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ABSTRACT
Changes in the DNA methylation (DNAm) landscape have been implicated in aging 

and cellular senescence. To unravel the role of specific DNAm patterns in late-life 
survival, we performed genome-wide methylation profiling in nonagenarians (n=111) 
and determined the performance of the methylomic predictors and conventional risk 
markers in a longitudinal setting. The survival model containing only the methylomic 
markers was superior in terms of predictive accuracy compared with the model 
containing only the conventional predictors or the model containing conventional 
predictors combined with the methylomic markers. At the 2.55-year follow-up, 
we identified 19 mortality-associated (false-discovery rate <0.5) CpG sites that 
mapped to genes functionally clustering around the nuclear factor kappa B (NF-κB) 
complex. Interestingly, none of the mortality-associated CpG sites overlapped with 
the established aging-associated DNAm sites. Our results are in line with previous 
findings on the role of NF-κB in controlling animal life spans and demonstrate the role 
of this complex in human longevity.

INTRODUCTION

The influential role of genomic factors, such as 
DNA methylation (DNAm) in the course of development, 
aging and age-related pathologies is well established. 
Several studies have also reproducibly demonstrated that 
the level of methylation at specific CpG sites changes 
as a function of age [1-5], hence providing a marker 
of chronological and, potentially, biological age. An 
intriguing characteristic of age-related DNAm signatures 
is that many of the age-associated DNAm changes have 
been observed to be common in several different tissues, 
such as whole blood, brain, lung and cervix [1, 3, 6]. 
These observations suggest that a global mechanism(s) 
might be responsible for age-associated modifications 
in the epigenetic landscape. Nevertheless, studies with 
monozygotic twins have demonstrated that the rate of 

divergence in methylomic patterns increases with age [7, 
8], suggesting that the age-related modifications in DNAm 
are also subject to various environmental, stochastic and 
life style-related effects. 

However, the consequences of the aging-
accompanied DNAm alterations for late-life health 
and functional abilities are largely unknown. A recent 
epigenome-wide association study (EWAS) demonstrated 
that the association between age-related DNAm changes 
and healthy aging phenotypes in individuals 32-80 years 
of age is negligible [8]. The results of this study also 
reveal that the DNAm regions associated with aging 
phenotypes are distinct from those associated with 
chronological age. These findings suggest that the CpG 
sites involved in health-related outcomes in later life are 
largely regulated by sites other than the established age-
related DNAm regions [8]. In addition, using an EWAS 
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approach, we have recently demonstrated that the CpG 
sites that are associated with aging-related inflammation, 
i.e., inflammaging [9] are largely different from the 
sites associated with age [5]. This phenomenon is also 
observable in regard to gene expression profiles and old 
age mortality. We have previously demonstrated that the 
genes exhibiting aging-related changes in expression 
levels are predominantly different from those that predict 
mortality in late life [10]. These findings underscore the 
complexity and unknown nature of the genomic factors 
that control the human health span and late-life events. 

Nevertheless, the mortality-predicting genes in our 
previous study were found to be functionally connected 
to the nuclear factor kappa B (NF-κB) complex, which 
is a central mediator in immunoinflammatory responses 
and has been advocated as the culprit in aging and cellular 
senescence (reviewed in [11]). Aberrant activation of NF-
κB has been reported in various age-associated conditions, 
such as neurodegeneration, immunosenescence, 
inflammaging, sarcopenia and osteoporosis (reviewed in 
[12-14]), whereas studies involving mouse models have 
observed that NF-κB activation is a key determinant of 
accelerated aging and longevity [15, 16]. In the mouse 
models, it was demonstrated that the hypothalamic 
activation of NF-κB is a driving force of systemic aging 
through immune-endocrine connections [16]. 

Life span regulation in humans is a multifactorial 
process, and very little is known about the genomic 
determinants that control late-life mortality after the 
ages of the common killers, i.e., cardiovascular events 
and cancer, have passed. In this study, we sought to 
explore how the human genome-wide methylome is 
associated with old-age survival within a shorter (2.55 
years) and a longer (4 years) follow-up time. A large 
panel of traditional (bio)markers and mortality risk 
factors was assessed alongside the methylomic markers 
to elucidate the relationship between the aging-related 
biophysiological changes and epigenetics. 

RESULTS

The characteristics of the study population and 
distribution of the variables in the population with 
methylation data available (n = 111) are presented in Table 
1. The variables (i.e., the conventional markers) exhibiting 
significant (p < 0.05) univariate and multivariate 
associations at the 2.55 follow-up are presented in 
Supplementary Table 1. The predictors remaining in the 
multivariate model, body mass index (BMI) and Mini-
Mental State Examination (MMSE) test score, were used 
as the model factors in the assessment of the predictive 
accuracy of modeling (see Methods). The measure of 
“epigenetic clock” [17], the DNA methylation age was not 
predictive of mortality in our cohort (p = 0.733). 

In the Cox univariate assessment, 19,621 and 15,505 

CpG sites were associated with mortality (p < 0.05) in 
the 2.55-year and 4-year follow-up data, respectively 
(Supplementary Tables 2 and 3). After B-H correction 
(FDR < 0.5), 19 CpG sites remained significant for the 
2.55-year follow-up and 7 CpG sites for the 4-year follow-
up data (Supplementary Tables 2 and 3). The Ingenuity 
Pathway Analysis (IPA) -generated network from the 16 
known genes harboring the 19 significant CpG sites at 
the 2.55-year follow-up is presented in Figure 1a. This 
network displayed NF-κB as a central node and involved 
10 of 16 of the genes mapped to the 19 mortality-
associated CpG sites (FDR < 0.5). We also ran the IPA 
network and pathway analyses from the genes harboring 
the 250 top-ranking CpG sites according to the 2.55-
year follow-up data (sites presented in Supplementary 
Table 2). The highest-ranking network in this analysis 
also placed NF-κB as a central complex (Figure 1b). The 
significant B-H-corrected canonical pathways from this 
data set are presented in Table 2. At the 4-year follow-up, 
the functional implications of the methylomic predictors 
were attenuated as no significant B-H -corrected canonical 
pathways were identified in IPA from the genes harboring 
the 250 highest-ranking CpG sites and no significant 
network enrichment was observed among the genes 
harboring the 7 CpG sites (FDR < 0.5). 

