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ABSTRACT
Leukocytes undergo frequent phenotypic changes and rapidly infiltrate peripheral 

and lymphoid tissues in order to carry out immune responses. The recruitment of 
circulating leukocytes into inflamed tissues depends on integrin-mediated tethering 
and rolling of these cells on the vascular endothelium, followed by transmigration 
into the tissues. This dynamic process of migration requires the coordination of large 
numbers of cytosolic and transmembrane proteins whose functional activities are 
typically regulated by post-translational modifications (PTMs). Our recent studies 
have shown that the lysine methyltransferase, Ezh2, critically regulates integrin 
signalling and governs the adhesion dynamics of leukocytes via direct methylation 
of talin, a key molecule that controls these processes by linking integrins to the 
actin cytoskeleton. In this review, we will discuss the various modes of leukocyte 
migration and examine how PTMs of cytoskeletal/adhesion associated proteins play 
fundamental roles in the dynamic regulation of leukocyte migration. Furthermore, we 
will discuss molecular details of the adhesion dynamics controlled by Ezh2-mediated 
talin methylation and the potential implications of this novel regulatory mechanism for 
leukocyte migration, immune responses, and pathogenic processes, such as allergic 
contact dermatitis and tumorigenesis.

INTRODUCTION

Leukocytes play a central role in our innate 
and adaptive immunity during both physiological and 
pathological conditions. As a prerequisite for the elicitation 
of an effective immune response, these immune cells have 
to be positioned precisely, in a timely manner, at specific 
lymphoid and non-lymphoid organs. To achieve this, the 
leukocyte cytoskeleton is highly flexible and versatile to 
support rapid and drastic reorganization in response to 
various stimuli. As such, they are able to generate rapid 
gliding movements with a migratory velocity of up to 
10 µm/min for dendritic cells [1] and 30 µm/min for 
neutrophils [2], which is almost 100-fold faster than other 
mesenchymal and epithelial cell types. This gliding motion 
endows leukocytes with extraordinary migratory capacity 
that can be described as amoeboid, a migratory pattern 
reminiscent of the amoeba, Dictyostelium discoideum [3]. 
During amoeboid movement, polarized leukocytes extend 
their plasma membrane at the leading edge in response 
to chemoattractants through the polymerization of 
filamentous actin to form a growing pseudopod. Following 

attachment of the pseudopod to the underlying substratum, 
actomyosin contraction at the cell centre transduces an 
internal force to propel the rigid cell nucleus forward. 
The trailing edge of the cell then detaches itself from 
the matrix, facilitating advancement of the cell [4]. Such 
frequent shape changes experienced by leukocytes during 
amoeboid migration enables them to squeeze through 
physically constrained regions of the extracellular matrix, 
circumventing the need for proteolytic degradation and 
therefore preserving the structural integrity of the tissue 
environment [5]. 

ADHESION-DEPENDENT AMOEBOID 
MOVEMENT OF LEUKOCYTES

In order to fulfil their immune functions, leukocytes 
have to transverse through different tissues composed of 
distinct extracellular matrices in the body. Depending 
on the topology of the tissue structures encountered, 
leukocytes can adopt either an adhesion-dependent or 
adhesion-independent form of amoeboid movement. 
When transmigrating across two-dimensional tissue 
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surfaces, such as vessel walls and basement membranes, 
leukocytes have to rely largely on integrin-mediated 
adhesion for their effective migration. In this case, the 
integrin repertoire on the leukocyte surface determines its 
affinity for the matrix present in the tissue environment. 
For instance, as circulating blood neutrophils tether and 
roll along the endothelium, chemoattractant-induced 
activation of their G-protein-coupled receptors triggers the 
activation of their surface β2-integrins, αLβ2 and αMβ2, 
thereby promoting their attachment to the ligand, ICAM-1, 
expressed on the endothelial cells [6]. As a result of this 
integrin-mediated adhesion, neutrophils are able to arrest 
themselves and bind tightly to the endothelial barrier to 
overcome the shear stress from the flowing blood. This 
adhesion facilitates the subsequent extravasation of 
neutrophils from the vascular lumen into the interstitial 
tissue, hence delivering an effective immune response. 

