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ABSTRACT
Epithelial-mesenchymal transition (EMT) is a cellular process through which 

epithelial cells transform into mesenchymal cells. EMT-implicated genes initiate and 
promote cancer metastasis because mesenchymal cells have greater invasive and 
migration capacities than epithelial cells. In this pan-cancer analysis, we explored the 
relationship between gene expression changes and copy number variations (CNVs) 
for EMT-implicated genes. Based on curated 377 EMT-implicated genes from the 
literature, we identified 212 EMT-implicated genes associated with more frequent copy 
number gains (CNGs) than copy number losses (CNLs) using data from The Cancer 
Genome Atlas (TCGA). Then by correlating these CNV data with TCGA gene expression 
data, we identified 71 EMT-implicated genes with concordant CNGs and gene up-
regulation in 20 or more tumor samples. Of those, 14 exhibited such concordance in 
over 110 tumor samples. These 14 genes were predominantly apoptosis regulators, 
which may implies that apoptosis is critical during EMT. Moreover, the 71 genes with 
concordant CNG and up-regulation were largely involved in cellular functions such 
as phosphorylation cascade signaling. This is the first observation of concordance 
between CNG and up-regulation of specific genes in hundreds of samples, which may 
indicate that somatic CNGs activate gene expression by increasing the gene dosage.

INTRODUCTION

Epithelial-mesenchymal transition (EMT) is the 
transformation of an epithelial cell into a mesenchymal 
cell, the latter of which is a critical cell type for the 
initiation of cancer metastasis [1–3]. During this 
morphological and cellular change, cells also acquire 
different cellular functions. While epithelial cells have 
the tight intercellular connections due to their cellular 
junctions, mesenchymal cells have only loose connections 
at focal points. In addition, epithelial cells that transform 
into mesenchymal cells through EMT lose their cellular 
polarity. Mesenchymal cells are migratory and invasive, 
and resist to cell senescence, inflammation, immunotherapy 
and chemotherapy [2, 4]. Therefore, understanding EMT 
may facilitate the development of diagnostic biomarkers 
for cancer diagnosis.

To explore the molecular mechanism of EMT at a 
systems-biology level, we developed a literature-based 
gene resource specific for EMT. In total, 377 human 
EMT-implicated genes were collected from thousands of 
published articles, primarily single nucleotide mutation-
based studies. Reports of systematic data mining for 
larger genomic variations related to EMT, such as gene 
copy number variations (CNVs), are still lacking. As a 
genomic mutational event, CNV often results in a variable 
number of repeated DNA fragments with lengths ranging 
from kilobases to megabases, even encompassing entire 
genes [5]. Using array-based high-throughput technology, 
large-scale CNVs were detected in The Cancer Genome 
Atlas (TCGA) projects [6, 7]. CNVs can be classified into 
two major groups: copy number gain (CNG, an increased 
number of copies of a gene in the genome) and copy 
number loss (CNL, a reduced number of copies of a gene 
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in the human genome). By altering the gene dosage (the 
exact number of copies of a particular gene in a genome 
[8]) from its normal diploid state, tthese deleted or 
duplicated DNA fragments often profoundly affect gene 
expression [8].

CNV is known to correlate with altered gene 
expression in different cancers [9].  While such studies of 
single cancer types have been useful for gene discovery, 
they have not validated CNVs across different cancer 
types. To comprehensively evaluate the relationship 
between CNVs and EMT-implicated gene expression 
changes, we performed a pan-cancer CNV analysis.

RESULTS

The EMT-implicated genes with frequent CNGs 
highlighted the role of proteoglycans in cancer 
metastasis

To explore somatic CNV information at the pan-
cancer level, we first downloaded 377 human EMT-
implicated genes from our literature-based database, 
dbEMT [10]. Then, we aligned the genomic coordinates 
of these 377 EMT-implicated genes with CNVs of major 
cancers from the TCGA pan-cancer study [11]. In total, 
365 genes overlapped with cancer CNVs in certain 
genomic regions. In order to focus on CNVs with precise 
gain or loss information, we removed non-informative 
CNVs that lacked control tissue (see Materials and 
Methods). As EMT can promote cancer metastasis, we 
assumed that CNGs of EMT-implicated genes would be 
the driving force for gene expression changes related to 
EMT. We counted the number of TCGA cancer samples 
with CNGs or CNLs and established a cut-off so that 
we could extract the most informative CNG events. Our 
criterion was that the number of samples with CNGs in an 
EMT-implicated gene must be at least twice the number 
of samples with CNLs. In this way, we harvested a total of 
212 genes for further functional annotation and integrative 
gene expression analysis (Table S1).