Assessment of the predictive accuracy of the tested 
models revealed that the Ridge regression containing 
only the methylomic markers (Ridge1) performed 
better than the other models; i.e., a model containing 
only the conventional predictors, a Ridge regression 
model containing both the conventional predictors 
(Ridge2) and the methylomic markers and a model 
containing only the methylomic markers selected on 
the basis of their significance level in Cox univariate 
assessment. Specifically, the methylomic markers alone 
exhibited the smallest median deviance from the null 
model (Supplementary Figure 1), and were thus used in 
assessing the final mortality-predicting signature in the 
Cox multivariate model for 2.55-year follow-up data. The 
deviances of the conventional markers exhibited clearly 
the smallest variation but their median was nevertheless 
higher than that of the methylomic markers in Ridge1.

The Ridge regression-organized 19 methylomic 
markers entered to the Cox multivariate model are 
presented in Supplementary Table 4. Inclusion of the 
methylomic markers in the final model was based on 
selection of the model with the best goodness of fit 
(Akaike Information criterion, AIC), which for the 
selected model was 239.0. The final Cox multivariate 
model is presented in Table 3 and the distributions of 
the beta values for the seven CpG sites (batch effect 
-corrected) included this mortality-predicting signature 
are presented in Supplementary Figure 2. 

The discriminative power (Harrell’s C) for this 
model was 89.9%. The proportionality assumption in the 
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Table 1: Characteristics of the study population (n = 111). Distributions of the variables are presented according to the data 
at the 2.55-years mortality follow-up.

Non-survivors Survivors
Variable Mean/Med SEM/IQR/% Mean/Med SEM/IQR/%
Women (n/%) 27 75.0 54 72.0
Age (months) 1079.5 0.61 1080.2 0.37
Systolic blood pressure (mmHg) 145 4.6 149 3.4
Diastolic blood pressure (mmHg)* 71.5 13.5 74.0 19.0
Weight (kg) 61.9 2.2 70.6 1.6
BMI (kg/m2) 24.3 0.75 27.5 0.54
Waist circumference (cm) 89.6 2.1 95.5 1.4
Hip circumference (cm)* 98 10.0 102 12.0
MMSE* 23.5 8.0 26.0 4.0
Barthel index* 95.0 20.0 95 5.0
Handgrip (kg)* 18.0 11.0 20.0 7.0
Able to perform chair-rise test (n = yes/%) 19 57.6 59 78.7
Able to perform chair-stand test (n = yes/%) 22 71.0 62 82.7
Frailty index (n/%)
  Non-frail 3 8.3 26 34.7
  Pre-frail 22 61.1 37 49.3
  Frail 11 30.6 12 16.0
CRP level (ng/ml)* 1.8 3.3 1.9 3.5
IL-1β level (pg/ml)* 14.2 27.6 19.0 34.0
IL-6 level (pg/ml)* 4.5 3.3 3.8 3.8
IL-7 level (pg/ml)* 7.8 5.3 6.4 5.2
IL-10 level (pg/ml)* 1.8 1.5 1.5 2.6
cf-DNA level (μg/ml)* 0.93 0.19 0.87 0.16
Unmethylated cf-DNA level (μg/ml)* 0.75 0.20 0.67 0.15
Plasma mtDNA (copy number)* 4.30E8 2.37E8 3.75E8 2.09E8

Alu repeat cf-DNA (GE)* 74.4 50.4 66.8 38.3
DHEAS (μg/ml)* 0.25 0.48 0.25 0.31
Cortisol (ng/ml)* 133 54.3 117 68.0
IDO activity (Kyn/Trp)* 44.3 25.5 51.8 25.3
Anti-CMV antibody titer* 19.000 8.000 19.000 9000
Anti-EBV antibody titer* 405 315 410 410
DNAm age 76.1 1.04 76.1 0.64
CD3+ cells (%)*a 62.0 15.8 57.9 12.0
CD4+ cells (%)b 62.9 2.5 63.8 1.6
CD8+ cells (%)b 30.6 2.3 28.9 1.5
CD4+/CD8+ cells (ratio)* 2.4 2.3 2.3 2.4
CD4+CD28- cells (%)* 9.2 16.2 9.2 13.0
CD8+CD28- cells (%) 63.3 2.8 63.3 2.1
CD14+ cells (%)*a 8.3 5.9 8.1 6.3