Similar to neutrophils, circulating dendritic cells 
(DCs) or DC precursors in the blood make use of the 
integrins, αLβ2 and α4β1, for their firm binding to the 
endothelial ligands, ICAM-1 and VCAM, respectively. 
This binding facilitates their trafficking into target tissues 
during both homeostatic and inflammatory conditions, 
such as experimental autoimmune encephalomyelitis [7]. 
On the other hand, Langerhans cells exiting the epidermis 
have to transverse through a basement membrane network 
enriched in laminin, type IV collagen and proteoglycans 
[8] before arriving at the dermal afferent lymphatics for 
further migration to the skin-draining lymph nodes. In this 
case, α6 integrin-mediated adhesions have been reported 
to be critical for attachment and subsequent transmigration 
across the basement membrane [9]. 

ADHESION-INDEPENDENT AMOEBOID 
MOVEMENT OF LEUKOCYTES

Intriguingly, leukocyte migration in a confined 
three-dimensional environment was found to be driven 
primarily by actomyosin contractions, rather than integrin-
based adhesions [10]. This was demonstrated by integrin- 
or talin1-deficient dendritic cells, which, surprisingly, 
were able to migrate from the dermis to the skin-draining 
lymph nodes, a route which does not require crossing 
of any tissue barriers, in a manner indistinguishable 
from their wild-type counterparts. In this case, the 
protrusion of actin filaments is sufficient for leukocytes 
to initiate movement in regions of low matrix density, 
while myosin II-mediated contraction is only essential 
when leukocytes have to squeeze through dense regions 
of tissue interstitium. Indeed, disruption of the actin 
cytoskeletal network and inhibition of myosin contractile 
activity through latrunculin B and blebbistatin treatment, 
respectively, resulted in the migration arrest of leukocytes 
in a three-dimensional environment [10]. Such an 
adhesion-independent migration strategy serves to endow 
leukocytes with the capacity to navigate through different 

organs rapidly, without being restricted to predefined 
routes due to the limited integrin repertoire expressed on 
their cell surfaces. 

DYNAMIC SWITCHING BETWEEN 
DIFFERENT MODES OF MIGRATION 
SUPPORTS LEUKOCYTE FUNCTION

Rather than being confined to a particular migratory 
speed, leukocytes are capable of alternating among fast 
migration, slow migration and an arrest phase. This 
dynamic and plastic nature of their locomotion, which 
depends critically on the shift between adhesion-dependent 
and -independent migration, is tailored to support distinct 
functions of the leukocytes. For example, dermal dendritic 
cells are highly motile cells under steady state conditions, 
actively crawling through the dermal interstitium in an 
amoeboid fashion to survey the skin microenvironment 
for any invading pathogens. However, upon infection with 
the protozoan parasite Leishmania major, they undergo 
rapid migratory arrest at the infection site to maximise 
their antigen uptake capacity [11]. Similarly, antigen-
specific T cells in the lymph nodes cease migration upon 
contact with antigen-presenting dendritic cells, forming 
a stable immunological synapse mediated by αLβ2-
ICAM-1 interaction to facilitate full T cell activation [12]. 
Therefore, striking a balance between cell adhesion and 
migration in different leukocytes during each of their 
distinct functional phases plays a key role in modulating a 
protective immune response. 

POST-TRANSLATIONAL MODIFICATIONS 
REGULATE CELL MIGRATION

The cell migration machinery is comprised of a 
myriad of temporally and spatially segregated signalling 
and adhesion molecules that need to be orchestrated 
in a rapid and precise manner to support an efficient 
immune response. To achieve this, post-translational 
modifications (PTMs) are employed as ideal tools to 
confer dynamic and reversible regulation in migrating 
leukocytes. These modifications, which can either act 
alone or in combination, help to expand the genetic code 
by increasing the functional diversity of proteins. To date, 
more than 400 kinds of modifications have been identified 
[13]. Here, we summarize the major PTMs that have been 
reported for various cytoskeletal and adhesion-related 
molecules (Table 1) and highlight their importance with 
regards to leukocyte migration. 