We first performed a gene ontology analysis to 
determine the functions of the 212 EMT-implicated genes 
with frequent CNGs. Not surprisingly, the majority of 
the functions were related to cell migration (corrected 
P-value = 2.09E-46), cell proliferation (corrected P-value 
= 2.99E- 55), and cell fate commitment (corrected 
P-value = 2.54E-14) (Figure 1). These EMT-implicated 
genes may also participate in epithelium development 
(corrected P-value = 5.699E-58), stem cell development 
(corrected P-value = 1.218E-32), and extracellular 
matrix organization (corrected P-value = 9.741E-18). 
Intriguingly, these 212 genes are also involved in the 
responses to wounding (corrected P-value = 1.542E-29) 
and endogenous stimuli (corrected P-value = 4.951E-41). 

Further biological pathway analysis of the 212 
EMT-implicated genes revealed 425 significantly enriched 

biological pathways (all corrected P-values less than 0.01, 
and with five or more annotated genes) (Table S2). The 
most significant pathway was “proteoglycans in cancer,” 
with which 39 genes were associated (Table 1, corrected 
P-value = 5.78E-25). Cell surface proteoglycans act 
as either inhibitors or promoters of cancer metastasis, 
depending on the type of cancer [12]. For instance, the 
proteoglycan syndecan-1 is highly expressed on the 
membranes of epithelial cells and can promote cell 
adhesion, a key step in EMT [12].

We also identified 17 genes belonging to the 
“prolactin signaling pathway” (corrected P-value = 
1.58E-12). The prolactin receptor is widely expressed 
in extrapituitary cells of breast, liver, pancreas, and 
gastrointestinal tissues [13]. Prolactin can transport water 
and electrolytes through the mucosal membrane [13]. 
More interestingly, the proteoglycans and the prolactin 
signalling pathways are not isolated from each other [14]. 
For instance,  acidic glycosaminoglycans (proteoglycans) 
have been detected in prolactin secretory granules [14]. 
Taking these data together, frequent CNGs appear to occur 
for genes associated with proteoglycans and the prolactin 
signaling pathway in EMT.

The genes with concordance between CNG and 
up-regulation include numerous regulators of 
apoptosis

 We then evaluated whether CNGs in the TCGA 
samples correlated with the up-regulation of the same 
EMT-implicated genes (Figure 2). To determine whether 
the expression of these EMT-implicated genes was higher 
in tumor samples than in normal samples, we calculated 
Z-scores to characterize the over-expressed values in a 
specific TCGA sample. We established a cut-off value of 
2 for the calculated Z-score to identify highly expressed 
EMT-implicated genes in specific TCGA samples.

By focusing on the matched TCGA tumor samples 
with both expression and CNV information, we unveiled 195 
EMT-implicated genes with increased gene expression and 
a concordant gain of gene copy number. To further confirm 
the potential CNG-induced gene expression change, we 
counted the number of samples with concordance between 
up-regulation and CNG for each of the 195 EMT-implicated 
genes (Figure 3A). The majority of the genes (61%) 
exhibited concordance in fewer than 20 samples. Based on 
the criterion of concordant CNG and gene up-regulation in 
20 or more matched tumour samples from various cancers, 
we compiled a list of 71 EMT-implicated genes with high 
confidence (Table S3). Among these 71 genes, 41 were 
positive regulators in response to stimuli (corrected P-value 
= 1.913E-22) (Table S4). Many of these genes were also 
involved in basic cellular processes such as apoptosis (42 
associated genes, corrected P-value = 1.42E-21) and the 
MAPK cascade (31 associated genes, corrected P-value = 
6.96E-16). In summary, our step-by-step filtering approach 
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identified a subset of EMT-implicated genes with frequent 
CNGs and concordant gene up-regulation that are involved 
in basic cellular processes.