*median values and IQR presented
apercentage of live-gated cells; bpercentage of total T lymphocytes (CD3+ cells);
cpercentage of CD4+ cells; dpercentage of CD8+ cells
Abbreviations: BMI, body mass index; CD, cluster of differentiation; CMV, cytomegalovirus; CRP, C-reactive protein; cf-DNA, cell-free DNA; DHEAS, 
dehydroepiandrosterone sulfate; DNAm, DNA methylation; EBV, Epstein-Barr virus; GE, genomic equivalent; IDO, indoleamine 2,3-dioxygenase; IL, 
interleukin; Kyn, kynurenine; MMSE, Mini-Mental State Examination; mtDNA, mitochondrial DNA; Trp, tryptophan
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Figure 1: The highest-ranking networks from the 16 known genes harboring the top 19 significant (FDR < 0.5) CpG 
sites a. and from the genes harboring the top 250 CpG sites b. in the 2.55-year follow-up (n = 111). Both networks displayed NF-κB 
as a central node and were enriched for the common term Hematological System Development and Function. The green color of the 
molecule indicates that hypomethylation of a CpG site in the gene was associated with increased mortality, and the red color indicates 
that hypermethylation of a CpG site in the gene was associated with increased mortality. The networks were generated through the use of 
QIAGEN’s Ingenuity Pathway Analysis (IPA®,QIAGEN Redwood City, www.qiagen.com/ingenuity).
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Table 2: Canonical pathways constructed from the genes harboring the top 250 CpG sites associated with mortality 
at the 2.55-year follow-up. 
Ingenuity Canonical Pathways -log(p)* Ratio Molecules

Chronic Myeloid Leukemia Signaling 1.91 7.61E-02 TGFBR2, GAB2, HDAC4, SMAD3, PIK3R2, 
NFKB1, ATM

Germ Cell-Sertoli Cell Junction Signaling 1.58 5.13E-02 TGFBR2, MAP3K14, MAP3K10, ACTA2, 
KEAP1, ITGA2, PIK3R2, ATM

Role of NFAT in Cardiac Hypertrophy 1.58 4.55E-02 IL6ST, TGFBR2, HDAC4, ITPR3, IGF1R, 
SLC8A3, PIK3R2, ATM

Cell Cycle: G1/S Checkpoint Regulation 1.58 7,94E-02 CCND2, HDAC4, CCND3, SMAD3, ATM

Regulation of the Epithelial-Mesenchymal 
Transition Pathway 1.58 4.40E-02 MAML1, TGFBR2, FZD3, SMAD3, PIK3R2, 

NFKB1, SMURF1, ATM

iCOS-iCOSL Signaling in T Helper Cells 1.58 5.83E-02 GAB2, CD28, ITPR3, PIK3R2, NFKB1, ATM

Rac Signaling 1.58 5,83E-02 CYFIP2, ITGA2, PIK3R2, NFKB1, ATM, ANK1

NF-κB Activation by Viruses 1.58 6.85E-02 MAP3K14, ITGA2, PIK3R2, NFKB1, ATM

Hepatic Fibrosis/Hepatic Stellate Cell 
Activation 1.58 4.08E-02 TGFBR2, TNFSF4, ACTA2, MYH14, SMAD3, 

IGF1R, NFKB1, FAS

GADD45 Signaling 1.58 1.58E-01 CCND2, CCND3, ATM

PKCθ Signaling in T Lymphocytes 1.57 5.31E-02 MAP3K14, MAP3K10, CD28, PIK3R2, NFKB1, 
ATM

Molecular Mechanisms of Cancer 1.57 3.06E-02 TGFBR2, GAB2, CCND2, CCND3, FZD3, 
SMAD3, ITGA2, PIK3R2, NFKB1, FAS, ATM

CNTF Signaling 1.46 8.16E-02 IL6ST, CNTF, PIK3R2, ATM

B Cell Receptor Signaling 1.44 4.09E-02 GAB2, MAP3K14, MAP3K10, PAG1, PIK3R2, 
NFKB1, ATM

RANK Signaling in Osteoclasts 1.44 5.81E-02 MAP3K14, MAP3K10, PIK3R2, NFKB1, ATM

Virus Entry via Endocytic Pathways 1.44 5.62E-02 ITSN1, ACTA2, ITGA2, PIK3R2, ATM

Crosstalk between Dendritic Cells and 
Natural Killer Cells 1.44 5.62E-02 CD28, ACTA2, KLRD1, NFKB1, FAS

Lymphotoxin β Receptor Signaling 1.44 7.41E-02 MAP3K14, PIK3R2, NFKB1, ATM

Death Receptor Signaling 1.44 5.49E-02 MAP3K14, ACTA2, PARP12, NFKB1, FAS

Colorectal Cancer Metastasis Signaling 1.43 3.46E-02 IL6ST, TGFBR2, FZD3, SMAD3, PIK3R2, 
NFKB1, PTGER4, ATM

Myc Mediated Apoptosis Signaling 1.40 6.90E-02 IGF1R, PIK3R2, FAS, ATM
T Cell Receptor Signaling 1.40 5,21E-02 CD28, PAG1, PIK3R2, NFKB1, ATM

Estrogen-Dependent Breast Cancer Signaling 1.30 6.45E-02 IGF1R, PIK3R2, NFKB1, ATM

CD40 Signaling 1.30 6.25E-02 MAP3K14, PIK3R2, NFKB1, ATM



Oncotarget19233www.impactjournals.com/oncotarget

Cox Regression model was tested using the global test by 
calculating the scaled Schoenfeld residuals for each of the 
independent predictors in the final Cox model. Statistically 
significant dependence of mortality on time was not 
observed (p = 0.280) indicating that the proportionality 
assumption was not violated.

Due to the small number of mortality-associated 
CpG sites in the methylomic data at the 4-year follow-
up, no comparison of the prediction accuracies of the 
different modeling options or assessment of the final 
mortality-predicting signature was performed for the 
4-year mortality data. 

Correlation analysis between the methylation 
levels in the mortality-associated CpG sites and the 
corresponding gene product(s) revealed a significant 
correlation between three CpG site/transcript pairs. Inverse 
correlations were observed between the cg03348466 
(CRTC3) and CRTC3 mRNA level and between 
cg04182483 (RGS10) and the RGS10 mRNA level. A 
direct correlation was observed between cg22794214 
(HIVEP3) and HIVEP3 mRNA level. All the correlations 
are presented in Supplementary Table 5.