Regulation of actin dynamics

The early stage of leukocyte migration initiated 
by actin filament protrusion at the pseudopod is largely 
dependent on the interplay between actin polymerization 
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Table 1: Selected post-translational modification sites identified on cytoskeletal and adhesion molecules.
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and depolymerization. Such processes are regulated 
by a family of actin binding proteins including profilin, 
cofilin, and the actin-related protein (Arp) 2/3 complex. 
Arp2 is subjected to phosphorylation at Thr-237 and 
Thr-238 by Nck-interacting kinase (NIK) [14], which 
stabilizes the Arp2/3 complex in an active conformation 
required for its actin-nucleating activity [15]. Upon 
stimulation, activated Arp2/3 initiates nucleation of new 
actin filaments as branches on the sides of older actin 
filaments. Once nucleation occurs, profilin-bound ATP 
actin is incorporated onto the barbed ends of the new actin 
filaments, resulting in the growth of actin filaments that 
push the cell membrane forward and promote pseudopod 
extension. Extracellular stimulation also leads to the 
release of active cofilin from its inhibitory membrane 
binding through hydrolysis of PIP2 [16, 17]. Active 
cofilin at the tip of the leading edge in the proximity of 
the plasma membrane generates severed actin filaments 
that are then used as free barbed ends for further actin 
polymerization [18]. Meanwhile, the activated serine/ 
threonine kinase, LIM kinase, can also inactivate cofilin 
through Ser-3 phosphorylation, which probably slows 
down the rate of filament disassembly behind the leading 

edge. This inactive cofilin accelerates the dissociation of 
ADP•G-actin-cofilin and increases the concentration of 
free ATP•G-actin monomers, making them available for 
filament elongation at the tip of the leading edge [19, 
20]. Interestingly, branches nucleated by Arp2/3 on new 
actin filaments generated through severing are ten times 
more stable than those nucleated on old actin filaments 
[18, 21], which could be the primary mechanism driving 
the formation of the dendritic actin network at the leading 
edge. Conversely, during migration arrest or directional 
change, pseudopods have to be retracted. Under these 
conditions, the absence of activating signals causes the 
un-phosphorylated Arp2/3 complex to remain inactive 
and the type 1 (PP1) and type 2A (PP2A) serine/threonine 
phosphatases to dephosphorylate and activate cofilin [22], 
thus increasing contractility at the cell rear through F-actin 
depolymerization [23]. 

Apart from the modifications on actin binding 
proteins, which can indirectly help regulate actin 
properties, actin itself is also susceptible to many 
PTMs. Phosphorylation is one of the most prominent 
modifications found on actin and it is capable of exerting 
both positive and negative regulatory influences on 
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polymerization. For example, phosphorylation of actin at 
Thr-201, Thr-202 and Thr-203 by actin-fragmin kinase is 
known to inactivate the fragmin-actin complex, a complex 
which promotes the formation of short actin filaments, 
thereby facilitating the elongation of actin [24, 25]. On the 
other hand, phosphorylation at Tyr-53 can reduce the rate 
of nucleation and inhibit the elongation of actin filaments 
[26]. Thus, different levels of regulation can be imposed 

through the addition of a single moiety. Moreover, various 
acetylation sites modified by different acetyltransferases 
and deacetylases have also been reported on actin. Notably, 
acetylation of actin at the N-terminus, which has been 
identified on all kinds of actin, neutralizes a positive charge 
to strengthen its binding to myosin during the actomyosin 
ATPase cycle [27], whereas mono-methylation at Lys-
84 disrupts the interaction between actin and myosin II 