To visualize the frequently mutated genes that are 
common to multiple cancers, we overlapped the 71 EMT-
implicated genes with pan-cancer CNV data (Figure 2B). 
In the TCGA ovarian serous cystadenocarcinoma 
cohort, there were 493 cases (85.10%) with an altered 
copy number of at least one of these genes (Table S5). 
Interestingly, these 71 genes were also mutated in 813 cell 
lines (81.70%) in the Cancer Cell Line Encyclopedia 
(CCLE) dataset. As the CCLE is comprehensive with 
respect to cancer types, the high mutation rates observed 
in the 71 genes reflect their recurrent mutational patterns. 
Over 80% of the esophageal carcinoma patients had at least 
one deletion event in one of the 71 EMT-implicated genes. 
A similar prevalence of CNVs (> 60% cases) was found 
in 11 other cancer types (bladder urothelial carcinoma, 
breast invasive carcinoma, esophageal carcinoma, head 
and neck squamous cell carcinoma, lung adenocarcinoma, 
lung squamous cell carcinoma, malignant peripheral nerve 
sheath tumor, metastatic prostate cancer, sarcoma, stomach 

adenocarcinoma, and uterine carcinosarcoma) and in NCI-
60 cell lines. In addition, in these 12 cancer types and 
two cell line datasets, CNGs were overwhelmingly more 
prevalent than CNLs (Figure 2B). The consistent detection 
of these highly frequent mutations in multiple cancers and 
cell lines may imply that frequent CNGs in these 71 EMT-
implicated genes are important for cancer progression.

Intriguingly, we found seven genes with concordance 
in over 200 tumour samples, including YWHAZ (345 
samples), PIK3CA (313), MTDH (293), EGFR (285), ECT2 
(271), ERBB2 (220), and ESRP1 (219) (Figure 3B– 3H). 
An additional seven genes exhibited concordance in 
over 110 samples: SCRIB (157), NDRG1 (151), EIF5A2 
(150), ZNF217 (145), KRAS (138), MYC (135), and 
TP63 (113). The high frequency of concordance for these 
genes indicates that the CNGs may drive the increases 
in gene expression.. In addition, 10 of the 14 identified 
genes were key “regulators of apoptosis” (GO:0042981, 
corrected P-value = 2.35E-5). YWHAZ belongs to the 
14–3-3 gene family, which can bind to phosphoserine-
containing proteins, and participates in the PI3K-Akt 
signaling pathway in certain cancers [15, 16]. CNGs in 

Figure 1: Gene ontology analysis of 212 human EMT-implicated genes with frequent CNGs. The scatterplot shows the gene 
ontology (GO) clusters for the 212 EMT-implicated genes in a two-dimensional space derived through application of multidimensional 
scaling to a matrix of the semantic similarities of the GO terms. Bubble colors indicate the frequency of a GO term in the GOA database 
(bubbles with more general terms are red), while bubble sizes indicate the log of the corrected P-value (bubbles with smaller corrected 
P-values are larger).



Oncotarget24691www.impactjournals.com/oncotarget

this gene were presented in over 25% of the cases from 
a lethal castration-resistant prostate cancer cohort from 
Michigan (Figure 3B). In this same prostate cancer cohort, 
there were also frequent CNGs of MTDH and ESRP1 
(Figure 3D, 3H). There were repeat copies of PIK3CA 
and ECT2 in approximately 45% of patients in a TCGA 
lung squamous cell carcinoma cohort (Figure 3C, 3F). 
Likewise, there were frequent CNGs of EGFR in a TCGA 
glioblastoma multiforme cohort (~45%), and of ERBB2 in 
nearly 14% of cases from a TCGA stomach cancer cohort. 
In summary, copy number changes of these apoptosis-
related genes were highly frequent in certain cancer types, 
which may imply that apoptosis is critical in different 
cancer EMT processes.

A connected biological map of EMT-implicated 
genes with concordance between CNG and 
increased gene expression

To demonstrate at a system level the shared 
cellular events related to the 71 EMT-implicated genes 
with increased expression caused by CNGs, we built 
a biological network using prepared pathway-based 
protein-protein interaction (PPI) data from the Pathway 
Commons database [17]. These reliable interactions are 
based on available evidences from known biological 

pathways, such as those recorded in the KEGG and 
Reactome pathway databases. Because these data avoid 
the high levels of noise, sparseness, and skewness that 
are often observed for physical interaction-based PPI 
networks. Using a module searching method described 
previously [18], we first mapped the 71 genes to the 
human pathway interactome. Then, we extracted a sub-
network to connect as many of the input genes as possible. 
The final reconstructed network contains 68 genes with 
100 links (Figure 4A). Of the 68 nodes, 49 are from our 
71 input genes with concordant gene up-regulation and 
frequent CNGs. The remaining 19 nodes are linker genes 
that bridge the other 49 genes and form a fully connected 
cellular map. Notably, four of these linker genes are also 
related to EMT, namely ITGB1, ROCK2, SHH, and TP53. 
These four genes were not used as seeds because they did 
not exhibit concordant CNG and gene up-regulation in 
20 or more matched tumor samples. Interestingly, ITGB1 
and TP53 are connected with more than eight genes in the 
network, in which the the 8 highly- connected nodes can 
exchange information quickly.

