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ABSTRACT
Polypharmacology (the ability of a drug to affect more than one molecular 

target) is considered a basic property of many therapeutic small molecules. Herein, 
we used a chemical genomics approach to systematically analyze polypharmacology 
by integrating several analytical tools, including the LINCS (Library of Integrated 
Cellular Signatures), STITCH (Search Tool for Interactions of Chemicals), and 
WebGestalt (WEB-based GEne SeT AnaLysis Toolkit). We applied this approach to 
identify functional disparities between two cytidine nucleoside analogs: azacytidine 
(AZA) and decitabine (DAC). AZA and DAC are structurally and mechanistically similar 
DNA-hypomethylating agents. However, their metabolism and destinations in cells are 
distinct. Due to their differential incorporation into RNA or DNA, functional disparities 
between AZA and DAC are expected. Indeed, different cytotoxicities of AZA and 
DAC toward human colorectal cancer cell lines were observed, in which cells were 
more sensitive to AZA. Based on a polypharmacological analysis, we found that AZA 
transiently blocked protein synthesis and induced an acute apoptotic response that 
was antagonized by concurrently induced cytoprotective autophagy. In contrast, DAC 
caused cell cycle arrest at the G2/M phase associated with p53 induction. Therefore, 
our study discriminated functional disparities between AZA and DAC, and also 
demonstrated the value of this chemical genomics approach that can be applied to 
discover novel drug action mechanisms.

INTRODUCTION

Many therapeutic drugs generally exhibit actions on 
more than one molecular target, which is a phenomenon 
known as polypharmacology [1]. Predicting the 
polypharmacology of clinically used drugs or compounds 
that failed during development is highly useful for finding 
new indications (drug repurposing or repositioning) and 
discovering novel drug action mechanisms to improve 
their therapeutic efficacies [2]. Increasingly, large-scale 
databases are being established to explain how drugs 

induce changes in gene and protein expressions in human 
cells and affect their phenotypes on a global scale [3]. 
Utilization and integration of these resources can build 
a systematic view of a drug’s actions. For example, 
our previous study successfully identified novel action 
mechanisms of the Chinese herbal medicine, berberine, 
using a gene expression signature-based approach [4]. This 
approach integrates the Connectivity MAP (CMAP) that 
collects gene-expression profiles from cultured human cells 
treated with small molecules [5], and the Search Tool for 
Interactions of Chemicals (STITCH) that explores known 
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and predicted interactions of chemicals and proteins by 
evidence derived from experiments, databases, and the 
literatures [6]. More and more biomedical databases and 
analytical tools have been developed in recent years, which 
provide easy and open access to masses of accumulated 
data [3]. Integration of these resources will be highly useful 
in the field of polypharmacology.

DNA methylation is one of the most widely 
studied epigenetic changes, which is catalyzed by DNA 
methyltransferases (DNMTs). Two DNMT inhibitors, 
5-azacytidine (azacitidine, AZA) and 2′-deoxy-5-azacytidine 
(decitabine, DAC) were approved by the US Food and Drug 
Administration for treating myelodysplastic syndrome and 
other leukemias [7]. Both drugs are cytidine analogs that 
are incorporated into DNA to bind and inhibit DNMTs, thus 
preventing maintenance of the methylation status. Unlike 
DAC, which is directly incorporated into DNA, AZA is 
primarily incorporated into RNA. Only when its diphosphate 
form is reduced to deoxy-diphosphates by ribonucleoside 
reductase can AZA then be incorporated into DNA to deplete 
DNMTs [8–10]. Actually, AZA was reported to more often 
be incorporated into RNA than DNA [9, 10]. Therefore, AZA 
may possess RNA-dependent effects. Indeed, ribonucleotide 
reductase M2 (RRM2), a subunit of ribonucleotide 
reductase, was identified as a novel molecular target of AZA 
in acute myeloid leukemia [11]. The inhibition of RRM2 
expression by AZA involves its direct RNA incorporation 
and attenuated RRM2 messenger (m)RNA stability [11]. 
Thus, AZA and DAC should be viewed as distinct types of 
DNMT inhibitors, and a greater understanding of their action 
mechanisms will provide further clinical benefits.

In this study, we used an integrated chemical genomics 
approach to investigate functional disparities between 
AZA and DAC. This approach integrated the Library of 
Integrated Cellular Signatures (LINCS) [12] which is the 
next generation of CMAP, together with two analytical 
tools, the STITCH and the WEB-based GEne SeT AnaLysis 
Toolkit (WebGestalt). Polypharmacological analyses of AZA 
and DAC displayed functional disparities that were further 
demonstrated by proof-of-concept studies which showed 
that AZA transiently blocked protein synthesis and reduced 
protein stability, while DAC induced cell cycle arrest at the 
G2/M phase that was associated with p53 expression. Further 
investigation showed that AZA simultaneously induced an 
acute apoptotic response and cytoprotective autophagy 
in a mutually exclusive manner. Our results provide an 
example of applying several existing bioinformatics tools 
for systematic discovery of polypharmacology.

