides vulgatus, 
Desulfovibrio spp. It has been shown that such changes 
in the gut microbiota may increase intestinal permeability 
and circulating gut-originated antigens, primarily LPS 
[31-34]. Upon binding to the complex of CD14 and toll-
like receptor 4 at the surface of innate immune cells, LPS 

can trigger the secretion of proinflammatory cytokines, 
which eventually impairs insulin sensitivity and induces 
insulin resistance-related metabolic disorders [31]. It 
was also reported that HFD will induce a leaky gut and 
more bacterial lysis, allowing the LPS of Gram-negative 
bacteria to enter the enterohepatic circulation [35]. In the 
present study, we measured the LPS levels in plasma, liver 
and feces, to investigate whether the LPS were changed 
due to the gut microbiota alteration responding to STZ-
HFD treatment. In accordance with the results previously 
reported by Cani et al. [7], HFD induced a significant 
increase in plasma LPS levels in mice [31]. We also found 
a significantly negative correlation between Akkermansia, 
its level was significantly decreased in NASH-HCC model 
mice, and LPS in plasma, liver and feces. Akkermansia 
can reduce the LPS levels induced by HFD and increases 
in its abundance improves the metabolic profile of 
individuals with diet-induced obesity [36]. Akkermansia 
also has a role in reducing fat accumulation, its amount 
in the small intestine correlate negatively with the total 
body fat content [37]. We also observed reductions in 
Parasutterella spp. in model mice. This is consistent with 
a previous study which found significant decreases in 
Parasutterella in HFD-fed rats [38]. 

The study was designed to define the fecal 
microbiota changes over the entire disease spectrum with 
liver disease progression. However, there are limitations 
in the current study. First, we did not collect the small 
intestinal contents to analyze and investigate the changes 
of gut microbiota associated with liver disease progression. 
It was reported that there was bacterial overgrowth in the 
small intestine in precirrhotic liver diseases and cirrhosis 
[39, 40]. Further study on the small intestinal contents 
is needed. Second, we compared the fecal microbiota 
between control mice fed with normal diet and the model 
mice fed with STZ-HFD. However, HFD alone may result 
in a different microbiota profile between the groups and 
we did not perform comparison between control mice fed 
with HFD but without STZ and model mice fed with STZ-
HFD to see the difference. 

 In summary, our work identified distinct and 
dynamic changes in gut microbiota in the pathological 
development of liver disease, providing important insights 
into host-microbe interactions in the development of liver 
disease and carcinogenesis. Targeted nourishment of 
these potentially beneficial bacteria that were negatively 
correlated with LPS and pathophysiological features 
and meanwhile, to inhibit those potentially harmful 
bacteria that were positively correlated with LPS and 
pathophysiological features may thus provide a promising 
strategy for the prevention and treatment of chronic liver 
disease and HCC. 
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MATERIALS AND METHODS

Animals and experimental design

 Pathogen-free 14-day pregnant C57BL/6J mice 
were purchased from CLEA Japan (Tokyo, Japan) and 
maintained under specific pathogen-free conditions, on a 
12-h light-dark cycle. New born male mice were divided 
into two groups: control group and NASH-HCC model 
group. Control mice were housed without any treatment 
and fed normal diet (CE-2 from CLEA, Japan, composed 
of 12 kcal% fat). The NASH-HCC mice were subjected 
to a single subcutaneous injection of 200 µg STZ (Sigma, 
MO, USA) 2 days after birth and feeding with HFD 
(HFD32 from CLEA, Japan, composed of 57 kcal% fat) 
ad libitum after 4 weeks of age for 16 weeks to induce a 
NASH-HCC [20]. The sample size used in this study was 
determined based on the expense of data collection, and 
the need to have sufficient statistical power. Body weights 
of all animals were recorded once a week. At week 6, 
8, 12, and 20, 6 mice in each group were euthanized 
and their livers were removed and stored at −80 °C 
for histological and lipid content analysis, including 
hematoxylin-eosin (H&E) staining and triglyceride (TG) 
analysis (see Supplementary Information). Fasting blood 
glucose was measured using an automatic biochemical 
analyzer (Hitachi 7180, Tokyo, Japan). Plasma, liver and 
fecal LPS concentrations were determined using a mouse 
LPS Elisa kit (BlueGene Biotech, Shanghai, China, see 
Supplementary Information). Plasma total lipids and 
total bile acids levels were also measured. Mice body 
weight and liver weight were recorded. Liver index was 
calculated as the ratio of liver to body weight. Before 
sacrifice, fecal samples were collected from each mouse. 
All stool samples were stored at −80 °C prior to 16S rDNA 
gene sequencing.

 All animal procedures were performed in 
accordance with the ‘‘Guide for the Care and Use of 
Laboratory Animals’’ prepared by the National Academy 
of Sciences and published by the National Institutes of 
Health (NIH publication 86-23, revised 1985).