The majority of genes in the reconstructed map are 
linked to each other in a highly modular structure according 
to their topological features. The degrees of all nodes in 
our reconstructed map follow a power law distribution 
P(k)~k-b, where P(k) is the probability that a gene has 

Figure 2: Collection of 71 EMT-implicated genes with increased gene expression induced by CNGs. (A) The computational 
pipeline for identifying 71 EMT-implicated genes with concordance between CNG and up-regulation; (B) the global CNV patterns across 
multiple cancers for 71 EMT-implicated genes with increased gene expression induced by CNGs.
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connections with k other genes and b is an exponent 
with an estimated value of 1.346 (Figure 4B). Thus the 
reconstructed map differs from the human interactome, 
in which the majority of  genes are sparsely connected 
with a b exponent of 2.9 [19]. Moreover, the majority of 
the genes (~76.9%) could be reached within an average of 
three to five steps (Figure 4C). Both of these topological 
analyses indicate that the majority of genes in our map 
are connected with high modularity. Due to the tight 
connections, the highly- connected nodes in this network 
are critical for transducing biological information along 
the shortest paths. It is not surprising that TP53 is the most 

highly- connected node in the network (12 connections). 
EGFR and MYC follow TP53, with nine connections 
each. The other six highly- connected genes, having over 
five connections, are ITGB1 (eight connections), PIK3CA 
(seven), ITGAV (seven), TGFBR2 (six), RAC1 (six), and 
LCK (six). In total, nine genes with six or more links, and 
all of them are associated with positive regulation of the 
phosphate metabolic process (GO:0045937, corrected 
P-value = 1.241E-9) and the regulation of phosphorylation 
(GO:0042325, corrected P-value = 8.013E-9). In 
addition, eight of the nine genes are related to a “pathway 
in cancer” (corrected P-value = 4.424E-9), wound 

Table 1: The top 10 pathways enriched for the 212 EMT-implicated genes with frequent CNGs
Pathway Q-value1 #G2 EMT List
Proteoglycans in 
cancer

5.78E-25 39 MYC,HGF,ERBB2,ITGA5,ITGB1,ITGB3,PTK2,STAT3,DDX
5,TWIST1,MET,BRAF,PIK3CA,WNT3A,PLAUR,FGFR1,SD
C1,RAC1,VEGFA,ROCK2,KRAS,RAF1,VTN,HBEGF,WNT
1,CAV1,TGFB1,TGFB2,MAPK14,IGF1R,EGFR,CD44,PAK1, 
MIR21,PRKCA,ROCK1,TNF,MAPK1,MAPK3

Pathways in 
cancer

4.93E-21 41 MYC,CDKN1B,HGF,ERBB2,ITGA6,ITGB1,PTGS2,PTK2,
STAT3,STAT5A,AXIN1,STAT5B,AXIN2,MET,BMP2,BMP
4,BRAF,PIK3CA,WNT3A,FGFR1,FGFR2,KIT,RAC1,VEG
FA, KRAS,RAF1,WNT1,SHH,LAMA5,BIRC2,PPARG,GSK
3B,TGFA,TGFB1,TGFB2,IGF1R,EGFR,PRKCA,MAPK1,M
APK3,EPAS1

Integrated 
pancreatic cancer 
pathway

4.93E-21 29 MYC,CDKN1B,SP1,ERBB2,EZH2,PTGS2,STAT5A,PIK3
CA, FGFR1,RAC1,VEGFA,KRAS,RAF1,ANXA1,WT1,SH
H,GSK3A,TGFB1,LEFTY1,MAPK14,IGFBP3,EGFR,EGR1
,PAK1, PRKCA,TNF,MAPK1,MAPK3,MAPK7