RESULTS

Utilization of an integrated chemical genomics 
workflow for polypharmacology

Polypharmacology, described as the binding of a 
drug to more than one target, can lead to multiple outcomes. 
Unfortunately, methods for exploring the polypharmacology 

of drugs are still lacking. CMAP, a chemical genomics 
database that collects gene-expression profiles from cultured 
human cells treated with small molecules, can be used to 
find connections among small molecules that share common 
action mechanisms [5]. The LINCS is the next generation of 
CMAP, which generates gene expression signatures including 
pharmacological or genetic perturbations applied to mostly 
cancer cell lines using the L1000 platform [13]. The L1000 
assay is an mRNA expression profiling technique based 
on reduced representation of the genome whereby 1000 
carefully selected transcripts are monitored, and from which 
the remainder of the transcriptome can be computationally 
inferred [13]. Compared to CMAP, the LINCS contains 
gene expression profiles of small molecules and also those 
of genetic constructs for knocking-down genes (short hairpin 
(sh)RNA) or overexpressing genes (complementary (c)
DNA). The LINCS has greater numbers of gene expression 
signatures (perturbagens) and cell lines than CMAP, thus 
providing more-reliable predictions. In addition, the LINCS 
can be more easily accessed through a web-based interface 
at http://www.lincscloud.org/. Therefore, we proposed that 
the LINCS provides an opportunity for a comprehensive 
systematic analysis of polypharmacology.

Herein, we describe the workflow of a 
polypharmacology analysis that integrated the LINCS with 
other online bioinformatics tools (Figure 1). First, we queried 
the LINCS database (http://www.lincscloud.org/) for “your 
drug of interest” using the “Compound Digest” algorithm. 
We obtained output results for “Compound Connections”, 
“Consensus Knockdown Connections”, and “Overexpression 
Connections”. The “Compound Connections” section 
contained a number of compounds similar to “your drug of 
interest”. The “Consensus Knockdown Connections” and 
“Overexpression Connections” sections indicated that the 
outcomes of knockdown or overexpression of genes were 
similar to the effects of “your drug of interest”. Second, 
compounds with strongly positive connectivity scores in 
“Compound Connections” were further filtered using the 
STITCH database (http://stitch.embl.de/) to explore their 
chemical-chemical connectivities [6]. Then, compounds 
directly connected to “your drug of interest” were 
obtained. Third, gene profiles of “Consensus Knockdown 
Connections” and “Overexpression Connections” were 
analyzed using WebGestalt (http://bioinfo.vanderbilt.
edu/webgestalt/) [14] to enrich Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways. Therefore, the 
polypharmacology of “your drug of interest” was obtained 
from results of the STITCH and WebGestalt analyses. By 
comparing results of the STITCH and WebGestalt analyses, 
we obtained possible targets or functions regulated by “your 
drug of interest” for further validation.

Differential effects of AZA and DAC on human 
colorectal cancer (CRC) cells

To demonstrate the feasibility of our chemical 
genomics strategy, the polypharmacological analyses of 
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two DNMT inhibitors, AZA and DAC, were performed 
and used as examples. Despite the similarity of AZA 
and DAC, which both closely resemble the structure 
of cytidine, their metabolism and destinations in cells 
were distinct (Figure 2A). DAC is phosphorylated by 
deoxycytidine kinase into triphosphate, which can be 
incorporated into newly synthesized DNA. In contrast, 
AZA is primarily phosphorylated by uridine-cytidine 
kinase into triphosphates, which are ultimately incorporated 
into RNA. However, the diphosphate forms of AZA can 
also be reduced by ribonucleoside reductase into deoxy-

diphosphates, which can be incorporated into DNA. It was 
reported that incorporation of AZA into RNA is greater than 
that into DNA [9, 10]. Therefore, AZA may possess RNA-
dependent effects. Indeed, differential responses of AZA 
and DAC toward various types of cancers were observed 
[15–19]. In this study, we also observed that human CRC 
HCT116 cells were more sensitive to AZA than to DAC 
according to an MTT cell viability assay (Figure 2B, upper 
part; IC50 values shown in Table 1). To investigate whether 
the differential effects of AZA and DAC result from their 
ability to degrade DNMTs, a Western blot analysis of 

Figure 1: Workflow for the integrated chemical genomics approach.
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DNMT1 was performed. As shown in Figure 2B (lower 
part), DNMT1 was depleted in response to both AZA and 
DAC, suggesting that other mechanisms in addition to 
DNMT1 inhibition are involved in their differential effects. 
To investigate whether this phenomenon is common in 
human CRC cells, several cell lines (RKO, LoVo, HCT-15, 
DLD-1, and HT-29) were treated with AZA or DAC for 3 
days, and then cell viabilities were analyzed by an MTT 
assay. Consistently, these cell lines were more sensitive to 
AZA treatment (Figure 2C). Therefore, we propose that 
AZA and DAC are suitable examples to evaluate whether 
our approach can discriminate their functional disparities.

Chemical genomics analysis reveals functional 
disparities between AZA and DAC

Herein, we analyzed the polypharmacology of 
AZA and DAC by our chemical genomics workflow 
(Figure 1). First, we queried the LINCS database for 
AZA (input “azacitidine”) or DAC (input “decitabine”) 
using the “Compound Digest” algorithm. We obtained the 
output results of “Compound Connections”, “Consensus 
Knockdown Connections”, and “Overexpression 
Connections”. The top 100 compounds with positive scores 
in “Compound Connections” are shown in Supplementary 
Table S1, representing the most similar drugs to AZA or 
DAC. These drugs were further queried using the STITCH 
database to explore their chemical-chemical connectivities 
[6]. As shown in Figure 3A, the STITCH analysis indicated 
that AZA is directly connected to emetine and cycloheximide 
(CHX), and indirectly to puromycin. These drugs belong to 
protein synthesis inhibitors (Figure 3B). In contrast, DAC 
did not have direct connections to other compounds (data 
not shown). Therefore, these results suggest that AZA and 
DAC indeed show functional disparities, and AZA might 
interfere with protein synthesis.