Gut microbiota characterization

 Genomic DNA was extracted from each fecal 
sample as described previously [32, 41, 42]. A bacterial 
tag-encoded FLX 16S rDNA amplicon pyrosequencing 
approach (bTEFAP, MR DNA, www.mrdnalab.com) 
was used to target the V1-V3 hypervariable region as 
previously reported [43]. 16S universal Eubacterial 
primers 27Fmod (AGRGTTTGATCMTGGCTCAG) and 
519Rmod (GTNTTACNGCGGCKGCTG) containing 
barcodes unique to each sample were used. A single-step 
PCR using HotStarTaq Plus Master Mix Kit (Qiagen, 

Valencia, CA) were used under the following conditions: 
94°C for 3 minutes, followed by 28 cycles of 94°C for 30 
seconds; 53°C for 40 seconds and 72°C for 1 minute; after 
which a final elongation step at 72°C for 5 minutes was 
performed. Following PCR, all amplicon products from 
different samples were mixed in equal concentrations 
and purified using Agencourt Ampure beads (Agencourt 
Bioscience Corporation, MA, USA). Samples were subject 
to DNA pool emulsion PCR and sequenced utilizing 
Roche 454 FLX titanium instruments and reagents and 
following manufacturer’s guidelines. 

 The Q25 sequence data derived from the sequencing 
process was processed using a proprietary analysis 
pipeline (www.mrdnalab.com, MR DNA, Shallowater, 
TX). The data was processed with the Usearch program 
in the QIIME pipeline [44]. The pyrosequencing chimeras 
were discarded using the Uchime filtering also in the 
QIIME pipeline. Sequences are depleted of singletons, 
short sequences < 200bp, sequences with ambiguous base 
calls, and sequences with homopolymer runs exceeding 
6bp. Sequences are then denoised and chimeras removed. 
The resulting filtered reads were binned according 
to barcode after which adapter, barcode, and primer 
sequences were removed. Reads were clustered into 
operational taxonomic units (OUTs) were defined with 
clustering at 3% divergence (97% sequence similarity) 
[43, 45, 46]. OTUs were then taxonomically classified 
using BLASTn against a curated GreenGenes database 
[47, 48] and compiled into each taxonomic level into 
both “counts” and “percentage” files. Counts files contain 
the actual number of sequences while the percent files 
contain the relative (proportion) percentage of sequences 
within each sample that map to the designated taxonomic 
classification. For example, if there are 1000 sequences 
and 100 of the sequences are classified as Clostridium then 
we represent this as Clostridium being 10%. 

 SparCC (available at https://bitbucket.org/yonatanf/
sparcc) was employed to represent co-abundance and 
co-exclusion networks between OTUs. SparCC and 
calculation of two-sided pseudo p values (p values ≤ 
0.05 considered significant) were run on python scripts 
based on bootstrapping of 100 repetitions. A network 
plot was generated, and correlation magnitudes ≥ 0.6 
(indicating strong co-abundance relationships) and ≤ − 
0.6 (indicating strong co-exclusion relationships) were 
plotted. Visualization of the network was achieved using 
Cytoscape v3.2.1.

 Heatmap and hierarchical clustering analysis of the 
OTUs were performed using the pheatmap package v1.0.7 
running in R v3.2.1 (http://www.r-project.org). 

Data analysis

 Rarefaction analysis, Phylogenetic Diversity (PD) 
Whole Tree, Chao1 richness estimate and the Shannon 
diversity index were calculated using Qiime [44]. The 
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phylogenetic tree was then used for both weighted and 
unweighted UniFrac principal coordinates analysis 
(PCoA) [49]. Cluster analysis was conducted using 
DendroUPGMA [50]. Partial least squares- discriminant 
analysis (PLS-DA) was used to test whether these 
groups could be separated based on the OTU data [38]. 
All multivariate statistical analyses were performed with 
SIMCA-P+ 13.0 (Umetrics, Umeå, Sweden). All other 
statistical analyses were calculated using GraphPad Prism 
(version 6.0; GraphPad Software, San Diego, USA) and 
SPSS 22.0 (IBM SPSS, USA). Data are expressed as 
mean ± SEM. To test difference between the groups in 
biochemical measurements for statistical significance, 
normally distributed data were analyzed by tests with 
Holm-Sidak method for multiple comparisons correction. 
Data that did not meet the assumptions of analysis were 
analyzed by the Mann-Whitney U test. We regarded p 
values of < 0.05 as significant. Spearman correlation 
analysis was made to evaluate the interactions between 
gut microbiota and LPS levels in plasma, liver and feces,  
and pathophysiological features, giving a value ranging 
from 1.0 (maximum positive correlation) to -1 (maximum 
anticorrelation) and 0 (no correlation).
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