Figure 1: Tri-methyl lysine mimicking talin1 mutant promotes FA turnover and rescues excessive cell spreading and 
defective migration phenotypes of Ezh2-deficient DCs. A. Control and Ezh2-deficient DCs expressing GFP-talin1 variants were 
allowed to adhere to slides coated with VCAM-1 (20 µg/ml) for 2 h. The cell areas were visualized by GFP staining and calculated using 
ImageJ (left) or time-lapse images were taken every 5 min for 2 h (right). “Un” indicates untransduced control. ***P <0.0001 (black 
asterisks: one-way ANOVA, red asterisks: between the indicated pairs, two-tailed student’s t-test with equal variance). Data are represented 
as mean ± standard error of the mean (SEM) of cells pooled from 2-4 independent experiments. B. Control and Ezh2-deficient DCs 
expressing GFP-talin1 variants were allowed to adhere to VCAM-1 coated slides as in A for 2 h. FAs and F-actin were visualized by anti-
paxillin (Pax, red) and Alexa Fluor® 647 phalloidin (pseudo-colored green), respectively. Over 90% of the cells were GFP+ expressing talin 
variants and the GFP staining is not shown. Scale bar, 10 µm. Technical details and original data are published in reference [50].



Oncotarget37352www.impactjournals.com/oncotarget

[28]. Such interaction plays a critical role in regulating the 
contractility of the cell, which helps to control migration 
and other cellular functions. In addition, arginylation of 
β-actin at Asp-3 by arginyltransferase (Ate1) is known 
to be necessary for actin polymerization and hence the 
maintenance of a normal cellular cytoplasmic architecture 
[29]. In the absence of arginylation, actin filaments 
undergo aggregation and sequestration at the cell centre, 
resulting in the collapse of the leading edge, which 
consequently causes a migration defect in the cell [30]. 
Taken together, these findings demonstrate the importance 
of post-translational modifications in the regulation of 
actin dynamics, which is the key determinant underlying 
pseudopod formation during cell migration. 

Regulation of actomyosin contraction

Following extension and attachment of the 
pseudopod to the underlying substrate, actomyosin-
mediated contraction of the cell body has to occur 

to generate forward locomotion. Here, reversible 
phosphorylation of the motor protein, myosin II, plays 
an essential role in controlling force generation during 
migration. Unphosphorylated myosin is inactive and 
exists in a compact, assembly-incompetent conformation 
through head-head and head-tail interactions [31]. Upon 
phosphorylation of Thr-18 and Ser-19 on the regulatory 
light chain by myosin light chain kinase (MLCK), myosin 
unfolds to adopt an assembly-competent conformation, 
thereby increasing its association with actin filaments and 
also its ATPase activity for the initiation of contraction. 
This regulation can be counteracted by protein 
phosphatase 1, which acts to dephosphorylate myosin. In 
dendritic cells, the distribution of phosphorylated myosin 
to either the cell front or rear gives rise to fluctuating 
migratory speeds, which serves to couple their antigen 
uptake function with their migratory capacity [32, 33]. 
Several phosphorylation sites have also been identified 
on the C-terminal region of the myosin heavy chain, 
including Ser-1917 and Ser-1943. Unlike those found on 
the regulatory light chain, phosphorylation sites on the 

Figure 2: Schematic model for Ezh2-regulated cell adhesion and migration through direct methylation of talin1. Ezh2 is 
recruited to talin1 through interaction with the cytoskeletal-reorganization effector, Vav1 and mediates talin1 methylation, thereby reducing 
talin1 binding to F-actin and promoting adhesion turnover. Overexpression in wild-type mature dendritic cells of a mutant talin1 that 
was created by replacing the lysine at position 2454 with glutamine, which cannot be methylated, but preserves the polarity of the lysine 
(K2454Q), results in extensive cell spreading that resembles the phenotype of Ezh2-deficient mature dendritic cells (top). In contrast, 
overexpression in Ezh2-deficient mature dendritic cells of a methyl-mimicking talin1 mutant that was created by replacing the K2454 
residue with phenylalanine (K2454F) restores normal cell spreading and migration (bottom).
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heavy chain are associated with the disassembly of myosin 
filaments. Hence, by making use of phosphorylation 
switches, myosin is able to modulate its actin-binding and 
contractile activities to control cell migration. 

