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ABSTRACT
Cancer progression is in part determined by interactions between cancer cells 

and stromal cells in the tumor microenvironment (TME). The identification of cytotoxic 
tumor-infiltrating lymphocytes has instigated research into immune stimulating 
cancer therapies. Although a promising direction, immunosuppressive mechanisms 
exerted at the TME hamper its success. Myeloid-derived suppressor cells (MDSCs) 
have come to the forefront as stromal cells that orchestrate the immunosuppressive 
TME. Consequently, this heterogeneous cell population has been the object of 
investigation. Studies revealed that the transcription factor signal transducer and 
activator of transcription 3 (STAT3) largely dictates the recruitment, activation and 
function of MDSCs in the TME. Therefore, this review will focus on the role of this key 
transcription factor during the MDSC’s life cycle and on the therapeutic opportunities 
it offers.

INTRODUCTION TO SIGNAL 
TRANSDUCER AND ACTIVATOR OF 
TRANSCRIPTION 3

The signal transducer and activator of transcription 
(STAT) family is comprised of 7 members that are 
encoded by distinct genes. Because STAT3 is evolutionary 
the most conserved, it’s considered to be a very important 
member of the STAT family [1]. Similar to its other 
family members, STAT3 is present in non-stimulated cells 
in an inactive cytoplasmic form. Activation of STAT3 
can be triggered through a multitude of factors among 
which interleukin-6 (IL-6) like cytokines [2], colony 
stimulating factors (CSF) and leptin [3], interferon (IFN) 
as well as IL-2 family members, and growth factors like 
epidermal growth factor [4]. Depending on the trigger, 
STAT3 activation occurs through phosphorylation on 
tyrosine 705 or serine 727. Phosphorylation on tyrosine 
705 can be regulated by different tyrosine kinases and 
by members of the Janus-activated kinases (JAK) [5], 
whereas phosphorylation of serine 727 can be regulated 
by protein kinase C, mitogen-activated protein kinases and 

cyclin-dependent kinase 5 [6]. Phosphorylation of STAT3 
results in its dimerization, which enables STAT3 to act as 
a transcriptional activator of various target genes. Also 
acetylation of lysine 685 has been described as a mode of 
STAT3 activation [7] and a way to enhance the stability of 
STAT3 dimers [6].

All transcriptional activity requires tight control, 
which in the case of STAT3 is performed by various 
negative regulators such as protein inhibitor of activated 
STAT proteins [8], suppressors of cytokine signaling 
(SOCS) proteins [9] and protein tyrosine phosphatases 
[10], [11]. These families of STAT3 regulating proteins 
interfere with STAT3 binding to DNA, hamper tyrosine 
kinases and remove phosphates from activated STAT3, 
respectively. In addition, STAT3 levels can be regulated 
through ubiquitination-dependent proteosomal 
degradation [12]. A large body of evidence has shown that 
STAT3 is constitutively activated in many mouse tumor 
models [13-16], and more importantly in human cancers 
including breast, liver, lung, pancreas, prostate, skin, 
hematological and brain cancers [17-25]. This is explained 
by the fact that many of the triggers that activate STAT3 
are abundantly present in the tumor microenvironment 
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(TME). Moreover, a number of genes induced by STAT3 
provide a positive feedback and as such keep the STAT3 
pathway continuously activated. Importantly, STAT3 
activation occurs in both cancer cells and the many 
immune cells that infiltrate tumors, among which myeloid-
derived suppressor cells (MDSCs) [6], [13], [24-30]. It has 
been described that STAT3 is one of the factors that allows 
crosstalk between the different cell types that are part 
of the TME. Therefore, STAT3 represents an attractive 
target for modulation. Although activated STAT3 is not 

only expressed in MDSCs, we will limit the remainder 
of this review to the role of STAT3 in these myeloid 
cells (Figure 1), as in contrast to other tumor-infiltrating 
immune cells like dendritic cells (DCs), macrophages and 
T cells, MDSCs are abundantly present in most mouse 
tumor models and human cancers [26], [31]. Moreover, 
it’s becoming increasingly clear that various cancer 
therapies, such as cancer vaccination, are more effective 
when MDSCs are depleted [32-38].

Figure 1: Role of STAT3 in accumulation, differentiation and functional regulation of MDSCs in cancer. Cytokines like 
M-, G- and GM-CSF stimulate myeloid cell development from hematopoietic stem cells (HSCs). Increased production of these cytokines 
during tumorogenesis interferes with normal myeloid development resulting in the generation of immature myeloid cells. In presence of 
factors like IL-6, L-1β and TNF−α, these differentiate into MDSCs. Furthermore, cancer cells secrete factors like PGE2 and CXCL12 that 
help in the recruitment of MDSCs to the TME. Finally, the activation of STAT3 pathway results in the expression of several factors like 
ARG-1, IDO, TGF-β, ROS etc. These are involved in mediating the tumor promoting function of MDSCs. The arrows "→" indicate "results 
in; the arrows "← →" indicate interconnectivity and the arrows "→" indicate a suppressive effect. Abbreviations: ARG-1: arginase-1; 
CXCL12: chemokine C-X-C motif ligand 12; G-CSF: granulocyte-colony stimulating factor; GM-CSF: granulocyte macrophage-CSF; 
HSC: hematopoietic stem cell; IDO: indoleamine 2,3 deoxygenase; IL: interleukin; iMC: immature myeloid cell; M-CSF: macrophage-
CSF; MDSC: myeloid-derived suppressor cell; PC: progenitor cell; PGE2: prostaglandin E2; ROS: reactive oxygen species; STAT3: signal 
transducer and activator of transcription 3; TGF-β: transforming growth factor-β; TME: tumor microenvironment; TNF-α: tumor necrosis 
factor-α.
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INTRODUCTION ON MYELOID-
DERIVED SUPPRESSOR CELLS