Output results of “Consensus Knockdown 
Connections” and “Overexpression Connections” indicate 

that knockdown and overexpression of genes with strong 
positive scores have similar gene expression signatures to 
AZA or DAC. Analyzing these genes may reveal action 
mechanisms of AZA and DAC. Therefore, enrichment of 
KEGG pathways was evaluated using the WebGestalt [14]. 
Due to limited genes with a score of > 60 in “Overexpression 
Connections” gene sets of AZA and DAC (Supplementary 
Table S2), only “Consensus Knockdown Connections” 
gene sets were analyzed. As shown in Table 2, “aminoacyl-
tRNA biosynthesis” and “metabolic pathways” were 
enriched in the “Consensus Knockdown Connections” 
gene set of AZA. While in the “Consensus Knockdown 
Connections” gene set of DAC, numerous pathways were 
enriched, including “pathways in cancer”, “cell cycle”, 
“p53 signaling pathway”, “metabolic pathways”, “T cell 
receptor signaling pathway”, “epithelial cell signaling in 
Helicobacter pylori infection”, “neurotrophin signaling 
pathway”, “Chagas disease (American trypanosomiasis)”, 
and “osteoclast differentiation”. Consistent with results of 
the STITCH analysis, AZA and DAC showed functional 
disparities in regulating biological pathways. Results of the 
STITCH and WebGestalt analyses were comparable because 
aminoacyl-tRNAs are substrates for protein translation [14], 
and AZA might disrupt aminoacyl-tRNA biosynthesis and 
inhibit protein synthesis. Although DAC did not show direct 
connections to other compounds in the STITCH analysis, 
a pathway enrichment analysis indicated that DAC might 
affect cell cycle progression and the p53 signaling pathway 
(Table 2). In addition, the most similar compound to DAC 
was danusertib (Supplementary Table S1) which was 
formerly known as PHA-739358 and acts as a pan-Aurora 
kinase inhibitor [20]. Aurora kinases consist of a family of 
serine/threonine kinases that play important roles in cell 
cycle progression, particularly during the G2 and M phases 
[21]. Danusertib was found to arrest cancer cells at the G2/M 
phase involving the p53 signal pathway [22]. Therefore, we 
propose that DAC may alter the phenotype of cells similar 
to that by danusertib.

Table 1: 50% inhibitory concentration (IC50) values of azacytidine (AZA) and decitabine (DAC) 
against colorectal carcinoma (CRC) cell lines

IC50 of AZA (μM) IC50 of DAC (μM)

HCT116 38.2 NDa

RKO 28.7 ND

LoVo 12.5 ND

HCT-15 34.4 ND

DLD-1 32.8 ND

HT-29 104.3 ND

aND, not determined due to the low cytotoxicity of DAC.
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Proof-of-concept studies for functional 
disparities between AZA and DAC

Based on results of the chemical genomics analyses, 
we hypothesized that AZA disrupts aminoacyl-tRNA 
biosynthesis and then inhibits protein synthesis, while 
DAC perturbs cell cycle progression that may involve the 
p53 signaling pathway. To demonstrate this hypothesis, 
we first analyzed protein synthesis by a puromycin-
incorporation assay [23]. As a Tyr-tRNA mimetic, 
puromycin enters the ribosome A site and terminates 

translation through its covalent incorporation into the C 
terminus of nascent polypeptide chains [24]. Puromycin-
incorporated neosynthesized proteins can be detected by 
an anti-puromycin antibody [23]. To investigate the effects 
of AZA and DAC on protein synthesis, HCT116 cells were 
treated with AZA or DAC for 6 and 24 h, or with CHX, 
a protein synthesis inhibitor, which was used as a positive 
control. Puromycin was added to cells 30 min before cells 
were harvested. Whole-cell lysates were separated using 
SDS-PAGE and transferred to a membrane. Proteins were 
visualized using ponceau S staining (Figure 4A, upper 

Figure 2: Different effects of azacytidine (AZA) and decitabine (DAC) on the cell viability of human colorectal cancer 
cells. (A) Chemical structures of cytidine, AZA, and DAC, and the metabolic pathways of AZA (5-Aza-CR) and DAC (5-Aza-CdR). MP, 
DP, and TP, mono-, di-, and triphosphate, respectively; PPase, phosphatase; UrdK/CydK, uridine/cytidine kinase; dCydk, deoxycytidine 
kinase. (B) HCT116 cells were treated with different doses of AZA or DAC for 24 and 72 h. The cell viability at 72 h was analyzed by an 
MTT assay (upper part). Whole-cell lysates at 24 h were subjected to a Western blot analysis using antibodies against DNMT1 or GAPDH 
(lower part). (C) RKO, LoVo, HCT-15, DLD-1, and HT-29 cells were treated with different doses of AZA or DAC for 72 h, and the cell 
viability was analyzed by an MTT assay.
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part). After hybridization with an anti-puromycin antibody, 
we found that AZA, like CHX, inhibited puromycin 
incorporation at 6 h; however, DAC enhanced puromycin 
incorporation at the same time (Figure 4A, lower part). 
Interestingly, the effects of AZA and DAC had recovered at 
24 h, indicating that alterations of protein synthesis by AZA 
and DAC were transient. Because perturbation of protein 
synthesis will affect protein stability, we further examined 
the effects of AZA, DAC, and CHX on protein stability 
by treating HCT116 and RKO cells with these drugs for 
1~4 h. We chose the c-MYC protein as an indicator because 
of its short half-life, usually 20~30 min [25]. As shown in 
Figure 4B, both AZA and CHX reduced the protein stability 
of c-MYC in HCT116 and RKO cells. In contrast, DAC 
increased the stability of c-MYC.