Analysis of the genomic locations of the top 19 
CpG sites (FDR < 0.5, in Supplementary Table 2) for 
transcription factor (TF) binding sites and other genomic 
regulatory elements revealed that a majority of the sites 
were located on active cis-regulatory regions; they either 
harbored TF binding sites, DNAse I hypersensitivity 
regions, and/or were identified as “Predicted promoter 
region including transcription start site (TSS)”, “Predicted 

enhancer (E)” or “Predicted weak enhancer or open 
chromatin (WE)”. In addition, six CpG sites demonstrated 
functional significance as they were annotated for 
“Predicted transcribed region (T)”. The most abundant 
TFs were POLR2A and RELA which both had binding 
sites on four CpG site loci. Full data of this assessment are 
presented in Table 4. 

DISCUSSION

We have previously demonstrated, using genome-
wide gene expression data, that the NF-κB complex is 
centrally involved in controlling human old-age mortality 
[10]. In the present study, we expanded the examination 
of the genomic factors regulating late-life survival 
by analyzing the predictive ability of genome-wide 
methylomic data at the 2.55-year follow-up. The results 
of this study corroborate the role of NF-κB in all-cause 
elderly mortality; the molecular network constructed 
from the genes harboring the mortality-associated CpG 
sites displayed the NF-κB complex as a central mediator 
(Figure 1). The genes nuclear factor of kappa light 
polypeptide gene enhancer in B-cells 1 (NFKB1) and 
ataxia telangiectasia mutated (ATM) were also identified 
in the network. Intriguingly, both NFKB1 and ATM have 
previously been linked with accelerated aging and cellular 
senescence in studies with genetically engineered mice 
[15, 18, 19]. These studies advocated that NFKB1 and 
ATM-regulated aberrant NF-κB activation and the ensuing 
chronic systemic inflammatory state are the ultimate 

HGF Signaling 1.30 4.81E-02 MAP3K14, MAP3K10, ITGA2, PIK3R2, ATM

Pancreatic Adenocarcinoma Signaling 1.30 4.72E-02 TGFBR2, SMAD3, PIK3R2, NFKB1, ATM

NGF Signaling 1.30 4.72E-02 MAP3K14, MAP3K10, PIK3R2, NFKB1, ATM

T Helper Cell Differentiation 1.30 5.97E-02 IL6ST, TGFBR2, CD28, IL21R
IL-9 Signaling 1.30 8.82E-02 PIK3R2, NFKB1, ATM

*Benjamini-Hochberg-corrected p-value

Table 3: The final mortality-predicting signature at the 2.55-year follow-up assessed from the Ridge 
regression -organized methylomic markers. 

HR (95% CI) S.E. Z p
cg08421934 (NA) 0.41 (0.26-0.64) 0.10 -3.84 <0.001
cg15770702 (MAP3K14) 0.40 (0.27-0.61) 0.08 -4.38 <0.001
cg08596308 (ATP6V1G2; NFKBIL1) 0.50 (0.34-0.73) 0.10 -3.60 <0.001
cg23282964 (RIOK1) 0.56 (0.37-0.84) 0.12 -2.82 0.005
cg16720947 (PLEC1) 0.52 (0.34-0.80) 0.13 -2.94 0.003
cg27027151 (IL21R) 2.09 (1.44-3.02) 0.39 3.90 <0.001
cg26843567 (NA) 0.68 (0.46-0.99) 0.13 -2.01 0.045

Abbreviations: CI, confidence interval; HR, hazard ratio; NA, not available; S.E., standard error
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drivers of senescence and aging-associated deterioration 
[15, 18]. Although our data do not provide a mechanistic 
link between the hypomethylation of these CpG sites and 
the risk of mortality, we speculate that the mechanism 
involves an inflammatory component by which the 
genomic factors control late-life mortality. 

Analysis of the 19 mortality-associated CpG sites 
(FDR < 0.5) for genomic regulatory elements revealed that 
a majority of the sites were located on active cis-regulatory 
regions (Table 4). That is, they harbored TF binding 
sites, located on DNAse I hypersensitivity areas and/or 
displayed one of the following predicted genomic states: 

Table 4: Assessment of the 19 mortality associated CpG sites (FDR<0.5) in the 2.55-year follow-up (n = 111) for 
transcription factor binding sites and other functional genomic elements using ENCODE data in the UCSC genome 
browser.

CpG site (gene) GRCh37/hg19 
coordinate Transcription Factors Genome 

status
DNAse I 
Hypersensitivity 
Cluster

cg24859528 (IQSEC1) chr3:12941421 T NO
cg03348466 (CRTC3) chr15:91104770 CEBPB T YES

cg02395768 (ATP5SL) chr19:41945578

SIN3AK20, POLR2A, SP2, SP1, 
CHD2, NFYB, PBX3, MAZ, NFIC, 
GTF2F1, MTA3, TAF1, TBL1XR1, 
JUND, KDM5B, STAT5A, HDAC1, 
SAP30, FOS, YY1, PHF8, FOXM1, 
TBP, CEBPB, REST, TCF12, IRF1, 
TEAD4, ZBTB7A, GABPA, MEF2A, 
PML, RELA

TSS YES

cg15770702 
(MAP3K14) chr17:43384845

PML, STAT5A, NFATC1, CEBPB, 
BCL3, TCF12, EBF1, FOXM1, 
EP300, RELA, STAT3, NFIC, 
TBL1XR1, JUND, MEF2A, PAX5, 
BHLHE40, MEF2C, ATF2, SP1, 
BATF, RUNX3, IRF4, BCL11A