Although MDSCs were described in 1970 as natural 
suppressor cells [39], it took until 2007 for the term 
MDSCs to get established. Generally the name MDSCs 
is used to categorize a heterogeneous mix of immature 
myeloid cells, which can be found in various pathological 
conditions, including cancer [40]. In healthy individuals, 
immature myeloid cells, which differentiate into mature 
macrophages, DCs and granulocytes, are constantly 
generated in the bone marrow. In cancer bearing subjects, 
the differentiation of immature myeloid cells is disturbed 
through the presence of tumor-derived factors that favor 
immature myeloid cell accumulation and differentiation 
to MDSCs both at the tumor site and secondary lymphoid 
organs [41]. Recruitment of MDSCs to the TME is 
mediated by chemokines such as chemokine C-C motif 
ligand 2 (CCL2), chemokine C-X-C motif ligand 5 
(CXCL5) and CXCL12 [42], [43], as well as other factors 
such as IL-6, IL-1β, granulocyte-CSF (G-CSF) and 
vascular endothelial growth factor (VEGF) [44].

In mice, MDSCs are defined as CD11b and 
Gr-1 expressing cells [45]. Antibodies recognizing the 
granulocyte-specific marker Gr-1 target an epitope that is 
shared among the antigens Ly6C and Ly6G, two markers 
that have been used to divide MDSCs in monocytic 
(MO, Ly6ChighLy6Glow) and polymorphonuclear (PMN, 
Ly6ChighLy6Ghigh) cells [46]. Corresponding populations 
have been described in cancer patients. In general, human 
MDSCs are characterized by the expression of CD33, 
CD11b and the absence of significant levels of lineage 
markers and HLA-DR [47]. Human MO-MDSCs are 
further characterized as CD14+ but CD15− cells, while 
PMN-MDSCs are defined as CD14− CD15+ [26]. Several 
other surface markers have been put forward to distinguish 
MDSC subsets based on their function, among others 
CD40, CD49 (VLA4), CD80 (B7.1), CD115 (M-CSFR), 
CD124 (IL4Rα) and CCR2 [27], [48-53]. Although 
these markers are undoubtedly expressed on MDSCs, 
it’s generally accepted that they do not define specific 
MDSC subsets [54]. Moreover, the expression of some 
markers like CD80 can vary considerably depending on 
the cancer type and MDSC location [55]. Because of this 
phenotypic heterogeneity, it has frequently been suggested 
that the suppressive activity of MDSCs is the ultimate 
defining characteristic [56]. The latter is, in part, dictated 
by the activation of STAT3 in MDSCs. An unambiguous 
link between STAT3 and MDSCs is further evidenced 
by the fact that factors needed to phosporylate STAT3 
are also associated with the activation and expansion of 
MDSCs. These include VEGF, granulocyte macrophage-
CSF (GM-CSF), IL-6, basic fibroblast growth factor 
(bFGF), et cetera. Moreover, factors produced during and 
following activation of STAT3 are in turn essential for the 
accumulation and differentiation of MDSCs.

MYELOID-DERIVED SUPPRESSOR 
CELLS: A LIMITATION TO CANCER 
IMMUNOTHERAPY

Cancer immunotherapy is based on the evidence that 
the immune system can discriminate between cancer cells 
and healthy cells, since the former express tumor antigens 
[57]. Based on this premise, cancer immunologists believe 
that it’s possible to stimulate tumor-specific cytotoxic T 
lymphocytes (CTLs) to reject and eliminate cancer cells. 
Several strategies have been explored of which therapeutic 
cancer vaccination [58-63], adoptive T-cell transfer [64], 
[65] and more recently blockade of inhibitory receptors 
such as programmed cell death-1 (PD-1) and cytotoxic 
T lymphocyte-associated antigen-4 (CTLA-4) [66-72] 
have shown promising results. Consequently, cancer 
immunotherapy has become a fourth treatment strategy 
within the clinician’s toolbox. Despite long-term tumor 
control in subsets of patients, it is frequently observed 
that in most cases where tumor-specific CTLs can be 
detected, they are unable to cause tumor regression. This 
finding hints that in these patients, mechanisms other 
than inhibitory immune checkpoint triggering override 
the function of tumor-specific T cells. Cancer cells have 
adapted several immune-avoiding mechanisms, for 
example the loss of tumor antigens or MHC I expression 
[73], and the recruitment of suppressive immune cells [74]. 
It has become increasingly clear that immunotherapy also 
has to interfere with the function of suppressive immune 
cells at the TME. Defining which suppressive immune cell 
types should be targeted and how, is a challenging task. In 
this regard, MDSCs have come to the forefront as a target 
population, because they are prevalent in most cancer 
types, both murine and human, and because they exploit a 
plethora of mechanisms to directly or indirectly abrogate 
anti-tumor immunity [75]. However, the heterogeneity of 
MDSCs and the diversity of inhibitory mechanisms they 
employ have faced us with the challenge of finding a “one 
fits all” strategy to deplete and/or functionally modulate 
them. Fortunately, the cell’s behavior is in large dictated 
by transcriptional programs. In the case of MDSCs, it 
has been suggested that the transcription factor STAT3 
is a main regulator [75]. This is further highlighted by 
the observation that STAT3 expressed by MDSCs is 
implicated in their accumulation, differentiation and 
functionality (Figure 1). 