We also examined the effects of AZA and DAC 
on cell cycle progression and the p53 signaling pathway 
according to the above prediction. To investigate whether 
AZA or DAC affected cell cycle progression, HCT116 cells 
were treated with 25 and 50 μM AZA or DAC for 24 and 
48 h, and then cell cycle distributions were analyzed by flow 
cytometry. Consistent with results of pathway enrichment, 
DAC induced G2/M arrest at 24 h, which had been relieved 
by 48 h (Figure 5A). In contrast, AZA increased the subG1 
population at both 24 and 48 h, suggesting the induction of 
apoptosis (Figure 5A). To investigate the effects of AZA 
and DAC on the p53 signaling pathway, protein expressions 
of p53 and p53R2, a p53 target gene that causes G2/M arrest 
and is directly involved in the p53 checkpoint for DNA 
repair [26], were analyzed by a Western blot analysis. As 

Figure 3: Prediction of compounds similar to azacytidine (AZA) by STITCH. Chemical connectivity analysis was performed 
using the STITCH database as described in “Materials and Methods”. In (A), a diagram shows compounds connected to AZA. In (B), a 
table shows connectivity scores of compounds linked to AZA, and their functional descriptions.
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Table 2: Gene set enrichment analysis (GSEA) for KEGG pathways enriched (p < 0.01) in consensus 
knockdown genes connected to azacytidine (AZA) or decitabine (DAC)

Pathways Genes No. of genes in 
pathway

No. of differentially expressed 
pathway genes (% of total) p value

AZA

Aminoacyl-tRNA 
biosynthesis

EPRS, MARS, 
LARS, WARS2, 
IARS2

63 5 (7.94%) 7.66e–07

Metabolic pathways

CAT, SRM, 
EPRS, CYP27B1, 
ALDH3B1, TSTA3, 
NME4, CBR3, 
ALDH18A1, ARG1, 
PMM2, SDHA, FAH

1130 13 (0.53%) 2.22e–06

DAC

Pathways in cancer

JUN, RB1, PIAS1, 
IGF1R, PPARG, 
CDK4, RET, PIAS2, 
HDAC1, SMAD4, 
FADD, FAS

326 12 (3.68%) 3.53e–11

Cell cycle

RB1, CDK4, 
PRKDC, ATM, 
HDAC1, CHEK1, 
CHEK2, CCNB1, 
SMAD4

124 9 (7.26%) 3.53e–11

p53 signaling 
pathway

ATM, CHEK1, 
CHEK2, CCNB1, 
CDK4, FAS, THBS1

68 7 (10.29%) 4.50e–10

Metabolic pathways

SUCLA2, PDHA1, 
ENPP1, GRHPR, 
GBGT1, AGPAT2, 
PGK1, PAH, PAICS, 
CDO1, ACLY, AK4, 
UQCRC1, OGDH, 
ACACA

1130 15 (1.33%) 4.48e–08

T cell receptor 
signaling pathway

JUN, MAPK13, 
LCK, MAPK14, 
CDK4, MALT1

108 6 (5.56%) 2.47e–07

Epithelial cell 
signaling in 
Helicobacter pylori 
infection

JUN, MAPK13, 
CSK, MAPK14, LYN 68 5 (7.35%) 5.04e–07

Neurotrophin 
signaling pathway

IRS1, JUN, 
MAPK13, CSK, 
MAPK14, PRKCD

127 6 (4.72%) 5.04e–07

Chagas disease 
(American 
trypanosomiasis)

JUN, MAPK13, 
MAPK14, FADD, 
FAS

104 5 (4.81%) 3.66e–06

Osteoclast 
differentiation

JUN, MAPK13, 
LCK, PPARG, 
MAPK14

128 5 (3.91%) 8.98e–06

Consensus knockdown genes with a rank of < 100 and/or a Score-best6 of > 60 were analyzed by a web-based enrichment 
analytical tool WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt/).
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shown in Figure 5B, DAC induced greater expressions 
of p53 and p53R2 compared to AZA. In addition, AZA, 
but not DAC, induced DNA damage as indicated by the 
phosphorylation of H2AX (γH2AX), indicating that DAC-
induced p53R2 might be responsible for the repair of DNA 
damage. Taken together, these proof-of-concept studies 
confirmed our chemical genomics approach.

AZA induces an acute apoptotic response that is 
antagonized by concurrent autophagy

Induction of apoptosis by AZA might explain the 
differential effects of AZA and DAC on cell viability. 
Therefore, we further characterized AZA-induced apoptosis 
by a caspase-3/7 activity assay. In addition, cellular plasma 