TSS/T YES

cg16720947 (PLEC1) chr8:145048137 n.a. YES
cg22794214 (HIVEP3) chr1:42123463 CTCF WE/R YES
cg08596308 
(ATP6V1G2;
NFKBIL1)

chr6:31516045
CHD1, RBBP5, ZNF274, POLR2A, 
E2F6, E2F4, KDM5B, MYC, MAX, 
MAZ

TSS YES

cg23282964 (RIOK1) chr6:7417780 T NO
cg21200667 (NA) chr2:30628085 R YES
cg08421934 (NA) chr6:33942413 R NO
cg08486432 (ITPR3) chr6:33598003 T/R YES
cg08352439 (VOPP1) chr7:55637123 POLR2A, POU2F2 TSS YES
cg25356639 (FOXP1) chr3:71349304 R NO
cg04395703 (METAP1) chr4:99982762 T YES
cg03171419 (GPR124) chr8:37700802 POLR2A T YES
cg26843567 (NA) chr12:104846281 R YES
cg00291478 (RGS10) chr10:121301041 RELA, RUNX3, RBBP5 TSS YES

cg27027151 (IL21R) chr16:27461638 POLR2A, MTA3, NFATC1, RELA, 
BCLAF1, EBF1 E/R YES

cg04182483 (RGS10) chr10:121259610 T NO

Abbreviations: TSS, Predicted promoter region including transcription start site (TSS); T, Predicted transcribed region; WE, 
Predicted weak enhancer or open chromatin cis-regulatory element; E, Predicted enhancer; R, Predicted Repressed or Low 
Activity region
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promoter region including transcription start site, enhancer 
or weak enhancer/open chromatin. It is possible that the 
association between these sites and longevity is mediated 
through altered binding of TFs or methyl-binding domain 
proteins, of which the latter recruit chromatin-modifying 
proteins to achieve a repressive chromatin state. However, 
our data do not allow us to determine whether disrupted 
regulation of chromatin permissiveness underlies the 
increased mortality risk. Interestingly, RELA, which is a 
subunit of the NF- κB complex, was identified to have 
a binding site on four of the analyzed 19 CpG sites. 
This observation further supports the hypothesis of the 
functional role of NF-κB in old-age mortality. 

Region of a predicted transcription start site 
was observed for cg02395768 (ATP5SL), cg15770702 
(MAP3K14), cg08596308 (ATP6V1G2; NFKBIL1), 
cg08352439 (VOPP1) and cg00291478 (RGS10). 
However, the methylation levels in these sites were not 
correlated with gene expression (Supplementary Table 
5). Instead, methylation levels of cg03348466 (CRTC3), 
cg22794214 (HIVEP3) and cg04182483 (RGS10) 
correlated with the corresponding transcript expression 
level. The observation that the correlations were overall 
modest is, however, in line with previous findings on 
minimal correlations between age-associated changes 
methylation and transcription [5, 20, 21]. Six sites, 
including cg03348466 (CRTC3) and cg04182483 (RGS10) 
resided in predicted transcribed area, and can hence also 
be considered functionally significant. The potential 
regulatory role of these sites (in the gene body region) 
may involve e.g. alternative splicing. However, the exact 
mechanism connecting the mortality-associated changes 
in methylation to alternative splicing requires further 
research.

The canonical pathways constructed from the 
genes harboring the top 250 mortality-associated CpG 
sites at the 2.55-year follow-up covered a wide variety 
of cellular signaling functions among which several 
inflammation and immunity-related processes were 
represented. Interestingly, pathways termed NF-κB 
Activation by Viruses, GADD45 Signaling and Cell 
Cycle: G1/S Checkpoint Regulation were also identified. 
The emergence of these pathways suggests that NF-κB 
might also be involved late-life control of cellular growth 
and survival, DNA repair and apoptosis, as these functions 
are ascribed to the induction of the NF-κB- GADD45 
cascade [22]. Interestingly, in our previous paper on the 
transcriptomic mortality predictors, we observed that an 
increased expression of GADD45B was predictive of an 
increased risk of mortality in these nonagenarians [10]. 

However, as the number of mortality-associated 
CpG sites was markedly reduced from the 2.55-years 
follow-up to the 4-years follow-up, we speculate that 
the methylomic markers might exhibit a dynamic nature 
even in the extreme ages. That is, a substantial part of 
the genomic CpG sites might be constantly remodeled, 

and during 4 years, their methylation levels are likely 
to change to an extent that their predictive ability in our 
population is reduced. The longer follow-up time also 
allows more time for stochastic mortality determinants, 
such as trauma, to operate, which may thus weaken the 
role of the genomic predictors.

Although the methylomic markers did not exhibit 
very strong statistical significances after FDR-correction 
and we used a liberal threshold for including them in 
the Ridge regression (FDR < 0.5), the methylomic 
data demonstrated good performance in terms of 
generalizability and discriminative power. Specifically, 
the methylomic data alone exhibited better predictive 
accuracy than the conventional markers alone or in 
combination with the methylomic markers, and the seven 
CpG sites in the final Cox model had a discriminative 
power of 89.9%. In this respect, the methylomic data 
also performed better than the transcriptomic mortality 
predictors in our previous study [10]. Nevertheless, we 
acknowledge that the major weaknesses of our study are 
a lack of a separate verification cohort and a rather small 
study population. Hence, the results must be considered as 
tentative and hypothesis-generating. The strength of our 
study, however, is the fact that all the study participants 
were 90 years of age at baseline. Therefore our results 
are not confounded by the effect of chronological age on 
DNAm.

A recent study by Moore et al. analyzed genome-
wide methylomic mortality predictors in individuals 
with a wide age range (30-100 years at 9-year follow-
up, mean mortality follow-up time 4.4 years) [23]. They 
identified 76 CpG sites where the rate of change in DNAm 
was associated with mortality and 88 markers where the 
year 9 level of DNAm was associated with mortality. 
Interestingly, their mortality-associated DNAm sites 
also included genes with immunoinflammatory functions 
and a link to NF-κB regulation. However, no overlap 
between individual mortality-associated CpG sites were 
found in our data sets. These differences may arise due to 
different population characteristics, such as age range and 
the causes of death. Hence, further studies are required 
to establish the potentially age and population-specific 
relationships between DNAm and mortality. 