SIGNAL TRANSDUCER AND 
ACTIVATOR OF TRANSCRIPTION 3 
PLAYS A ROLE IN THE ACCUMULATION 
AND DIFFERENTIATION OF MYELOID-
DERIVED SUPPRESSOR CELLS

Cancer-derived factors that drive the generation of 
MDSCs in the bone marrow include G-CSF and GM-CSF, 
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various interleukins like IL-6 and IL-1β, prostaglandin E2 
(PGE2), tumor necrosis factor-α and VEGF [42]. Many of 
these activate the STAT3 pathway, so it’s no surprise that 
STAT3 signaling has been implicated in the stimulation of 
myeloid cell differentiation into MDSCs. STAT3 interacts 
with CCAAT-enhancer-binding protein β (C/EBPβ). This 
transcription factor has a key role in myeloid development, 
as C/EBPβ-deficient bone marrow cells lose the ability to 
differentiate into functional MDSCs [76].

Furthermore, a correlation between C/EBPβ and 
accumulation of CD11b+ Gr-1+ cells in response to 
G-CSF was reported [77], [78]. This observation and the 
finding that STAT3 deficiency makes myeloid progenitors 
refractory to growth stimulation by G-CSF [79], suggests 
that STAT3 and C/EBPβ are inextricably linked in MDSC 
generation. This is further supported by the observation 
that STAT3 prolongs the binding of C/EBPβ on the myc 
promoter [76]. Besides myc, other cell survival and cell 
cycle regulating proteins like Bcl-xL, survivin, Mcl-1 
and cyclin D1 are upregulated by STAT3 [6], [31], [80]. 
STAT3 was further linked to proteins like S100A [81] and 
protein kinase C βII [82], which inhibit DC differentiation 
from myeloid progenitor cells and thereby promote MDSC 
accumulation. 

The studies described above clearly point towards a 
role for STAT3 in MDSC expansion and differentiation. In 
addition, there are multiple other possible mechanisms in 
which STAT3 can influence MDSCs. MicroRNAs (miRs) 
have been proven to be crucial in the regulation of myeloid 
cell maturation, activation, proliferation and differentiation 
[83], [84]. MiR155 is generally thought to be immune 
stimulatory by controlling lymphocyte differentiation and 
function [85], [86], but has recently been shown to promote 
the expansion of functional MDSCs [87]. In addition, 
miR155 has been found, together with miR21, to be the 
most upregulated miR during the induction of MDSCs 
from bone marrow. Genetic ablation of miR155 renders 
mice resistant to chemical-induced tumors suggesting 
that it also exerts its functions in immunosuppression and 
tumor promotion. When miR155 is absent, the suppressive 
functions of MDSCs are impaired through SOCS1 and an 
increase in SH2 (Src homology 2)-containing inositol 
phosphatase-1 (SHIP-1) [88]. In accordance, the study by 
Li et al showed a synergistic effect of miR155 on MDSCs 
induction via targeting of SHIP-1, phosphatase and tensin 
homolog, subsequently leading to STAT3 activation [87]. 
Moreover, miR155 can regulate inflammatory cytokine 
production through targeting of C/EBPβ in macrophages 
and MDSCs. It has been shown that the expression of C/
EBPβ is inversely correlated with the amount of miR155 
[89-91]. Furthermore, depletion of C/EBPβ can potentiate 
the transforming growth factor-β (TGF-β) response and 
contributes to cancer progression due to TGF-β induced 
endothelial-to-mesenchymal transition (EMT) [92].

The link between STAT3 activation and miR155 
has been reported earlier in the context of experimental 

autoimmune uveitis [93] and laryngeal squamous 
carcinoma [94]. Moreover, it appears that these different 
mechanisms are interconnected. A novel axis between, 
S100A4, miR155, SOCS1 and matrix metalloproteinase 
(MMP) was unveiled in hepatocellular carcinoma. S100A4 
upregulates miR155, which suppresses SOCS1, activates 
STAT3 signaling and in turn enhances MMP9, promoting 
tumor invasiveness [95]. Furthermore, the increase in 
miR155 correlates with upregulation of oncogenes, such 
as cyclin D1 and c-myc [96]. Interfering with any aspect 
of this axis could present a useful therapeutic approach for 
controlling proliferation and metastasis.

Activation and expansion of MDSCs can also be 
mediated by the release of tumor-derived soluble factors 
but recent reports have shown a role for microvesicles, 
namely exosomes, in MDSC biology [97], [98]. Exosomes 
are endosome-derived organelles with sizes of 50 to 150 
nm, which are actively secreted through an exocytosis 
pathway to serve as mediators of intracellular crosstalk 
[99]. They can contain different cargo including miRs, 
proteins and lipids, which are then delivered to the 
receptor cell. Their story can be deemed identical to 
the miR story: exosomes were initially described to be 
immune stimulatory but recent research contradicts this 
statement, showing a role of exosomes in both inducing 
MDSCs [100], and inhibiting T-cell function or DC 
differentiation [101]. However, discrepancies in this field 
still exist, as the exact effects of exosomes on MDSCs 
are not fully elucidated yet. Chalmin et al describe that 
heat shock protein 72 (HSP72) expressing exosomes 
derived from different solid tumor cell lines, account for 
MDSC activation through triggering of STAT3 in a Toll-
like receptor 2 (TLR2)/myeloid differentiation protein 88 
(MyD88)-dependent manner through an autocrine IL-6 
production, whereas tumor-derived soluble factors are 
responsible for MDSC expansion [102]. In the model 
by Xiang et al exosomes derived from the supernatants 
of cultured tumor cells (C-exo) induced both MDSC 
activation and expansion. It was suggested that this 
discrepancy could be attributed to the presence of PGE2 
in the C-exo, while no PGE2 was detected in the exosomes 
used by Chalmin et al [100], [102]. 