Figure 4: Effects of azacytidine (AZA) and decitabine (DAC) on protein synthesis and stability. (A) HCT116 cells were 
treated with 5 μg/mL cycloheximide (CHX), or different doses of AZA or DAC for 6 and 24 h, and protein synthesis was examined by 
a puromycin-incorporation assay as described in “Materials and Methods”. Upper part: ponceau S staining of nitrocellulose membranes. 
Lower part: Western blots of puromycin. (B) HCT116 and RKO cells were treated with 5 μg/mL CHX, 50 μM AZA, or 50 μM DAC for 
the indicated time intervals, and whole-cell lysates were subjected to a Western blot analysis using antibodies against c-MYC or GAPDH.
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Figure 5: Effects of azacytidine (AZA) and decitabine (DAC) on the cell cycle and p53 expression. (A) HCT116 cells were 
treated the different doses of AZA or DAC for 24 and 48 h, and the cell cycle was analyzed by flow cytometry as described in “Materials and 
Methods”. (B) HCT116 cells were treated the different doses of AZA or DAC for 24 h, and whole-cell lysates were subjected to a Western 
blot analysis using antibodies against p53, p53R2, γH2AX, or GAPDH.
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membrane permeabilization was determined by staining 
of dead cells with the dye, 7-AAD. As shown in Figure 6, 
only AZA induced obvious activation of caspase-3/7 at 24 
and 48 h. Treatment with 0.5 μM doxorubicin was used 
as a positive control for caspase-3/7 activation (Figure 6). 
Interestingly, we found that kinetic changes of AZA (50 μM) 
and doxorubicin (0.5 μM) on caspase activation differed, 
although their inhibitory effects on cell viability were 
similar (Figures 2C, 7A). The percentages of apoptotic, 
apoptotic/dead, and dead cells induced by doxorubicin 
(0.5 μM) at 24 h were 24%, 23.56% and 1.39%, respectively. 
At 48 h, the reduced apoptotic cell (1.9%) population was 
correlated with the induction of apoptotic/dead (40.95%) 

and dead (12.55%) cell populations (Figure 6), representing 
a shift from early to late apoptotic responses. However, 
AZA (50 μM) induced 8.2% of apoptotic, 17.64% of 
apoptotic/dead, and 3.13% of dead cells at 24 h, but 6.6% 
of apoptotic, 16.7% of apoptotic/dead, and 20.6% of dead 
cells at 48 h (Figure 6), indicating that the ability of AZA 
to induce apoptosis was limited as observed in a cell cycle 
analysis showing similar subG1 populations (18.1% and 
19.1%, respectively) at 24 and 48 h (Figure 5A). Because 
poly(ADP ribose) polymerase 1 (PARP1) is a well-known 
cellular substrate of caspase-3/7 [27], the effects of AZA, 
DAC, and doxorubicin on PARP1 cleavage were examined 
by Western blot analyses. As shown in Figure 7B, AZA, 

Figure 6: Effects of azacytidine (AZA) and decitabine (DAC) on caspase-3/7 activity. HCT116 cells were treated with 
different doses of AZA or DAC, or 0.5 μM doxorubicin for 24 and 48 h, and the caspase-3/7 activity was analyzed by flow cytometry as 
described in “Materials and Methods”.
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but not DAC or doxorubicin, induced obvious cleavage of 
PARP1 after 24 h of treatment. Interestingly, the cleaved 
form of PARP1 declined without a concomitant recovery 
of the pro-form in response to 48 h of AZA treatment, 
suggesting that AZA-induced apoptosis might have been 
retarded. Consistent with results of caspase-3/7 staining 
(Figure 6), doxorubicin induced significant PARP1 cleavage 
at 48 h (Figure 7B). Therefore, these results suggest that 
AZA induced an unusual and acute apoptotic response 
compared to doxorubicin at an equivalent dose level which 
inhibited cell viability.

Autophagy is a physiological process that regulates 
the turnover of proteins and intracellular organelles. 
Through self-digestion, it provides an alternative energy 
source and serves as a temporary survival mechanism 
during starvation [28]. In addition, autophagy can be a 
stress adaptive method that avoids cell death in several 
scenarios, and it can also act as an antagonist to block 
apoptosis by promoting cell survival [29, 30]. Because 
of the inhibitory effect of AZA on protein synthesis, we 
hypothesized that AZA might simultaneously induce 
autophagy and apoptosis in a mutually exclusive manner. 
To investigate whether AZA induces autophagy in 
HCT116 cells, a Western blot analysis was performed to 
detect autophagy by the conversion of cytosolic LC3B-I 
(autophagy-inactive) to processed LC3B-II (autophagy-
active) [31]. Indeed, AZA, but not DAC or doxorubicin, 
induced the conversion of LC3B-I to LC3B-II at both 24 
and 48 h (Figure 7B). To investigate the role of autophagy 
in AZA-induced apoptosis, 3-methyladenine (3-MA), an 
autophagy inhibitor, was used. 3-MA is a class III PI3K 
inhibitor that blocks autophagosome formation in the 
early stage of autophagy [31]. As shown in Figure 7C, 
3-MA blocked the conversion of LC3B-I to LC3B-II as 
indicated by an increase in LC3B-I, and concurrently 
enhanced AZA-induced PARP1 cleavage. In contrast, 
the caspase-3 inhibitor, Z-DEVD-FMK, inhibited AZA-
induced PARP1 cleavage as indicated by an increase in 
the pro-form of PARP1, but enhanced AZA-induced 
LC3B-II accumulation (Figure 7C). To confirm the role 
of autophagy in the cytotoxicity of AZA, autophagy-
deficient ATG7-knockout (ATG-KO) DLD-1 cells were 
used. As shown in Figure 7D, ATG7-KO DLD-1 cells 
were more sensitive to treatment with AZA. Therefore, 
AZA simultaneously induces apoptosis and cytoprotective 
autophagy in a mutually exclusive manner.