MicroRNAs in 
cancer

4.56E-16 34 MYC,CDKN1B,ERBB2,ITGA5,EZH2,ITGB3,PTGS2,STA
T3,BMI1,MET,PIK3CA,WNT3A,NOTCH2,VEGFA,KRAS,
RAF1,VIM,ZEB1,TGFB2,MIR137,MIR15B,EGFR,TP63,M
IR194–1,CD44,MIR21,PRKCA,PRKCE,ROCK1,MIR200C,
MAPK1,MAPK7,FSCN1,MIR23A

Focal adhesion 5.94E-16 29 HGF,ERBB2,ITGA6,ITGA5,ITGB1,ITGB3,ITGB4,ZYX,PTK
2,MET,BRAF,PIK3CA,RAC1,VEGFA,ROCK2,RAF1,FLT1,V
TN,LAMA5,BIRC2,CAV1,GSK3B,IGF1R,EGFR,PAK1,PRK
CA,ROCK1,MAPK1,MAPK3

MicroRNAs in 
cardiomyocyte 
hypertrophy

3.98E-14 21 STAT3,PIK3CA,WNT3A,FGFR2,RAC1,ROCK2,RAF1,EDN
1,GSK3B,TGFB1,MAPK14,IGF1R,MIR15B,LRP6,MIR21,R
OCK1,TNF,MAPK1,MAPK3,MAPK7,MIR23A

Prolactin 
signaling 
pathway

1.58E-12 17 MYC,ERBB2,ITGB1,PTK2,STAT3,GAB2,STAT5A,STAT5B, 
PIK3CA,RAC1,RAF1,YWHAZ,GSK3B,MAPK14,PAK1,MA
PK1,MAPK3

ErbB signaling 
pathway

1.58E-12 18 MYC,CDKN1B,ERBB2,PTK2,STAT5A,STAT5B,BRAF,PIK
3CA,KRAS,RAF1,HBEGF,GSK3B,TGFA,EGFR,PAK1,PRK
CA,MAPK1,MAPK3

IL-3 signaling 
Pathway

2.26E-12 19 PTK2,STAT3,GAB2,STAT5A,STAT5B,PIK3CA,HSPB1,RAC
1,KRAS,RAF1,YWHAZ,GSK3A,GSK3B,MAPK14,PAK1,PR
KCA,MAPK1,MAPK3,MAPK7

Note: 1 Q-values: the raw P-values of the hypergeometric test were corrected by Benjamini-Hochberg multiple testing 
correction. 2 G: the number of EMT-implicated genes associated with the pathway.



Oncotarget24693www.impactjournals.com/oncotarget

healing (GO:0042060, corrected P-value = 8.013E-9),  
response to growth factors (GO:0070848, corrected P-value 
= 8.013E- 9), abnormal extra-embryonic tissue morphology 
(corrected P-value = 1.587E-5), abnormal embryonic 
growth/weight/body size (corrected P-value = 4.224E-5), 
and embryonic lethality during organogenesis (corrected 
P-value = 4.580E-5). In summary, this reconstructed 
map for genes with potential CNG-driven gene up-
regulation includesd multiple signaling pathways related 

to phosphorylation, which may be another molecular 
mechanism by which CNGs s up-regulate EMT-implicated 
genes.

CNG-driven up-regulation in matched ovarian 
cancer samples

To further explore the relationship between expression 
changes and CNGs, we focused on the TCGA ovarian cancer 

Figure 3: The number of genes with concordance between CNG and up-regulation, and the global CNV mutational 
pattern. (A) The number of EMT-implicated genes with concordance between CNGs and up-regulation in different tumor samples. 
(B- H) The CNV landscape in multiple cancer datasets in the cBio portal for: (B) YWHAZ, (C) PIK3CA, (D) MTDH, (E) EGFR, (F) ECT2,  
(G) ERBB2, and (H) ESRP1.
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cohort. Among the 71 EMT-implicated genes with potential 
CNG-driven gene up-regulation, 70 genes exhibited at 
least one CNG in a patient. Next, we focused on the four 
genes with the most frequent CNGs in the ovarian cohort 
(CNGs detected in more than 30% of cases), namely MYC, 
NDRG1, SCRIB, and EIF5A2. The expression of these four 
genes was consistently high in those tumor samples with 
CNGs (Figure 5A– 5E). When we compared the average 
gene expression between the CNG samples and the diploid 
samples, all of the results were significant (all four P-values 
< 0.05). We used NDRG1, a downstream tumor suppressor 
gene of the MYC signaling pathway in ovarian cancer [20–
22], as an example. In our dbEMT, NDRG1 was recorded 
as promoting the malignant progression of gastric cancer 
through EMT [23]. However, this gene is not reported to 
be involved in ovarian cancer, although it is associated with 
invasive potential in cervical and ovarian cancer cell lines 
[24]. Our results may imply that NDRG1 promotes EMT in 
ovarian cancer, not just in cell lines. Overall, the systematic 
combination of gene expression and CNG data in ovarian 
cancer revealed that the gene dosage effects of CNGs in 
EMT-implicated genes may increase gene expression.