Moreover, we found in a multiple myeloma mouse 
model that exosomes derived from bone marrow stromal 
cells or multiple myeloma cells themselves could activate 
both the STAT1 and STAT3 pathway leading to expansion 
and increased suppressive activity of the MDSCs [103]. 
This activation was independent of GM-CSF or HSP72 
(unpublished data). Of note, there is a lot of controversy 
about the different techniques used to isolate exosomes 
[104]. While ultracentrifugation was long time the norm, 
it is nowadays acknowledged that contaminating lipids 
and proteins remain. These could be at the basis of 
contradictory data. Therefore studies concerning exosomal 
effects should be regarded with caution. 
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Table 1: Effect of (in)direct targeting of STAT3 on myeloid-derived suppressor cells.

Agent Mechanism of 
action Study setting Tumor model Study finding Ref

AZD1480 JAK2/STAT3 
inhibitor Preclinical (in vivo) Melanoma model

Decreased levels of 
MDSCs, but higher 
suppressive activity 
on a per cell basis

30

Curcumin derivatives JAK2/STAT3 
inhibitor

Preclinical (in vivo)

Patient study (blood 
samples)

Gastric-colon 
carcinoma
Lung cancer

Inhibits 
accumulation 
and induces 
differentiation of 
MDSCs
Decreased numbers 
of MDSCs, while 
increasing mature 
myeloid cells in 
peripheral blood

156-
157

Icariin flavone and its 
derivatives

Inhibit STAT3 
signaling and 
expression of 
S100A8 and S100A9

Preclinical (in vivo) Breast carcinoma Downregulates 
MDSC numbers 159

Sunitinib Receptor tyrosine 
kinase inhibitor

Preclinical (in vivo)

Preclinical (in vivo)
Patient study (blood 
samples)

Renal-breast-
colon carcinoma
Breast carcinoma
Metastatic renal 
carcinoma

Eliminates MDSCs. 
Still debate about 
the location of 
depletion. Improves 
TH1 function and 
lowers Treg

160-
163

Avastin Anti-VEGF antibody Xenografts Renal cell 
carcinoma

Reduces the number 
of circulating 
myeloid cells

166

Bevacizumab Anti-VEGF antibody Patient study (blood 
samples)

Renal cell 
carcinoma

No effects on 
MDSCs in 
peripheral blood

167

Monoclonal antibodies 
(specific for IL-6)

Anti IL-6 receptor 
antibody

Preclinical (in vivo) Skin squamous 
cell carcinoma

Downregulates 
accumulation of 
MO-MDSCs

168

Bardoxolone methyl 
(CDDO-Me)

Inhibits JAK1 
activity

Preclinical (in vivo)

Patient study (blood 
samples) 

Colon-lung 
carcinoma
Lymphoma 
model
Renal -soft tissue 
carcinoma

Abrogated immune 
suppressive activity 
of MDSCs

33, 
171

Docetaxel Inhibition of pSTAT3 Preclinical (in vivo) Breast carcinoma
Decreased MDSC 
numbers in the 
spleen

172

CpG-siSTAT3 TLR9-targeted 
STAT3 silencing

Preclinical (in vivo)
Patient study (blood 
samples-tumor 
specimens)

Melanoma model
Leukemia
Prostate 
carcinoma

Abrogates 
immunosuppressive 
activity of MDSCs 
Induces potent 
innate anti-tumor 
responses

178-
180

Conditional STAT3 gene 
disruption

Cre/LoxP system 
under
LysM promoter

Preclinical (in vivo) Medulloblastoma 

A significant 
reduction in the 
abundance of PMN-
MDSCs and Tregs 
was observed within 
tumors
No effect on tumor 
incidence in mice

25
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SIGNAL TRANSDUCER AND 
ACTIVATOR OF TRANSCRIPTION 3 AND 
ITS ROLE IN THE TUMOR PROMOTING 
ACTIVITY OF MYELOID-DERIVED 
SUPPRESSOR CELLS

Several mechanisms are employed by MDSCs to 
promote tumor growth, including suppression of anti-
tumor immune responses, stimulation of angiogenesis as 
well as tumor cell metastasis. These activities have been 
linked to activation of STAT3 in the MDSCs. 

1) Inhibition of anti-tumor immune responses

Immune suppression is the most important 
biological characteristic of MDSCs. To that end, MDSCs 
deplete nutrients required by T cells for their clonal 
expansion, generate oxidative stress leading to reactive 
oxygen species (ROS) production, activate and expand 
regulatory T cells (Tregs), and finally inhibit T-cell 
trafficking [31]. Several mechanisms that are at the basis 
of these MDSC activities have been linked to activation 
of STAT3. 