DISCUSSION

It is now commonly accepted that polypharmacology 
(drug molecules that interact with multiple targets) is a basic 
property of small molecules, which is also an important 
basis for drug repurposing [2]. Therefore, investigating the 
polypharmacologic mechanisms of drugs would be very 
helpful for drug discovery. More and more biomedical 
databases and analytical tools have been developed in 

recent years, which provide easy and open access to the 
masses of accumulated data [3]. Integrating these resources 
would be highly useful in the field of polypharmacology. 
In this study, we demonstrated the value of an integrated 
chemical genomics approach that can be applied for drug 
repurposing and also for the discovery of novel mechanisms 
of unknown drugs.

Although AZA and DAC have been clinically 
used for more than half a century, and despite decades of 
research to define their mechanisms, little is known about 
their precise mechanisms of action [32]. In addition, despite 
being viewed as structurally and mechanistically similar 
drugs, AZA and DAC have different metabolism and 
destinations in cells, further increasing the complexity for 
delineating these two drugs. In this study, we proposed a 
workflow for an integrated chemical genomics approach, 
which indeed suggested functional disparities between 
AZA and DAC, because similar compounds and genes 
associated with AZA or DAC greatly differed, and AZA 
and DAC showed little similarity to each other. This is 
consistent with the highly distinct differences observed in 
microarray gene expression and proteomic profiles of AZA 
and DAC in cancer cells [15–18]. On further analyses of 
chemical and genetic profiles of AZA and DAC, we found 
that AZA inhibited protein synthesis and reduced protein 
stability, and then induced an acute apoptotic response and 
cytoprotective autophagy in a mutually exclusive manner. In 
contrast, DAC affected cell cycle progression and induced 
expressions of p53 and its target gene, p53R2. Therefore, 
these proof-of-concept studies indeed demonstrated the 
value of this systematic polypharmacological approach.

AZA and DAC are viewed as hypomethylating 
agents because they were shown to inhibit DNA 
methylation [33], which seems to be relevant to their 
clinical benefits [32]. However, their hypomethylating 
activity is lost and is replaced by direct cytotoxicity when 
higher concentrations are given [17], which is consistent 
with their original purposes of being developed as classical 
cytostatic agents [34]. In this study, differential effects 
of AZA and DAC were observed at doses of > 10 μM, 
suggesting that DNA-hypomethylating activities might be 
not associated with their functional disparities. However, 
it still cannot explain why the direct cytotoxicity of AZA 
and DAC toward cancer cells differed. Because 100% of 
DAC is incorporated into DNA, whereas 80%~90% of 
AZA is incorporated into RNA and only 10%~20% of it 
into DNA [10], RNA-dependent effects of AZA might 
have higher cytotoxicity than DNA-dependent effects of 
DAC. Incorporation of AZA into newly synthesized RNA 
(including ribosomal (r)RNAs, transfer (t)RNAs, mRNAs, 
and microRNAs) might interfere with their biogenesis 
and thus inhibit protein synthesis. Indeed, our results 
showed that the primary pathway influenced by AZA was 
aminoacyl-tRNA biosynthesis, and AZA was able to inhibit 
protein synthesis and stability. Incorporation of DAC into 
newly synthesized DNA might affect DNA replication 
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that could cause arrest of the cell cycle and activation of 
the p53 signaling pathway to repair DNA damage [35]. 
Pathway enrichment of DAC-associated genes showed the 
involvement of cell cycle regulation and the p53 signaling 
pathway. In addition, DAC induced G2/M arrest and 
expressions of p53 and p53R2. p53R2 is a p53 target gene 
that causes G2/M arrest, and it is directly involved in the 
p53 checkpoint for repairing DNA damage and preventing 
cell death [26]. Therefore, unlike DAC, AZA did not 
induce p53 or p53R2 expression, and thus AZA-induced 
DNA damage could not be repaired.

In recent years, increasing numbers of studies 
have been conducted to investigate the RNA-dependent 
effects of AZA, and some specific molecular targets were 
identified. For example, RRM2, a subunit of ribonucleotide 
reductase, was identified as a novel molecular target of 
AZA in acute myeloid leukemia. The inhibition of RRM2 
expression by AZA involves its direct RNA incorporation 
and an attenuation of RRM2 mRNA stability [11]. Because 
a reduction in the diphosphate form of AZA into deoxy-

diphosphates by ribonucleotide reductase is required for 
the incorporation of AZA into RNA, inhibition of RRM2 
can explain the small DNA-incorporating ratio of AZA. 
In addition, AZA was shown to inhibit tRNA methylation 
at DNMT2 target sites [36]. DNMT2 is a tRNA-specific 
methyltransferase with three verified tRNA targets: 
Asp-tRNA, Gly-tRNA, and Val-tRNA [37, 38]. It is of 
interest to note that the major pathway enriched in AZA-
associated genes was aminoacyl-tRNA biosynthesis, and 
tRNA methylation by Dnmt2 promotes tRNA stability and 
protein synthesis in mice [39]. Therefore, we proposed 
that AZA treatment demethylated and destabilized tRNA, 
thus inhibiting protein synthesis.