DISCUSSION

This study revealed somatic CNV features of EMT-
implicated genes in multiple cancer types, particularly with 
respect to the effects of CNGs  on gene expression. EMT 
is a critical process for cancer metastasis, and large-scale 
gene copy gains in EMT-implicated genes may induce their 
up-regulation. Although previous studies have explored 
relationship between germline CNVs and gene expression 
[8], there have not been reports of  direct links between 
somatic CNVs and gene expression dosage compensation. 
EMT can assist in the initiation of cancer metastasis [25], 
specifically, by disrupting the connections between cells in 
primary sites and thus enhancing their invasive properties. 
Therefore, it is not surprising that many of the 212 EMT-
implicated genes with frequent CNGs encoded proteins 
located on the extracellular matrix (52 genes, GO:0005615, 
Corrected P-value = 1.36E- 14) and cell surface (38 genes, 
GO:0009986, Corrected P-value = 2.41E-14).

It is worth noting that many of the 212 genes 
also functioned in “stem cell differentiation” (48 genes, 
GO:0048863, Corrected P-value = 1.01E-36). CNGs 

Figure 4: Reconstructed interaction map for EMT-implicated genes with CNGs and increased gene expression in 
matched tumor samples. (A) The 49 genes in orange are those among the 71 EMT-implicated genes with increased expression induced 
by CNGs in 20 or more matched tumour samples. The other 19 genes in blue are linker genes that connect the 49 genes. The node size 
indicates the connection strength - the larger the node, the greater the degree of connectivity;The node size indicates the connection 
strength. The larger the node, the greater the degree of connectivity (B) the plot of degrees for all nodes in the network. The X axis 
represents the degrees of the nodes, and the Y axis represents the total number of nodes that correspond to the values on the X axis;The 
X axis represents the degree of the nodes, and the Y axis represents the total number of nodes that correspond to the values in the X axis  
(C) the plot of lengths for short paths in the network.
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in these stem cell-related genes may invoke harmful 
stemness that promotes cancer cell proliferation [4]. Our 
results only provide the first insights into the correlation 
between EMT-implicated gene dosage and somatic CNVs. 
Additional systematic examinations of the expression of 
quantitative trait loci may provide more details concerning 
the relationship between CNVs and gene expression.

In this study, we used a large sample size across 
multiple cancer types to explore the patterns of CNV 
for EMT-implicated genes. The cohort size of each 
specific cancer type is still relatively small, on the level 
of hundreds of individuals. Thus, many low-frequency 
CNV events may not be detected for specific cancer types. 
A pan-cancer approach with a larger sample size may 

Figure 5: The correlation of CNVs and gene expression in the TCGA ovarian cancer cohort. (A) The oncoprint for the four 
genes with the most frequent CNGs in the TCGA ovarian cancer cohort. The red cells represent a CNG in a tumour sample; the blue cells 
represent a CNL in the corresponding tumour sample. (B–E) The box plots for the four genes with the most frequent CNGs in the TCGA 
ovarian cancer cohort: (B) MYC, (C) NDRG1, (D) SCRIB, and (E) EIF5A2. These CNV levels are derived from the copy-number analysis 
algorithm GISTIC. For each gene, a deep loss is a copy-number level of “–2” with a possible ehomozygous deletion; a shallow loss is a 
copy-number level of “–1” with a possible heterozygous deletion; the normal gene copy number is noted as “diploid”; “gain” indicates a 
low level of CNG; and “amplification” indicates a high level of CNG.
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overcome this limitation and identify many novel genes 
that are mutated at high frequencies across cancer types. 
These highly recurrent CNVs may reveal overlooked 
driver genes for EMT.