Expression of arginase-1 (ARG-1) is under the 
control of STAT3 and results in consumption of L-arginine 
and L-cysteine from the TME [26], [105-109]. Depletion 
of these amino acids results in downregulation of the 
CD3ζ-chain in the TCR complex and growth arrest of 
antigen-activated T cells [110], [111]. Moreover, Serafini 
et al linked the expression of ARG-1 to expansion of 
Tregs by MDSCs in a B-cell lymphoma model [112]. In 
this particular model TGF-β produced by the MDSCs had 
no effect on Tregs. Nonetheless, TGF-β has been linked 
to T-cell suppression [113], Treg expansion [25], [114] 
and initiation of EMT [92]. Importantly, a link between 
TGF-β and STAT3 was proposed based on the presence 
of two STAT3 binding sites in the TGF-β promoter [115]. 
Moreover, it was shown that TGF-β production was 
reduced after myeloid-specific STAT3 knock down [25]. 
This reduction in TGF-β was correlated to a reduction in 
Treg numbers. Another enzyme that is under the control 
of STAT3 and that depletes an essential T-cell nutrient 
is indoleamine 2,3 deoxygenase (IDO) [116]. STAT3-
induced upregulation of IDO can be mediated by three 
molecular mechanisms, including binding of STAT3 
to the promotor region of the IDO gene [117], and an 
indirect regulation of IDO expression via activation of 
C/EBPβ [118], [119] or non-canonical activation of NF-
κB [120], [121]. Importantly, in human breast-cancer 
derived MDSCs non-canonical activation of NF-κB in an 
IL-6/STAT3-dependent fashion has been proposed as the 
predominant mechanism [122]. IDO depletes tryptophan 
thereby generating the toxic metabolite kynurenine. 
The mode of action of IDO is similar to that of ARG-1, 
suppression of TCR-mediated effector T-cell activation, 

growth arrest, induction of effector T-cell apoptosis and 
expansion of Tregs [123], [124]. 

Besides amino acid deprivation, STAT3 
phosphorylation in MDSCs has also been linked to the 
activation of two subunits of NADPH oxidase (NOX2), 
namely P47phox and gp91phox, leading to an increased 
generation of intracellular ROS, another mechanism that 
dampens anti-tumor immunity [6], [28], [125]. It was 
postulated that S100A8/A9 heterodimers assist in the 
formation of the NADPH oxidase complex [79]. Moreover, 
ARG-1 can also contribute to ROS production [126], 
[127]. Importantly, ROS play a role in the suppression 
of antigen-specific T cells [128-130] and has been shown 
to induce T-cell apoptosis [131], much in the same way 
as ARG-1. The leading hypothesis states that ARG-1 is 
mostly expressed by PMN-MDSCs due to activation of 
STAT3, while MO-MDSCs mostly express inducible nitric 
oxide synthase (iNOS) through the activation of STAT1 
and STAT6 [132], [132]. Recently, evidence contradicting 
this view has emerged. It was shown both in vitro and 
in vivo that inhibitors of iNOS suppressed VEGF release, 
induced STAT3 activation and ROS production [133]. 
Additionally, in human cells both the promotor of ARG-
1 and iNOS have STAT3-binding elements, suggesting 
that STAT3 is not exclusively linked to ARG-1[105]. 
Moreover, activation of NF-κB as a result of STAT3 
phosphorylation has been implicated in the regulation 
of iNOS expression [134]. As this study was performed 
on macrophages, more in depth research is needed to 
elucidate the molecular mechanisms that regulate the 
STAT3/iNOS pathway in MDSCs. Nonetheless, the studies 
described above demonstrate a central role for STAT3 in 
the active quenching of anti-tumor immunity by MDSCs.

2) Promotion of tumor cell dissemination

Immune suppression is not the only way in which 
MDSCs support tumor growth. They also promote tumor 
progression by enhancing blood vessel development, 
tumor cell invasion and metastasis. Angiogenesis has 
been linked to enhanced production of VEGF and bFGF 
by MDSCs. These angiogenic factors are under the control 
of STAT3 [135]. Moreover, STAT3 driven proteases like 
MMP9 and TGF-β have also been linked to angiogenesis 
[43]. In this regard MMP9 was shown to enhance the 
bioavailability of VEGF and as such support vascular 
stability [136]. In addition to the role in vasculogenesis, 
MMP also play a role in promoting tumor cell metastasis. 
Furthermore, MDSCs expressing active STAT3 have 
been implicated in the formation of pre-metastatic niches 
[137], [138]. These cells condition organs by creating an 
immunosuppressive environment that allows growth of 
metastatic tumor cells [139-141]. Herein, STAT3 regulated 
factors like bFGF, interleukins, MMP9 and S100A proteins 
play a role [139], [142]. 
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3) Bidirectional link between tumor cell 
dissemination and immunity

It was recently shown in a mouse model that CD8+ 
T cells could counteract the formation of pre-metastatic 
niches by MDSCs by inducing MDSC apoptosis. 
However, activation of STAT3 compromises the ability 
of T cells to kill MDSCs [137], [138]. This was linked 
to lower granzyme B expression by CD8+ T cells and 
resistance of MDSCs to T-cell killing. Importantly, these 
mouse data are supported by data obtained in melanoma 
patients. Zhang et al showed a positive correlation 
between STAT3 activation and myeloid cell accumulation, 
increased IL-10, IL-6 and VEGF, while they observed an 
inverse correlation between STAT3 activation and CD8+ T 
cell numbers as well as the expression of granzyme B by T 
cells in melanoma draining lymph nodes [143]. 

The studies described above underline the role 
of STAT3 as a master regulator of the MDSC’s tumor 
promoting activity.