Our results demonstrated that AZA induced an acute 
apoptotic response that had distinct kinetics compared to 
a chemotherapeutic agent, doxorubicin. According to this 
study, aminoacyl-tRNA might be the primary target of 
AZA. Disruption of aminoacyl-tRNA biosynthesis might 
be associated with AZA-induced apoptosis. One of the 
major apoptosis pathways that exists in mammalian cells 

Figure 7: The relationship between apoptosis and autophagy induced by azacytidine (AZA). (A) HCT116 cells were treated 
with different doses of doxorubicin for 72 h, and the cell viability was analyzed by an MTT assay. (B) HCT116 cells were treated with 
different doses of AZA or decitabine (DAC), or 0.5 μM doxorubicin for 24 and 48 h, and whole-cell lysates were subjected to a Western 
blot analysis using antibodies against PARP1, LC3B, or GAPDH. (C) HCT116 cells were pretreated with 5 mM 3-MA or 50 μM Z-DEVD-
FMK for 1 h and then exposed to 50 μM AZA for 24 h. Whole-cell lysates were subjected to a Western blot analysis using antibodies against 
PARP1, LC3B, or GAPDH. (D) ATG7-WT and ATG7-KO DLD-1 cells were treated with different doses of AZA for 72 h, and cell viability 
was analyzed by an MTT assay.
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is the mitochondrial pathway [40]. This pathway is defined 
by the release of mitochondrial cytochrome c into the 
cytosol where it binds to Apaf-1 and ATP/dATP, which then 
assembles into an oligomeric apoptosome complex. The 
apoptosome then recruits and oligomerizes the precursor of 
an initiator caspase, caspase-9, leading to its autoproteolytic 
activation. Caspase-9 activates effector caspases such as 
caspases-3 and -7, which cleave various cellular proteins, 
leading to cell death [40]. Interestingly, tRNA was shown 
to bind to cytochrome c, preventing its interaction with 
Apaf-1, thus blocking Apaf-1 oligomerization and caspase 
activation [41]. AZA might destabilize tRNA and then 
induce an acute apoptotic response in cancer cells, which 
warrants further investigation in the future.

In conclusion, we report how an integrative gene 
expression-based chemical genomics approach can 
be useful for identifying polypharmacological action 
mechanisms of a drug. Our results may provide novel 
molecular insights into the anticancer mechanisms of AZA.

MATERIALS AND METHODS

Library of integrated cellular signatures 
(LINCS) analysis

Data of the LINCS were generated by L1000 
technology that only measures 1000 genes in each 
experiment, and the remaining about 22,000 genes are 
estimated by a model built from computational processing 
of thousands of gene expression datasets from the Gene 
Expression Omnibus (GEO) [13, 42, 43]. The LINCS has 
approximately one million gene expression profiles from 
22,412 unique perturbations applied to 56 different human 
primary and cancer cell lines [43]. It not only provides 
chemical perturbations, but also genetic perturbations 
(knockdown and overexpression of a single gene). The 
LINCS can be queried by an input of the user’s own up- 
and downregulated gene lists (gene symbol or Affymetrix 
U133A probe ID), or by using the “Compound Digest” 
or “Gene Digest” algorithm to search established drugs 
or genes. Outputs are lists of matching experiments in 
three tables of “Compound Connections”, “Consensus 
Knockdown Connections” and “Overexpression 
Connections”.

In this study, connections of AZA or DAC to other 
compounds or genes were directly obtained from the LINCS 
database (http://www.lincscloud.org/) using the “Compound 
Digest” algorithm. The output of results included 
“Compound Connections”, “Consensus Knockdown 
Connections”, and “Overexpression Connections”, 
representing the mostly similar (with positive scores) or 
dissimilar (with negative scores) compounds or genes, 
when they are knocked down or overexpressed, to AZA 
or DAC. The top 100 compounds with positive scores in 
“Compound Connections” are described in Supplementary 
Table S1, and the top 100 genes with positive scores in the 
“Consensus Knockdown Connections” and “Overexpression 

Connections” are described in Supplementary Table S2. 
“Score-best6” signifies the mean connectivity score across 
the six cell lines in which the pertubagen connected most 
strongly to the query. “ncell” signifies the number of cell 
lines over which the connectivity between the query and 
the perturbagen are summarized. “nsig” signifies the 
total number of perturbagen signatures over which its 
connectivity to the query is summarized. In this study, 
compounds with a Score-best6 of > 90 and genes with a 
rank of < 100 and/or a Score-best6 of > 60 were considered 
for further analyses.

Search tool for interactions of chemicals 
(STITCH) analysis

LINCS compounds similar to AZA or DAC (with 
a Score-best6 of > 90) were queried with STITCH 4.0 
(http://stitch.embl.de/) [6]. Compounds that are present 
in the STITCH database are described in Supplementary 
File S1. Different nominations between the LINCS and 
STITCH were carefully checked and manually edited. The 
organism in STITCH was set to “Homo sapiens”. To focus 
on compound connections and exclude the disturbance 
of proteins, the parameters were set as follows: Active 
prediction methods = Predictions; Required confidence 
(score) = medium confidence (0.400); and Interaction 
shown: no more than 0 interactors.

Pathway enrichment analysis by the WEB-based 
GEne SeT AnaLysis Toolkit (WebGestalt)

Genes with a rank of < 100 and/or a Score-best6 
of > 60 (Supplementary Table S2) were selected for a 
pathway enrichment analysis using the WebGestalt (http://
bioinfo.vanderbilt.edu/webgestalt/) [14]. Because of 
limited genes in “Overexpression Connections” of AZA 
and DAC, only genes in the “Consensus Knockdown 
Connections” of AZA and DAC were considered for the 
WebGestalt analysis. Parameters were set as follows: 
Enrichment Analysis = KEGG Analysis; Select Reference 
Set for Enrichment Analysis = hsapiens_genome; Statistical 
Method = Hypergeometric; Multiple Test Adjustment = BH; 
Significance Level = 0.01; and Minimum Number of Genes 
for a Category = 5.