When we examined the seven final signature 
mortality-predicting CpG sites and their corresponding 
genes (Table 3) for overlap with the genes harboring the 
most commonly aging-associated CpG sites - ELOVL2, 
FHL2 [2, 21, 24-26], KLF14 [2, 21, 25, 26], SST [2, 
25, 26], OTUD7A [2, 24, 26], PENK [2, 21, 24, 25] and 
EDARADD [2, 6, 24, 26] - we found no overlap between 
these markers. Moreover, none of our top 250 mortality-
associated methylomic sites (Supplementary Table 2) were 
among the 525 common age-associated CpG sites that 
have been observed in more than one study (summarized 
in [21]). Moore et al. [23] have also in observed a similar 
phenomenon in their population: very few ( < 0,05%) 
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of the aging-associated CpG sits were also mortality-
associated. These observations suggest that aging-
associated epigenetic drift and the epigenetic control of 
the life span in old age might operate through different 
genomic mechanisms. This hypothesis is also in line with 
our previous findings on age-associated transcripts [27], 
which displayed very little similarity with mortality-
predicting transcripts [10]. 

Despite the increasing body of data that suggests 
that several manifestations of organismal aging and 
development are of epigenetic origin, the associations 
reported thus far on DNAm and aging-phenotypes are 
scarce and/or the findings have been negative. Bell 
et al. (2012) examined the genome-wide associations 
between DNAm and 16 age-related phenotypes and 
found that two phenotypes - lung function and low-
density lipoprotein levels - exhibited an association with 
one CpG site (cg16463460 in WT1 and cg03001305 in 
STAT5A, respectively) and maternal longevity exhibited an 
association with two CpG sites (cg13870866 in TBX20 and 
cg09259772 in ARL4A) [8]. In another EWAS, Marioni 
et al. (2015) detected no individual CpG sites associated 
with physical or cognitive fitness in an elderly population 
[28]. However, they did find a cross-sectional association 
between a measure of DNAm age - the epigenetic clock 
based on the Horvath predictor [17] -, and physical and 
cognitive fitness yet the DNAm age was not predictive 
of a longitudinal chance in the fitness measures [28]. The 
DNAm age has also been recently demonstrated to predict 
all-cause mortality in four different cohorts of elderly 
individuals [29] and in Danish twins [30]. However, 
the DNAm age was not predictive of mortality in our 
study. One reason for the negative finding might be that 
individuals in our cohort were all very old at baseline 
(90 years), and death at this age likely has different 
underpinnings than at younger old ages and when assessed 
in cohorts with wider age spectra. 

In conclusion, the results of this study support 
the genomic-level role of NF-κB at the very end of the 
human life span. We hypothesize that our findings could 
relate to the recent observation of a programmatic role of 
hypothalamic NF-κB and IκB kinase-β activation in the 
control of the life span in experimental mouse models 
[16]. Adhering to the conclusion of this mouse study 
that the decisive role of hypothalamic NF-κB is exerted 
systemically level through immune-neuroendocrine 
crosstalk [16], we suggest that our findings on immune 
cells might represent the peripheral correspondence of 
hypothalamic NF-κB activation. However, establishing 
the systemic-level events that connect NF-κB function 
to all cause-mortality in aged humans will require further 
research.

MATERIALS AND METHODS

Study population

The study population consisted of nonagenarian 
subjects participating to the Vitality 90+ study, which 
is an ongoing, prospective population-based study on 
individuals aged 90 years and above and who reside in 
the city of Tampere, Finland. The Vitality 90+ study was 
initiated in 1995, and since then several nonagenarian 
cohorts have been recruited and examined for biological, 
clinical, demographic and social measures. Mortality 
rates have been analyzed longitudinally using complete 
follow-ups. The recruitment protocol and characterization 
of the subjects in the current study has been previously 
described [10]. The data in this study concern individuals 
born in 1920 and recruited in 2010 for sample collection. 
Genome-wide methylation data and the full covariate data 
including cell type proportions were available for 111 
subjects (n = 81 women and n = 30 men). The all-cause 
mortality data were collected from the Population Register 
Center. As we wanted to assess both shorter and longer-
term survival predictors for this cohort, the mortality 
data was collected in two different time points. The first 
data collection was performed on 31st of January in 2013 
corresponding to a 2.55-year median follow-up and the 
second one was on 31st of May in 2014 corresponding to 
a 4-year follow-up. The mortality rate at the 2.55-year 
follow-up was 32.4% (36/111) and 47.7% (53/111) at the 
4-year follow-up. All the participants gave their written 
informed consent. The study was conducted following the 
guidelines of the Declaration of Helsinki, and the study 
protocol was approved by the ethics committee of the city 
of Tampere.