One of the limitations of this study is the technology 
used for CNV detection in TCGA. TCGA primarily detects 
CNVs by using comparative genomic hybridization 
(CGH) arrays between matched tumor and normal 
samples, but this technique may miss signals outside pre-
designed probes. Many of these undetected CNVs may 
also contribute to tumorigenesis. The other limitation of 
this study is that we only incorporated protein-coding 
gene expression and did not include non-coding gene 
expression. The further integration of large-scale CNV 
data and gene expression data for long non-coding RNAs 
may provide new insights into the roles of non-coding 
EMT-implicated genes [26].

According to the most recent CNV map of the 
human genome, an estimated 4.8–9.5% of the genome 
is subject to copy number change [27]. Despite the 
overwhelming occurrence of CNVs in the disease and 
health genome, it is still a challenge to estimate the extent 
to which CNVs contribute to disease-related phenotypic 
changes. Many genes may be completely deleted without 
any apparent phenotypic consequences [27]. The term 
“gene dosage” refers to the exact number of copies of a 
particular gene in a genome [8]. However, it is widely 
acknowledged that the amount of gene product produced 
in a cell depends more on transcriptional regulation 
than on copy number. Our study on ovarian cancer may 
imply that the gene dosage is related to the amount 
of gene product that the cell is able to express. Such 
changes in gene dosage may have significant phenotypic 
consequences during EMT. 

Although the majority of CNVs may not be 
directly linked to tumorigenesis, they may activate gene 
expression, according to our results. These gene expression 
changes may promote cancer progression through broader 
gene-gene interactions. For example, CNVs in genes 
encoding tumor suppressors and oncogenic transcription 
factors/microRNAs may have more profound effects on 
their target genes than on these genes themselves.

In conclusion, our systematic survey of the 
relationship between CNVs and gene expression in EMT 
further supports the evidence that gene dosage correlates 
with gene expression. We found concordance between CNG 
and gene up-regulation for numerous EMT-related genes in 
hundreds of tumor samples from different cancer types.

MATERIALS AND METHODS

The curated EMT-implicated genes from the 
dbEMT

To systematically study EMT-implicated genes, we 
performed an extensive literature search followed and then 

manually assembled the data. We focused our literature 
search on CNV studies, gene expression-based functional 
studies, genome-wide association studies and relevant 
non-coding RNA analyses using the following expression 
against the PubMed database: (“Epithelial-mesenchymal 
transition”[Title/Abstract] OR “Epithelial mesenchymal 
transition”[Title/Abstract] OR “EMT”[Title/Abstract]) 
AND ((“genome-wide association study” [Title/Abstract] 
OR “genome wide association study” [Title/Abstract]) 
OR (“gene”[Title/Abstract] AND (“association”[Title/
Abstract] OR “microarray” [Title/Abstract] OR 
“expression” [Title/Abstract] OR “linkage” [Title/
Abstract] OR “proteomics” [Title/Abstract] OR “genetic” 
[Title/Abstract] OR “metabolomics” [Title/Abstract] OR 
“copy number variation” [Title/Abstract] OR “idiopathic” 
[Title/Abstract] OR “hereditable” [Title/Abstract] OR 
“family” [Title/Abstract] OR “mouse model” [Title/
Abstract] OR “animal model” [Title/Abstract] OR 
“microRNA” [Title/Abstract] OR “mutation” [Title/
Abstract] OR “SNP” [Title/Abstract] OR “drug” [Title/
Abstract] OR “transporter” [Title/Abstract]))). This 
search returned 1507 abstracts on 19 December 2013. We 
manually curated the experimentally verified candidate 
genes. This information and the related annotations were 
stored in the dbEMT database and published for public 
use. In this study, we downloaded all 377 curated human 
EMT-implicated genes from the dbEMT database in plain 
text with all the official symbols (http://dbEMT.bioinfo-
minzhao.org/download.cgi) [10].

To align the EMT-implicated genes with reported 
CNVs, we first annotated all the genes with precise 
genomic locations. To this end, we downloaded the RefSeq 
database from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/
DATA/gene2refseq.gz). Then, we implemented a Perl script 
to extract all the genomic coordinates of the 377 EMT-
implicated genes from the completed genomic sequences. 
To provide the most up-to-date information, we used 
genome version GRCH 38 for accurate genomic locations.