SIGNAL TRANSDUCER AND 
ACTIVATOR OF TRANSCRIPTION 3 AND 
ITS ROLE IN RADIATION RESPONSE

STAT3 also plays a pivotal role in resistance to 
radiotherapy. Radiotherapy, which is currently used 
in cancer patients as a standard treatment, next to 
chemotherapy and surgery, still has certain hurdles 
to overcome, among which toxicity and (acquired) 
radiotherapy resistance. A considerable part of primary 
tumors are (partly) resistant to radiotherapy. A major 
goal in the field of radiobiology is to re-sensitize these 
tumors to radiation therapy. The first evidence on a role for 
STAT3 in radiotherapy resistance originated from a study 
by Otero et al in 2006 where radiation-induced apoptosis 
resistant peritoneal B-1 B cell subsets were used. B-1 cells 
possessed constitutively active STAT3. The radioresistance 
of B-1 cells could be conferred to radiosensitive B-2 cells 
by crosslinking in the presence of IL-6. Moreover, the 
B-1 cells became susceptible to irradiation by knocking 
out STAT3 [144]. Similarities exist for human cells as 
it was shown that downregulation of STAT3 enhanced 
the radiotherapy sensitivity of laryngeal squamous 
cell carcinoma xenografts. Furthermore, a positive 
correlation between the expression of STAT3 and Bcl-2 
was uncovered [145]. This was further confirmed when it 
was shown that radiation itself induces phosphorylation 
of JAK2/STAT3 and increases the levels of Bcl-2 and Bcl-
XL [146]. STAT3 affects various biochemical processes; 
therefore it’s very likely that it serves as a modulator of 
radioresponses in more than one way. We will discuss the 
interaction of STAT3 and hypoxia-inducible factor (HIF) 
as the hypoxic environment of the tumor is considered 
to be the main cause of clinical radiotherapy resistance 

[143]. In renal cell carcinoma, it has been shown that 
hypoxia activates STAT3, which consequently binds 
to the HIF-1α promotor and contributes to the stability 
and synthesis of the HIF-1α protein [147]. Inhibitors of 
STAT3 efficiently radiosensitized esophageal-, head and 
neck squamous cell carcinoma and prostate cancer cells 
and inhibited both hypoxia/radiation-induced activation of 
STAT3 and upregulation of HIF-1α and VEGF expression 
[148-150]. Further in vitro and in vivo data using a large 
spectrum of human tumors also convincingly show that 
JAK/STAT signaling is important in mediating resistance 
to radiation therapy. This is reviewed elsewhere [151]. 
Despite this compelling evidence, only the effect of 
STAT3 in the tumor cells is studied, while immune cells 
have been largely disregarded. However, there is evidence 
that downregulation of STAT3 in cancer cells impacts 
on the number of MO-MDSCs, while influencing the 
activity of PMN-MDSCs [1]. Moreover, it’s increasingly 
clear that immune cells play an important role in the 
radiation response, as reviewed elsewhere [152]. The 
role of MDSCs in radiation response has not been fully 
elucidated, but evidence has emerged that the response of 
myeloid cells to radiation is model- and dose- dependent 
and can be both pro- and anti-tumoral [153]. This raises 
the question whether the STAT3 status of both tumor 
and immune cells is important in the general radiation 
response?

TARGETING SIGNAL TRANSDUCER 
AND ACTIVATOR OF TRANSCRIPTION 
3 AS A STRATEGY TO MANIPULATE 
MYELOID-DERIVED SUPPRESSOR 
CELLS

As mentioned, MDSCs have come to the forefront 
as a target in cancer (immune)therapy because of several 
reasons. Firstly, MDSCs are abundantly present in most 
cancer patients, irrespective of the cancer type [26]. 
Secondly, the presence of MDSCs correlates with cancer 
stage and metastatic disease [154]. Thirdly, MDSCs 
accelerate tumor progression by inhibiting anti-tumor 
immune responses, stimulating angiogenesis, tumor cell 
invasion and metastasis [26], [31].

Throughout this review, we showed that STAT3 
is implicated in the accumulation, differentiation and 
function of MDSCs. Consequently, several research 
teams have evaluated STAT3 targeting drugs as a means 
to interfere with these processes and as such put a brake 
on tumor progression [35], [75]. A gene therapy approach 
has been investigated in a transgenic mouse model 
that spontaneously develops medulloblastoma tumors. 
Herein the myeloid cell LysM promotor was driving the 
expression of Cre recombinase to conditionally delete 
STAT3 using the Cre/LoxP system. STAT3 removal 
resulted in a reduction of PMN-MDSCs in the tumor 
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and an increased effector T cell/Treg ratio. However, no 
changes in tumor incidence were reported [25]. 

Next to the genetic approach a list of drugs has 
been investigated to avoid phosphorylation of STAT3. 
This list includes curcumin derivatives and other JAK2/
STAT3 inhibitors including AZD1480 [30], [155-158], 
Icariin flavone and its derivative 3,5,7-trihydroxy-4’-
emthoxy-8-(3-hydroxy-3-methylbutyl)-flavone [159], 
tyrosine kinase inhibitors such as sunitinib [160-163], 
VEGF inhibiting molecules such as VEGF-trap (a VEGF 
receptor fused to the Fc part of human IgG1) [164], [165] 
and anti-VEGF antibodies (bevacizumab) [166], [167], 
monoclonal antibodies specific for IL-6 [168], molecules 
like bardoxolone methyl (CDDO-Me) [33], [169-171] and 
chemotherapeutics such as docetaxel [155-158] (Table 1).