Regulation of cell polarization

Following actomyosin contraction, the trailing 
edge of the leukocyte, termed the uropod, detaches itself 
from the underlying substratum and undergoes retraction 
to facilitate forward movement of the cell. Even though 
contraction of the uropod is dispensable for migration, 
it has been implicated in promoting shape changes 
associated with migration through constricted regions of 
the body. The uropod of motile leukocytes contains the 
microtubule organizing centre (MTOC) and an extensive 
network of microtubules, unlike fibroblast-like motile 
cells, which generally do not form a uropod and place the 
MTOC between the nucleus and the leading edge [34]. 
Microtubules, polymers composed of α- and β-tubulin 
subunits, are uniquely determined by their PTMs, which 
most likely exert their effects by regulating the binding 
partners and stability of microtubules. One of the earliest 
PTMs identified on microtubules was the acetylation of 
Lys-40 on the β-tubulin subunit. Even though this highly 
conserved modification is known to be associated with 
stable and long-lived microtubules, it remains enigmatic 
how this deeply buried acetyl group within the luminal 
face of the microtubule can bring about such properties 
[35]. Interestingly, acetylated microtubules are frequently 
distributed around the MTOC in the uropod of activated 
T cells, although their function remains unknown [36]. 
On the other hand, deacetylation of Lys-40 by histone 
deacetylase 6 (HDAC6) has been associated with the 
decreased stability of microtubules and hence an enhanced 
turnover of adhesion structures [37]. Indeed, disassembly 
of microtubules that radiate towards the uropod has been 
reported to enhance the motility of neutrophils [38]. 
Although many other post-translational modification sites 
have been mapped out on tubulin, their functional roles in 
mediating leukocyte migration remain poorly understood. 

Regulation of cell adhesion

During integrin-dependent migration, the protruding 
pseudopod needs to be stabilized by the formation of new 
adhesions at the leading edge. Although fast-migratory cell 
types, like leukocytes, do not usually form visible adhesion 
structures to mediate their rapid gliding movements, larger 
adhesion structures may be induced by stimuli to cause 
the arrest of their migration [39]. Since the dynamic 
assembly and disassembly of adhesion structures is pivotal 
to the balance between migration and adhesion, many of 
these adhesion-related molecules are heavily modified 
by PTMs. Paxillin is one such focal adhesion-associated 

adaptor molecule that serves to recruit various cytoskeletal 
proteins for the transmission of downstream signalling. 
Phosphorylation of two sites in paxillin (Tyr-31 and Tyr-
118), mediated by Src, function to facilitate docking of 
downstream SH2-containing signalling molecules that 
subsequently recruit focal adhesion kinase (FAK) to 
promote the turnover of adhesion structures. Therefore, 
cells are able to control their adhesion dynamics by 
regulating the relative proportion of unphosphorylated 
and phosphorylated paxillin [40]. In addition, paxillin is 
also susceptible to calpain-mediated proteolysis, which 
generates an inhibitory paxillin fragment that impairs the 
turnover of adhesion structures and hence impedes cellular 
migration [41]. Indeed, macrophages experiencing an 
increase in calpain-mediated cleavage of paxillin due to 
a deficiency in CD45, a tyrosine phosphatase, suffer from 
defects in their cell spreading and migration programmes 
[42]. 