Materials

RPMI-1640 medium, L-glutamine, sodium 
pyruvate, and Antibiotic-Antimycotic Solution (penicillin 
G, streptomycin, and amphotericin B) were purchased 
from Life Technologies (Gaithersburg, MD, USA). Fetal 
bovine serum (FBS) was purchased from Gibco (Grand 
Island, NY, USA). DNMT1, c-MYC, p53, p53R2, γH2AX, 
LC3B, and GAPDH antibodies were purchased form 
GeneTex (Hsinchu, Taiwan). The PARP1 antibody was 
purchased from Cell Signaling Technology (Beverly, 
MA, USA). The anti-puromycin antibody was purchased 
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from Merck Millipore (Billerica, MA, USA). Horseradish 
peroxidase (HRP)-labeled goat anti-rabbit and anti-mouse 
secondary antibodies were purchased from Jackson 
ImmunoResearch (West Grove, PA, USA). 5-Azacytidine 
(AZA), 2′-deoxy-5-azacytidine (DAC), cycloheximide 
(CHX), and 3-methyladenine (3-MA) were purchased from 
Cayman Chemical (Ann Arbor, MI, USA). Doxorubicin 
was purchased from LC Laboratories (Woburn, MA, 
USA). Z-DEVD-FMK was purchased from R&D Systems 
(Minneapolis, MN, USA). 3-(4,5-Dimethylthiazol-2-
yl)-2,5-diphenyl tetrazolium bromide (MTT), dimethyl 
sulfoxide (DMSO), puromycin, propidium iodide (PI), and 
ribonuclease A (RNase A) were purchased from Sigma 
(St. Louis, MO, USA). Protease and phosphatase inhibitor 
cocktails were purchased from Roche (Indianapolis, IN, 
USA). The ponceau S solution was purchased from SERVA 
(Heidelberg, Germany). Other chemicals or reagents not 
specified were purchased from OneStar Biotechnology 
(New Taipei City, Taiwan).

Cell culture

Human colon cancer cells (HCT116, LoVo, RKO, 
HCT-15, DLD-1, and HT-29) were kindly provided by Prof. 
Ya-Wen Cheng (Taipei Medical University, Taipei, Taiwan). 
ATG7-wildtype (ATG7-WT) and ATG7-knockout (ATG7-
KO) DLD-1 cells were purchased from Horizon Discovery 
(Cambridge, UK). These cells were cultured in RPMI-
1640 medium supplemented with 10% FBS, 1 mM sodium 
pyruvate, 1% L-glutamine, and 1% Antibiotic:Antimycotic 
Solution, and incubated at 37°C in a humidified incubator 
containing 5% CO2.

Cell viability assay

Cell viability was measured with an MTT assay. 
Cells were plated in 96-well plates and treated with drugs. 
After 72 h of incubation, 0.5 mg/mL of MTT was added to 
each well for an additional 4 h. The blue MTT formazan 
precipitate was then dissolved in 200 μL of DMSO. The 
absorbance at 550 nm was measured on a multiwell plate 
reader. IC50 values of AZA and DAC were calculated by 
SigmaPlot software using a standard curve analysis.

Western blot analysis

Cells were lysed in an ice-cold buffer containing 
50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM MgCl2, 
2 mM EDTA, 1% NP-40, 10% glycerol, 1 mM DTT, 1x 
protease inhibitor cocktail, and 1x phosphatase inhibitor 
cocktail at 4°C for 30 min. Cell lysates were separated on 
a sodium dodecylsulfate (SDS)-polyacrylamide gel, and 
then transferred electrophoretically onto a Hybond-C Extra 
nitrocellulose membrane (GE Healthcare, Piscataway, NJ, 
USA). The membrane was pre-hybridized in 20 mM Tris-
HCl (pH 7.5), 150 mM NaCl, 0.05% Tween-20 (TBST 

buffer), and 5% skim milk for 1 h, and then transferred to 
a solution containing 1% bovine serum albumin (BSA)/
TBST and a primary antibody and incubated overnight at 
4°C. After washing with the TBST buffer, the membrane 
was submerged in 1% BSA/TBST containing an HRP-
conjugated secondary antibody for 1 h. The membrane 
was washed with TBST buffer, and then developed with an 
enhanced chemiluminescence (ECL) system (Perkin-Elmer, 
Boston, MA, USA) and exposed to x-ray film (Roche).

Puromycin-incorporation assay

Cells were plated in 6-cm dishes and treated with 
drugs for 6 and 24 h. One micromolar of puromycin was 
added 30 min before cells were harvested. Cell lysates 
were separated on a SDS-polyacrylamide gel, and then 
transferred electrophoretically onto a Hybond-C Extra 
nitrocellulose membrane. Proteins on the membrane were 
visualized by 0.2% ponceau S staining. The ponceau S 
stain was rinsed away, and the membrane was blotted with 
an anti-puromycin antibody.

Flow cytometric analyses of the cell cycle and 
apoptosis

Cells were plated in 6-well plates for 24 h, and 
then treated with complete medium containing drugs for 
24 and 48 h. Floating and adherent cells were harvested. 
For the cell cycle analysis, cells were immediately fixed 
with 75% ethanol and stored at −20°C. Cells were stained 
in staining buffer (10 μg/mL PI and 100 μg/mL RNase A) 
for 30 min and then analyzed on a Muse Cell Analyzer 
(Merck Millipore). For apoptosis determination, cells 
were stained with a Muse Caspase 3/7 Assay Kit (Merck 
Millipore) according to the manufacturer’s instructions.

Statistical analysis

Means and standard deviations of samples were 
calculated from the numerical data generated in this study. 
Data were analyzed using Student’s t-test, and p values of 
< 0.05 were considered significant (*).
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