Curcumin and its derivatives are naturally occurring 
phenols that are used for their anti-oxidant and anti-
inflammatory activities. Furthermore, these have been used 
to selectively inhibit the JAK2/STAT3 pathway [155-158]. 
Administration of Cucurbitacin B (CuB) to lung cancer 
patients was shown to decrease the numbers of bona fide 
MDSCs (Lin- HLA-DR- CD33+), while it increased the 
numbers of mature Lin- HLA-DR+ CD33+ myeloid cells in 
peripheral blood. Moreover, it was shown in vitro that CuB 
induced DC differentiation and increased the sensitivity of 
tumor cells to antigen (p53)-specific T cells [156]. Also 
other JAK2/STAT3 inhibitors have been tested, including 
AZD1480 [30], which resulted in low levels of MDSCs in 
tumor bearing AZD1480 treated mice. However, AZD1480 
treatment did not abrogate the ability of the remaining 
MDSCs to suppress T cells. Moreover, when evaluated on 
a per cell basis, it was shown that the suppressive activity 
of the MDSCs was higher after treatment with AZD1480. 
Similar to JAK2/STAT3 inhibitors, flavanoids like Icariin 
and its derivative were reported to downregulate MDSC 
numbers [159]. These natural compounds were shown to 
inhibit STAT3 signaling and expression of S100A8 and 
S100A9, resulting in differentiation of immature myeloid 
cells to mature cells. Sunitinib is a small-molecule 
multikinase inhibitor that targets among others the VEGF 
receptor, platelet-derived growth factor receptor and c-kit, 
and as such hampers the phosphorylation of STAT3. Ko 
et al [160], showed that sunitinib efficiently eliminates 
peripheral MDSCs, whereas it did not reduce MDSCs 
in tumors. This was linked to high levels of GM-CSF in 
the tumor and STAT5 signaling in MDSCs. Nonetheless, 
other studies show that MDSC depletion by sunitinib is 
irrespective of the location [162]. Importantly, treatment 
of metastatic renal cell cancer patients with sunitinib 
reduced the level of MDSCs in peripheral blood by half 
and was associated with improved TH1 function (reduced 
IL-4 and higher IFN-γ) and lower Treg numbers [161], 
[163]. Although sunitinib, which affects downstream 
VEGF receptor signaling and as such STAT3 activation, 
was shown to modulate MDSC levels, other strategies 
that impact on VEGF receptor signaling, such as VEGF-

trap [164], [165] and anti-VEGF antibodies demonstrated 
no effect on MDSC levels in peripheral blood of cancer 
patients [167]. This is an unexpected finding, since 
the link between VEGF and MDSC accumulation 
is longstanding and as it was shown that anti-VEGF 
antibodies successfully reduce MDSC numbers in mice 
[166]. Besides antibodies to capture VEGF and as such 
inhibit STAT3 activation upon VEGF receptor interaction, 
researchers have developed monoclonal antagonistic 
antibodies specific for the IL-6 receptor, as it’s triggering 
is directly linked to STAT3 activation and MDSCs. These 
anti-IL-6 receptor antibodies neutralize the effects of 
tumor-derived IL-6 and suppress expansion of cancer-
associated MDSCs [168]. Another molecule that was 
shown to inhibit STAT3 activation in MDSCs, at least 
when used at high concentrations (1-5 µM), is CDDO-Me. 
Treatment with this synthetic triterpentoid (a methyl ester 
of 2-cyano-3,12-dioxooleana-1,9 (11)-dien-28-oic acid) 
resulted in reduced production of ROS, improved T-cell 
function and more importantly reduced tumor growth [33], 
[169-171]. Finally, the chemotherapeutic agent, docetaxel 
was evaluated for its direct effect on MDSCs. Low-dose 
treatment polarized MDSCs toward an M1-like phenotype, 
as deduced from the expression of CCR7, MHC II, 
CD11c and CD68, and reduced the number of MDSCs in 
the spleen. Administration of docetaxel also resulted in 
increased CTL responses and reduced tumor growth. These 
effects were partially attributed to inhibition of STAT3 
activation [172]. The studies above show the potential of 
targeting STAT3 in MDSCs as an anti-cancer strategy. At 
the same time these studies demonstrate that although the 
aforementioned drugs act on STAT3 activation their mode 
of action can differ from MDSC depletion over maturation 
to functional modulation. Moreover, treatment of cancer 
bearing subjects with only these drugs was shown to 
be insufficient to provide a cure. As MDSCs represent 
a confounding factor for anti-tumor immunity and as it 
was found that MDSC depletion improves the outcome of 
cancer vaccines [32-34], [34-38], it’s not surprising that 
drugs such as CDDMO-Me [33] and sunitinib [37], [38], 
[173] have been evaluated in combination with cancer 
vaccination. In these studies the combination therapy 
showed improved curative potential when compared to 
either component alone. However instead of combining 
therapies, it would be more elegant if one drug could lead 
to activation of tumor-specific CTLs, while modulating 
MDSCs. Importantly, various studies have demonstrated 
that MDSCs can be reverted into stimulatory APCs 
under the influence of cytokines such as IL-12 [174], 
[175] or TLR ligands like CpG oligonucleotides [176], 
[177]. The latter has offered an opportunity to design a 
drug consisting of CpG oligonucleotides conjugated to 
STAT3 specific small interfering RNA (referred to as 
CpG-siSTAT3 conjugates) [178-180]. It has been shown 
in mouse cancer models and using STAT3+ PMN-MDSCs 
of prostate cancer patients that CpG-siSTAT3 conjugates 
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mediate selective delivery of silencing siSTAT3 to TLR9+ 
myeloid cells, resulting in disruption of the STAT3 
supported suppressive signaling network and stimulation 
of anti-tumor immunity. These findings indicate that this 
gene- and cell type-specific inhibitory oligonucleotides 
represent a novel therapeutic approach to mitigate 
immunosuppression in cancer patients. 