Integrins are transmembrane receptors that help to 
link the extracellular matrix with the actin cytoskeleton. 
Regulation of these proteins during cell migration and 
adhesion occurs either through direct post-translational 
modification or through the PTM of various adaptor 
proteins such as paxillin, talin, and vinculin. Calpain-
mediated cleavage of the integrin cytoplasmic domain 
has been shown to downregulate outside-in signalling 
and hence reduce cell adhesion and spreading [43, 44]. 
This proteolysis, however, can be antagonized by the 
phosphorylation of the integrin β3 cytoplasmic domain at 
Tyr-747 and Tyr-759 [45]. Furthermore, the interaction of 
the integrin β2 cytoplasmic domain with either filamin or 
talin, which share overlapping binding sites, but possess 
opposing functions, is modulated through phosphorylation 
of Thr-758 by protein kinase C (PKC) [46]. This 
modification favours the binding of talin over filamin, 
thereby promoting the activation of integrins and their 
downstream signalling pathways. Such binding of talin to 
the integrin cytoplasmic tail can, in turn, be antagonized 
by calpain-mediated proteolysis of talin [47], resulting 
in the formation of separate head and rod domains. The 
head domain of talin, which remains integrin-bound, 
can be ubiquitinated by the E3 ligase, Smurf1, and 
subsequently degraded, leading to the disassembly of 
adhesion structures. However, phosphorylation of the 
head domain by Cdk5 can inhibit the binding of Smurf1 
and stabilize focal adhesions [48]. In addition to the head 
and tail domain, calpain-mediated proteolysis can also 
generate a 70kDa talin fragment that has been reported to 
be arginylated on Ala-1903. This modified talin fragment 
is found to be essential for the formation of cadherin-
dependent cell-cell adhesion [49]. More recently, we have 
identified a talin methylation site on Lys-2454 that plays 
a critical role in the regulation of leukocyte migration 
[50]. Methylated talin exhibits reduced binding affinity 
for F-actin, which promotes the disassembly of adhesion 
structures and facilitates cellular migration. Collectively, 
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these data demonstrate how adhesion dynamics and cell 
migration can be intricately regulated by an extensive 
array of post-translational modifications. In the following 
paragraphs, we will focus on the enzyme that mediates 
talin methylation and the functional implications of 
methylated talin. 

EZH2 REGULATES INTEGRIN-
DEPENDENT MIGRATION OF 
LEUKOCYTES

We have recently reported that Ezh2, a polycomb 
group protein and well-established chromatin modifier 
that regulates gene expression through the methylation 
of lysine 27 on histone H3 (H3K27me), is recruited 
to talin by Vav1 in the cytoplasm. This recruitment 
promotes the direct methylation of talin, which alters the 
binding of talin to filamentous actin and exerts a major 
influence on cell migration and adhesion dynamics [50]. 
Our initial observation was that Ezh2-deficient bone 
marrow-derived mature dendritic cells (DCs) exhibited 
significantly reduced migratory capacity on integrin ligand 
coated surfaces compared to control cells. While the fast 
migrating wild-type mature DCs barely formed any visible 
adhesions, Ezh2-deficient DCs spread out extensively and 
frequently formed large and stable adhesion structures 
with reduced turnover rates. Most of these cells appeared 
to be trapped on the culture slide and some were observed 
to be oscillating at an anchored position, as if fighting 
against the restraining forces created by their binding 
to the integrin ligands. This migratory defect could be 
rescued by the expression of wild-type or cytosolic Ezh2, 
but not an enzymatically inactive Ezh2 or an Ezh2 mutant 
harbouring mutations that disrupt interactions with the 
cytoskeletal-reorganization effector, Vav1. Interestingly, 
when Ezh2-deficient DCs were cultured on surfaces 
coated with low concentrations of integrin ligands, they 
formed neither abnormally stable adhesion structures nor 
spread out extensively. Since the amount of integrin ligand 
was limited in this case, we believe that the Ezh2-deficient 
DCs were able to overcome the restraining forces caused 
by the reduced turnover of adhesion structures and migrate 
in manners similar to control cells. Taken together, these 
results demonstrate the integrin-dependent nature of Ezh2-
regulated leukocyte migration. 