Sample collection and processing

Venous blood samples were collected in EDTA-
containing tubes by a trained home-visiting medical 
student between 8 am and 12 am. Plasma was separated 
and stored at -70°C. Genomic DNA and total RNA were 
extracted from PBMCs in which the blood samples were 
subjected to leucocyte separation using a Ficoll-Paque 
density gradient (Ficoll-Paque™ Premium, cat. no. 17-
5442-03, GE Healthcare Bio-Sciences AB, Uppsala, 
Sweden). The PBMC layer was collected, and the cells 
allocated for RNA extraction were suspended in 150 µl of 
RNAlater solution (Ambion Inc., Austin, TX, USA). Cells 
that were allocated to FACS analysis and DNA extraction 
were suspended in 1 ml of a freezing solution (5/8 FBS, 
2/8 RPMI-160 medium, 1/8 DMSO; FBS cat. no. F7524, 
Sigma-Aldrich, MO, USA; RPMI: cat. no. R0883, Sigma-
Aldrich, MO, USA; DMSO: cat. no. 1.02931.0500, VWR, 
Espoo, Finland).
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Characterization of the subjects for their 
anthropometric measures, functional performance, plasma 
biomarkers and blood cell distributions (all parameters 
presented in Table 1) has been previously described 
(please see [10] and the references therein). In addition to 
these variables, in the current study we also determined a 
measure of the “epigenetic clock” - the DNAm age in the 
PBMCs - using the methodology presented in the study by 
Horvath et al. (2013) [17], (algorithm available at https://
dnamage.genetics.ucla.edu/). Initially, the age predictor 
was generated by Horvath with elastic net regression using 
21,369 probes that are present in HumanMethylation450 
as well as in HumanMethylation27 BeadChips. The 
predictor was trained with 8,000 samples of various tissue 
types in 82 Illumina DNA methylation array data sets. 
Based on the training results, the “epigenetic clock” i.e. 
the regression model was built with 353 CpG-sites whose 
methylation level explains most of the age variation. 

Illumina methylation array and preprocessing of 
the data

Genome-wide DNA methylation profiling was 
performed using the Infinium HumanMethylation450 
BeadChip (Illumina, San Diego, CA, USA) according to 
the manufacturer’s protocol at the Institute for Molecular 
Medicine Finland (FIMM) Technology Centre of the 
University of Helsinki. For bisulfite conversion, 1 µg 
of DNA was used (EZ-96 DNA Methylation Kit, Zymo 
Research, Irvine, CA, USA) and 4 µl of the bisulfite-
converted DNA was subjected to whole-genome 
amplification and enzymatic fragmentation. Hybridization 
was carried out according to the manufacturer’s protocol. 
Samples were run on the arrays in a randomized order and 
the chips were scanned with the iScan reader (Illumina).

The methylumiset object in the R software with the 
wateRmelon array-specific package from Bioconductor 
was used in preprocessing of the data. Probes mapping 
to sex chromosomes (n = 11,648) were also removed. 
In addition, all polymorphic sites and sites exhibiting 
unspecific probe binding (n = 76,775) were filtered out 
based on database information [31]. CpG target sites 
demonstrating technically poor quality were filtered 
out, including sites with a beadcount of < 3 in 5% of the 
samples (n = 515) and sites for which 1% of the samples 
had a detection p-value > 0.05 (n = 698). The annotation 
information for the CpG sites was retrieved using the 
GRCh37/hg19 genome assembly (released in February 
2009). The dasen method was used for background 
correction and quantile normalization individually for the 
two applied chemistries in the Illumina platform (Infinium 
I and II) and for the intensities of methylation (m) and 
un-methylation (u). Following the dasen method, the 
u and m intensities were transformed to beta (β) and M 
values, where β is the ratio of the methylated probe (m) 

intensity in relation to the overall intensities (m + u + α), 
where α is the constant offset, i.e., 100. Lastly, the batch 
effect of the different chemistries was corrected using the 
BMIQ method, which is based on beta mixture models 
and the EM algorithm [32]. The batch effect produced by 
two different run series was corrected using an Empirical 
Bayes-based algorithm implemented in the R package 
Combat. Because the proportions of the CD4+CD28-, 
CD8+CD28- and CD14+ cells and the CD4+ to CD8+ 
cell ratio were associated with the variation in methylation 
data in the principal component analysis [33], the data 
was regressed in the variable dispersion beta regression 
model from Ferrari and Cribari-Neto [34] with the 
explanatory variables of gender and the proportions of 
blood cell types after which the standardized weighted 
residuals were extracted and used in all further statistical 
analyses. The model utilizes beta density function with 
parameterizations: 
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where Γ(.) is the gamma function; y is the 

continuous response variable with a mean value of µ, 
which is assumed to follow a beta distribution inside the 
interval y  ϵ (0,1); and ϕ < 0 is the precision parameter. 
The variance of y is inherited from the binomial variance 
µ(1-µ), and it can be written as µ(1- µ)/(1+ ϕ). Beta 
regression utilizes maximum likelihood for estimating 
the parameters in the equation, and the mean value of 
y is connected to the linear equation with the canonical 
link function logit. The model is implemented in the R 
package betareg as a default setting. The methylation data 
are available in the GEO database (http://www.ncbi.nlm.
nih.gov/geo/) under the accession number GSE68194.

All the CpG sites passing the quality control and 
preprocessing criteria described above as well as the 
conventional variables presented in Table 1 were first 
analyzed for their univariate association with mortality 
after which all the significant methylomic markers (p < 
0.05) were corrected for FDR with the B-H -method (FDR 
< 0.5). The Cox regression models were performed using 
Stata software (version 13.0 for Windows, StataCorp LP, 
TX, USA), and the corrections for FDR were performed 
using R version 3.0.2. 