Classification of copy number gain and loss in 
TCGA pan-cancer CNV data

TCGA CNV data were downloaded from COSMIC 
[28] (V73, https://cancer.sanger.ac.uk/cosmic/files?data=/
files/grch38/cosmic/v73/CosmicCompleteCNA.tsv.gz) so 
that the CNVs with precise gain and loss information could 
be collected. A number of criteria were used by COSMIC to 
define copy number loss and gain. For CNGs in the TCGA 
pan-cancer study, the following parameters were required: 
(average genome ploidy < = 2.7 AND total DNA segment 
copy number > = 5) OR (average genome ploidy > 2.7 
AND total DNA segment copy number > = 9). Similarly, 
the criteria for CNL were: (average genome ploidy < =2.7 
AND total DNA segment copy number = 0) OR (average 
genome ploidy > 2.7 AND total DNA segment copy 
number > = (average genome ploidy – 2.7)). In this study, 
we adopted the same COSMIC criteria and aligned all of 
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the CNV regions with EMT-implicated genes using the 
GRCH 38 coordinates. We annotated a total of 365 EMT-
implicated genes with precise overlapping CNG and CNL 
information. To cross-validate the data among different 
cancers, we counted the number of CNG and CNL samples 
regardless of cancer type. To explore the oncogenic role of 
EMT-implicated genes, we collected those EMT-implicated 
genes with more CNGs than CNLs. A threshold was set to 
collect those genes for which the number of tumor samples 
with CNGs was at least twice the number of samples 
with CNLs. Ultimately, 212 EMT-implicated genes with 
more CNGs than CNLs were collected for the subsequent 
integrative gene expression analysis.

Matching of gene expression changes and CNVs 
for tumor samples

To investigate CNV-driven gene expression changes 
for EMT-implicated genes, we downloaded TCGA pan-
cancer gene expression data from the COSMIC database 
(Version 73). Here, we focused only on those gene 
expression changes in TCGA samples with matched 
EMT-related CNGs. For gene expression quantification, 
the RSEM quantification results from the RNAseq 
V2 platform in COSMIC were used. The averages 
and standard deviations of the expression values were 
calculated based on tumor samples that were diploid for 
each corresponding gene.

The standard Z-score was used to characterize 
whether an EMT-implicated gene was over- or under-
expressed, similar to its implementation in the COSMIC 
database [28]. Here, Z-score is a standardized variables 
based on a transformation of the P-value calculated using 
the formula as below:

where x is the gene expression of a gene in the 
individual sample; µ is the averaged expression score 
of a gene across multiple TCGA samples; and σ is the 
standard deviation of the expression scores of the gene in 
different individual samples. The threshold of a Z-score 
≥ 2 was used to identify EMT-implicated genes of interest 
among the samples. A Z-score greater than 2 was defined 
as over-expression, which corresponds to a P-value less 
than 0.01.

For the 71 EMT-implicated genes with concordance 
between CNG and up-regulation, we further systematically 
examined the pan-cancer somatic CNV patterns in the 
TCGA samples using the cBio portal [29]. In addition, 
we focused on samples with both expression changes and 
CNVs in the ovarian cancer cohort from TCGA to verify 
whether the CNGs in EMT-implicated genes correlated 
with increased gene expression.

Sub-network extraction for EMT-implicated 
genes with concordance between CNGs and  
up-regulation

To reveal the global gene-gene interaction among 
genes with frequent CNGs and consistent gene up-
regulation, we extracted a sub-network from the human 
interactome. First, we collected a non-redundant human 
interactome from the PathwayCommons database 
[17,  30] with 3, 629 proteins and 36, 034 protein-protein 
interactions. We only used interactions from well-curated 
pathway databases (HumanCyc, Reactome, and the 
KEGG pathway [31]). Thus, the interactome consisted 
of links with biological meaning rather than physical 
interactions. From these pathway-based interactions, we 
extracted a sub-network using an approach similar to 
the one we implemented in previous studies [18, 30]. In 
this sub-network extraction strategy, all 71 of the EMT-
implicated genes were mapped onto the human pathway-
based interactome as seeds. A greedy module search was 
used to identify the sub-network with as many seed genes 
as possible. Finally, the sub-network with the most EMT-
implicated genes and the shortest connecting paths was 
formed. We further characterized the basic topological 
properties and overall function of the sub-network using 
the NetworkAnalyzer plug-in in Cytoscape 2.8 (Figure 4B–
4C) [32]. The degree is defined as the total number of links 
for each node in the network [33]. The network layout was 
based on Cytoscape 2.8 [32] (Figure 4A).
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