EZH2-MEDIATED TALIN METHYLATION 
PROMOTES ADHESION TURNOVER AND 
CELL MIGRATION

While Ezh2-deficient DCs exhibited clear defects 
in cell migration, no obvious differences in H3K27me3 
levels or gene expression patterns were found between 
Ezh2-deficient DCs and control cells [50]. However, our 
whole proteome analysis revealed that various proteins 

involved in actin cytoskeletal functions were up-regulated 
(Gunawan et al., unpublished data). Since some of these 
proteins have the potential to enhance, while others 
prevent, cell migration or adhesion turnover, we concluded 
that the phenotype of Ezh2-deficient DCs is therefore 
unlikely to be caused by their altered expressions. 
Moreover, we hypothesized that Ezh2-deficiency may 
affect the function of an integrin proximal molecule, 
subsequently leading to the formation of stabilized 
FAs and an accumulation of proteins associated with 
actin/adhesion structures or the regulation of adhesion 
dynamics.

Indeed, we found that Ezh2 mediates the tri-
methylation of talin1 at lysine (K) 2454 and further 
demonstrated in vitro that such methylation interferes with 
the binding of talin to F-actin [50]. We further determined 
that K2454 methylation is critical for the regulation of 
adhesion dynamics and cell migration by expressing wild-
type talin or talin mutants in which the lysine residue 
was replaced with either an un-methylatable glutamine 
(Q) residue or with a methyl-mimicking phenylalanine 
(F) residue (resembles the bulkiness and hydrophobicity 
of a tri-methylated lysine) in control and Ezh2-deficient 
DCs. Under all tested conditions, expression of the 
methyl-mimicking talin1-K2454F mutant restored normal 
migration and reversed the excessive spreading phenotype 
of Ezh2-deficient DCs, whereas expression of the un-
methylatable talin1-K2454Q mutant converted control 
cells into Ezh2-deficient DC-like cells (Figure 1A, 1B) 
[50]. 

These results offer convincing support for our 
hypothesis that Ezh2-mediated talin1 methylation is 
an important contributing factor for the regulation of 
adhesion dynamics and cell migration. Furthermore, 
replacing K2454 with alanine in some of our experiments 
resulted in trends similar to those seen with glutamine 
substitution, despite the effects being less pronounced 
[50]. Since glutamine is not only used to mimic un-
methylated lysine with preserved polarity [51], but is also 
frequently utilized as an acetyl-mimicking residue [52], 
it would be very interesting to determine whether K2454 
may also be subjected to acetylation in vivo. In this case, 
the increased binding affinity of acetylated talin for F-actin 
may be required for the formation of stable adhesion 
structures under certain physiological conditions. 

INTEGRIN-DEPENDENT MIGRATION 
OF CIRCULATING DC PRECURSORS 
AND LANGERHANS CELLS

Integrin-dependent migration prevails during 
leukocyte extravasation from the bloodstream into 
inflamed tissues. However, this process is irrelevant 
for most DC subsets since they are already residing 
in the peripheral tissues. In this case, the migration of 
antigen loaded, active DCs from the periphery to the 
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draining lymph nodes relies on actin polymerization and 
actomyosin contractions, processes that are independent 
of Ezh2 function. Accordingly, we recovered similar 
percentages of FITC-positive migratory dermal DCs in 
the skin-draining lymph nodes of control and DC-specific 
Ezh2-deficient mice one day following skin painting 
with the FITC dye, indicating that integrin-independent 
migration is intact in Ezh2-deficient DCs [50]. 