Ridge regression

Due to the high dimensionality and multicollinearity 
of the genome-wide data, the standard Cox regression 
method cannot be directly applied to yield parameter 
estimates. Hence, several different dimension reduction 
and feature selection procedures have been presented 
for such data. In this study, we made use of the Ridge 
regression [35] that is based on penalized partial 
likelihood, and provides a means to avoid overfitting and 
unstable predictors. It has also been shown to produce 
reproducible results in whole-genome data sets by others 

https://dnamage.genetics.ucla.edu/
https://dnamage.genetics.ucla.edu/
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[36] and us [10]. 
Ridge regression is a technique to analyze data 

when predictors are correlated with other predictors. In 
the presence of this multicollinearity, the variance of 
the regression coefficients is increased making them 
unstable. By adding a little bias (tuning parameter λ) to 
the coefficients, the Ridge regression reduces the variance 
considerably. In the Ridge regression, the regression 
coefficients are regularized by imposing penalties on their 
size. Thus, the coefficients are shrunk toward zero and 
toward each other, and the tuning parameter λ controls for 
the amount of shrinkage. There is no definitive rule for 
choosing λ, but the objective is to produce only a small 
increase in the weighted sum of square errors [37]. To 
select an optimal value of λ, a k-fold cross-validation is 
often performed. For the Cox proportional hazards model, 
Verweij and van Houwelingen [38] introduced a cross-
validated partial log-likelihood method. In k-fold cross-
validation, the data set is split in k pieces, using k - 1 of 
those used to build the model and from thereon validating 
on the kth, and via cycling through this assessment, 
validating on each of the k pieces sequentially, and then 
averaging or summing the k different deviances [39].

We estimated the optimal value of λ by maximizing 
the 10-fold cross-validated log partial likelihood. The 
optimal λ was then used to obtain parameter estimates 
for the different models, i.e., the conventional markers 
(MMSE and BMI) alone, the methylomic markers (the 19 
CpG sites with an FDR < 0.5) alone and in combination 
with the above-mentioned conventional markers, and the 
methylomic markers ordered according to their statistical 
significance (p-value) in the univariate selection. The R 
package penalized was used in this assessment.

Assessment of the predictive accuracy of modeling 
(generalizability) through cross-validation

We sought the most accurate mortality prediction 
model by assessing the differences in the deviances 
through cross-validation. The tested data sets were the 
above-mentioned three models i.e., the conventional 
markers alone, Ridge regressions containing the 
methylomic markers alone (Ridge1) and combined with 
the conventional markers (Ridge2) and the methylomic 
markers assessed through univariate selection. The 
procedure was performed following the guidelines 
presented by Bovelstad et al. (2011) [40]. In specific, the 
study population was randomly split 50 times into training 
and test sets (74 and 37 individuals, respectively). The 
difference in deviance between the fitted model and the 
null model containing no covariates is given by

,
where  and  are the Cox log partial 

likelihoods for the test data evaluated at  and o, 

respectively. A small value of  is indicative of good 

performance.

Assessment of the final mortality-predicting 
signature

The final signature predictive of mortality in the 
population with methylation data available (n = 111) was 
assessed at the 2.55-year follow-up. The variables (19 
CpG sites with an FDR-corrected p-value < 0.5) were 
collected from the model demonstrating the best accuracy 
of prediction (i.e., the Ridge regression containing only 
the methylation markers) and assessed in a stepwise Cox 
multivariate regression model. AIC was used to select the 
Cox regression model congaing the best set of predictors. 

Pathway analyses

IPA (QIAGEN Ingenuity Pathway Analysis (IPA®, 
QIAGEN Redwood City, www.qiagen.com/ingenuity) 
was used to identify canonical pathways and networks 
for the mortality-associated genes harboring the CpG 
sites (presented in Supplementary Table 2). If a CpG site 
was mapped to more than one gene, each of the genes 
were included in the network and pathway analyses. 
A description and principles of the pathway analysis 
have been previously provided in more detail [10]. B-H 
correction for FDR was used to assess the significance 
of the pathways; canonical pathways were considered 
significant at p < 0.05 (corresponding to a -log p < 1.3). 

Correlations between the methylomic markers 
and gene expression

The genome-wide gene expression analysis was 
performed using HumanHT-12 v4 Expression BeadChip 
(Cat no. BD-103-0204, Illumina Inc., CA, USA) at the 
Core Facility of the Department of Biotechnology of 
the University of Tartu. Preprocessing and analysis of 
the data were performed as previously described [10]. 
Briefly, the lumi pipeline was used; the background was 
corrected with the bgAdjust.affy package, the data were 
log2-transformed and quantile-normalized. Poor-quality 
data and background noise were filtered out as follows: 
probes exhibiting expression levels of < 5 or > 100 in 
more than 5 (3.3%) samples per transcript were excluded. 
The gene expression data are available in the GEO 
database (http://www.ncbi.nlm.nih.gov/geo/) under the 
accession number GSE65218. The correlations between 
the transcript expression levels and CpG site methylation 
level (the standardized weighted residuals) were analyzed 
using Spearman’s rho. In the analysis we included the 
top 19 mortality-associated GpC sites presented in 
Supplementary Table 2 and the corresponding transcripts 
with expression level above the selected threshold of 5 i.e., 
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ATP5SL, FOXP1, HIVEP3, IQSEC1, ITPR3, MAP3K14, 
METAP1, RGS10, RIOK1 and VOPP1. 

Analysis of the mortality-associated CpG site loci 
for gene regulatory elements

To obtain further functional information about the 
mortality-predicting CpG sites, the single-base resolution 
locations of these sites were examined for gene regulatory 
elements using the Encyclopedia of DNA Elements 
(ENCODE) Consortium data [41] in the UCSC genome 
browser (http://genome.ucsc.edu/, accessed 02/2016). 
Specifically, we searched for TF binding sites (ChIP-
seq data), genome states determined through combined 
genome segmentation data (ChromHMM and Segway 
programs) and DNAse I hypersensitivity clusters 
indicative of genomic regulatory regions. Default settings 
were used in inspecting the elements. However, we 
considered data only from cell types of blood origin; that 
is, the DNAse I hypersensitivity clusters and TFs were 
included in the results only if cells of blood origin were 
included in the cluster score, and for the analysis genomic 
states, data from GM12878 and K562 cells were accepted. 
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