IN VITRO GENERATED MYELOID-
DERIVED SUPPRESSOR CELLS: A 
PLATFORM FOR DRUG SCREENING

The ample evidence on the importance of STAT3 
in MDSCs has instigated research into existing and novel 
STAT3 targeting drugs and their effect on MDSC viability 
and functionality (Table 1). These studies mostly use 
mouse MDSCs, as our knowledge of the murine system is 
way ahead of their human counterparts. However, studying 
murine MDSCs poses the technical challenge of obtaining 
sufficient numbers of cells at high purity from a limited 
number of tumors. Therefore, MDSCs from the spleen 
are often used as an alternative. However, spleen MDSCs 
are phenotypically and functionally different from tumor 
MDSCs [55], [181]. Consequently, to ensure reliability 
and potency of novel drugs, they should be evaluated 
on tumor rather than spleen MDSCs. To circumvent this 
conundrum, researchers have evaluated various in vitro 
culture systems to obtain MDSCs. These range from the 
use of cell lines to the differentiation of bone marrow cells 
[77], [80], [100], [101], [181-194]. In particular, ex vivo 
differentiation of bone marrow cells using conditioned 
media from GM-CSF secreting tumor cells has proven 
to be a successful approach [80], [175], [181], [184]. A 
proof-of-concept on the value of this strategy to obtain 
large amounts of MDSCs that resemble those found 
within various cancer types, including multiple myeloma, 
melanoma and colorectal cancer was delivered [80], [175], 
[181]. Since 50 to 60 million MDSCs are obtained from 
a single mouse without the necessity of inducing cancer, 
this system allows systematic and high throughput in 
vitro testing of anti-neoplastic treatments. Furthermore, 
these in vitro MDSCs offer the possibility to study the 
role of individual factors, including STAT3 on MDSC 
development [80]. 

Efficient in vitro systems should also be developed 
to generate human MDSCs, as this will surely facilitate 
research into MDSCs and more specifically STAT3-
targeting drugs. Major advances have been made towards 
this goal. Human MDSCs have been differentiated from 
bone marrow cells or peripheral blood mononuclear cells 
using recombinant cytokine cocktails [77], [188], [189], 
or tumor-conditioned media [80], [101]. However, most 
human MDSC differentiation systems are still poorly 
efficient, most likely because they do not make use of fully 
pluripotent hematopoietic precursors [195]. Moreover, the 
endeavor of generating human MDSCs in vitro is further 

hampered by the lack of an in depth understanding on the 
nature of human MDSCs in vivo. Nonetheless, the study 
by Chen et al [190] in which GM-CSF and IL-6 were 
used to differentiate human MDSC from peripheral blood 
mononuclear cells, shows the applicability of these cells, 
as they possess hallmark immunosuppressive pathways, 
including STAT3 signaling. 

CONCLUSION 

Accumulation of MDSCs in cancer patients has been 
linked to cancer stage and overall survival in patients with 
a variety of different cancer types. Therefore a strategy 
that targets MDSCs could be used in combination with 
other immune stimulatory therapies. However, due to the 
heterogeneity of MDSCs, both in phenotype and function, 
it’s a challenge to pinpoint the most effective MDSC 
target. A large body of evidence links STAT3 activation 
to MDSC accumulation, differentiation and function, 
both direct and indirect. Because of the numerous 
physiological processes and signal transduction pathways 
that are affected by STAT3, it’s likely that this can account 
for therapy resistance. We believe that specific STAT3 
targeting in MDSCs offers great opportunities. This view 
has only gained in strength as increasing numbers of drugs 
that counteract JAK/STAT signaling have been tested in 
clinical trials and even have been approved by the FDA. In 
future multimodal treatment, specific targeting of STAT3 
in MDSCs can be the way forward. This is underscored by 
the data provided by the CpG-siSTAT3 conjugate studies, 
which show that targeted delivery of STAT3 inhibiting 
molecules is a successful approach [177-180]. Such 
an approach could encompass the use of myeloid cell-
targeted lentiviral vectors [196], [197] or nanoparticles 
[198], which could than deliver silencing RNA for STAT3 
[13], [178-180] or genes encoding negative regulators of 
STAT3 [8-11]. Evaluating such strategies will be greatly 
facilitated by the use of in vitro mouse and/or human 
MDSCs. Extensive in vivo testing of STAT3 targeting 
drugs will also be required in order to determine their 
safety. In fact, STAT3 expressed in MDSCs is involved 
in homeostasis, for instance in the gut. Consequently, 
systemic downregulation of STAT3 in MDSCs withholds 
the risk of inducing immune-related adverse events such 
as colitis. Various studies show that myeloid cell-specific 
STAT3 deficiency results in enhanced inflammation and 
chronic colitis as a consequence of a decrease in PMN-
MDSCs and linked herewith a decrease in suppressive 
cytokines (e.g. IL-10), an increase in pro-inflammatory 
cytokines (e.g. IFN-γ) and iNOS. These studies caution 
against systemic, long-term STAT3 depletion and highlight 
the necessity to develop targeted strategies [199-201].
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