However, unlike other disease models, experimental 
autoimmune encephalomyelitis (EAE) is one of the 
exceptional conditions whereby trans-endothelial 
migration of DCs is critical for disease progression. The 
extravasation of circulating DCs or DC precursors across 
the blood-brain barrier into the inflamed tissues of the 
central nervous system (CNS) requires α4β1 integrin-
mediated adhesions [7] and the number of infiltrating 
DCs has been reported to correlate positively with disease 
progression [53-55]. In our recent study of EAE, DC-
specific Ezh2-deficient mice that exhibited reduced disease 
scores, compared to control mice, were found to harbor 
reduced numbers of CNS infiltrating DCs and increased 
incidences of DCs associated with the microvasculature 
[50]. These migratory defects observed in Ezh2-deficient 
DCs in vivo are likely to be caused by mechanisms similar 
to those observed in vitro. Furthermore, migration of 
Langerhans cells (LCs) across the basement membrane 
requires the binding of integrin α6 expressed on LCs to 
the integrin ligand, laminin [9], present in the basement 
membrane layer. Ezh2-deficient LCs, which fail to migrate 
through the basement membrane under steady state and 
inflammatory conditions, were found to spread out 
extensively and form enlarged focal adhesions on laminin 
coated slides, resembling the phenotype of bone marrow 
derived DCs [50] (Loh et al., unpublished data). Since 
LCs have been implicated in the regulation of tolerance 
induction to skin sensitizers, Ezh2-regulated LC migration 
may be relevant for the disease progression of allergic 
contact dermatitis. 

CONCLUSIONS AND FUTURE DIRECTIONS

Integrin-dependent adhesion and migration of 
leukocytes are critically regulated by post-translational 
modifications that include phosphorylation, acetylation, 
sumoylation, ubiquitination and proteolytic cleavage of 
actin cytoskeletal proteins. These PTMs are frequently 
amendable by a pair of enzymes that can add or remove 
modifications on the target proteins. Such dynamic 
regulation of PTMs enables temporally and spatially 
controlled signalling cascades and thereby ensures rapid 
and efficient recruitment of leukocytes in response to 
invading pathogens. 

Recent data published by our lab expands the 
current role of PTMs in integrin-dependent signalling in 
leukocytes by suggesting a novel mechanism by which 
the polycomb group protein, Ezh2, promotes adhesion 

turnover through direct methylation of the extra nuclear 
protein, talin1. Interestingly, this Ezh2-mediated talin1 
methylation was found to be dependent on its interaction 
with the cytoskeleton remodelling effector, Vav1 [50]. 
Subsequent work in our lab has shown that the Ezh2 
interaction domain of Vav1 is highly conserved among 
the Vav family of proteins and that the Ezh2:Vav:talin 
complexes observed in leukocytes are also formed in 
non-hematopoietic cells (Venkatesan et al., unpublished). 
These results suggest that the novel mechanism described 
here is likely to be conserved across various cell types 
and may have important implications for tumor growth 
and metastasis. In fact, Ezh2 overexpression or gain of 
function mutations are known to be associated with several 
aggressive human solid tumour types, including prostate 
cancer, breast cancer, and different types of lymphomas, 
and are indicators of poor prognosis in patients [56-58]. 
These Ezh2-dependent oncogenic effects can be achieved 
though H3K27me3-mediated transcriptional repression 
of tumor suppressor genes or through promoting NF-κB 
target gene expression [59-63]. However, our findings 
suggest that Ezh2-mediated talin methylation may also 
promote adhesion turnover in cancer cells, resulting in 
altered adhesion properties that may directly contribute 
to the epithelial-to-mesenchymal and mesenchymal-
to-amoeboid transition of metastasizing cancer cells 
(Venkatesan et al., unpublished). Furthermore, it is likely 
that Ezh2 mediates the methylation of additional proteins 
to modulate other cytosolic signaling events. In addition 
to talin, several other cytoplasmic proteins were observed 
to be methylated by Ezh2 in vitro (Venkatesan et al., 
unpublished), so more studies will now be required to 
determine their identities and physiological relevance. 

In conclusion, PTMs play critical roles in regulating 
cytoskeletal/adhesion dynamics and further research 
in this area will lead to a better understanding of the 
regulation of leukocyte trafficking with implications for 
disease pathogenesis and cellular transformation.
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