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ABSTRACT
In chronic lymphocytic leukaemia (CLL), the clinical course of patients is 

heterogeneous. Some present an aggressive disease onset and require immediate 
therapy, while others remain without treatment for years. Current disease staging 
systems developed by Rai and Binet may be useful in forecasting patient survival 
time, but do not discriminate between stable and progressive forms of the disease in 
the early stages. Recently ample attention has been directed towards identifying new 
disease prognostic markers capable of predicting clinical aggressiveness at diagnosis. 
In the present study serum samples from stable (n = 51) and progressive (n = 42) CLL 
patients and controls (n = 45) were used with aim to discover metabolic indicators 
of disease status. First an LC-MS based metabolic fingerprinting method was used to 
analyse selected samples in order to find a potential markers discriminating aggressive 
from indolent patients. Ten of these discovered markers were validated on the whole 
set of samples with an independent analytical technique. Linoleamide (p = 0.002) 
in addition to various acylcarnitines (p = 0.001–0.000001) showed to be significant 
markers of CLL in its aggressive form. Acetylcarnitine (p = 0.05) and hexannoylcarnitine 
(p = 0.005) were also distinguishable markers of indolent subjects. Forming a panel 
of selected acylcarnitines and fatty acid amides, it was possible to reach a potentially 
highly specific and sensitive diagnostic approach (AUC = 0.766).

INTRODUCTION

Chronic lymphocytic leukaemia (CLL) is one of the 
most common lymphoid malignancies. Although a large 
majority of patients are diagnosed in the early stages of 
the disease, their clinical course is heterogeneous. Some 
patients present with an aggressive disease onset and require 
immediate cytostatic therapy, while others remain without 
treatment for many years [1]. Disease staging systems 
developed by Rai [2] and Binet [3], which divide patients 
into good, intermediate and poor prognostic groups, may be 
useful in forecasting patient survival time. Unfortunately, 

the systems do not discriminate between stable and 
progressive forms of the disease in the early stages [4]. 
Over the last decade, ample attention has been directed 
towards identifying new disease prognostic markers 
capable of predicting clinical aggressiveness at diagnosis. 
The mutational status of the immunoglobulin heavy chain 
variable region (IGHV) gene has been proved to be one of 
such markers. Patients carrying un-mutated IGHV (UM-
IGHV) genes show poor prognosis, reduced survival rates 
and response to chemotherapy [5]. Another examination 
that corresponds well with disease prognosis and may be 
used as an alternative marker for IGHV mutational status 
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is the assessment of HO(ZAP70) and CD38. Leukemia-cell 
expression of ZAP-70 or CD38 has been found to correlate 
with the expression of un-mutated IGHV genes [6, 7]; yet 
the association between the former and the latter is not 
absolute. Another powerful prognostic is the presence of 
cytogenetic lesions. The most common deletions concern 
the long arm of chromosome 13 [del(13q14.1)], the 
trisomy of chromosome 12, deletions in the long arm of 
chromosomes 11 [del(11q)] or 6 [del(6q)] and in the short 
arm of chromosome 17 [del(17p)] [8]. There is increasing 
evidence from prospective clinical trials that detection 
of del(17p) in CLL patients heralds an inferior prognosis 
and resistance to standard chemotherapy regimens using 
alkylating drugs and/or purine analogs [9, 10].

Although the aforementioned prognostic markers 
correlate to a large extent with the disease course, they do not 
determine treatment indication per se. Current criteria for 
initiating CLL treatment are rather based on clinical features 
[11]. For instance, it is established in general practice that 
newly diagnosed patients with asymptomatic early-stage 
disease (Rai O, Binet A) should be monitored without 
therapy unless there is evidence of disease progression. 
Whereas patients at intermediate (stages I and II) 
and high risk (stages III and IV) stages (according to the 
modified Rai classification), or at stage B or C (following 
the Binet system) usually benefit from the initiation of 
treatment. Some of them (in particular Rai intermediate 
risk or Binet stage B) can be monitored without therapy 
until evidence of progressive or symptomatic disease is 
found. Active disease is recognized when at least one of 
the criteria presented in Table S1 (found in supplementary 
information) is met.

Regardless of the presence or absence of poor 
prognostic factors, CLL treatment starts once the 
symptoms of disease progression have occurred. The 
available evidence indicates that treatment of unselected 
early-stage patients with alkylating agents promptly after 
diagnosis offers no survival advantage over treatment 
commenced at the time of disease progression [4].

Changes of inner leukemic cell function or its 
interactions with other immune and micro-environmental 
cells may contribute to rendering the disease process 
aggressive [12]. Certain alterations in metabolites and 
small molecules involved in biochemical processes 
provide a functional reflection of a possible pathology. 
Metabolic fingerprinting techniques (for instance, gas/
liquid chromatography mass spectrometry (MS), nuclear 
magnetic resonance (NMR)) combined with multivariate 
statistics (interchangeably termed ‘metabolomics’ or 
‘metabonomics’) offer the ability to examine global changes 
in metabolites associated with physiological conditions [13]. 
Thus, metabolomics is a powerful approach for examining 
disease-related metabolic changes and, accordingly, proves 
highly effective in identifying new biomarkers [14]. Several 
studies have highlighted the potential of metabolomics as 
a tool for cancer detection, progression or assessment of 

treatment effect. Capabilities and current discoveries of 
metabolomics tools in cancer research have been recently 
reviewed [15, 16]. 

Until now, a metabolomics approach has been applied 
in only a few studies to investigate chronic lymphocytic 
leukaemia [17–19]. In one of these studies 1H-NMR was 
employed to detect plasma metabolites and showed different 
metabolic profiles of early-stage, untreated CLL patients 
(Binet stage A) according to IGHV mutational status and 
ZAP70 [17]. In the other study, MS based metabolomics 
was used to find differences between CLL cells obtained 
from patients in aggressive and indolent states [19]. In 
this research, we focus on the assessment of metabolic 
changes in serum of aggressive and indolent CLL patients 
by means of liquid chromatography – mass spectrometry 
(LC-MS). Our methodology has been used to discriminate 
between serum fingerprints of B-cell non-Hodgkin’s 
lymphomas recently [18]. We have extended on this in the 
study presented by first applying our methodology to find 
differences in serum fingerprints of both aggressive and 
indolent CLL patients relative to controls with the purpose 
of elucidating metabolic fingerprints, which may be useful 
as indicators of disease status. Furthermore, we have 
performed validation on a panel of markers, identifying 
metabolites that have the highest specificity and selectivity 
for discriminating CLL from controls and moreover 
indolent and aggressive states of CLL. Serum was selected 
as the sample of choice due to its utility and applicability 
in diagnostics. Application of the LC-MS technology for 
biomarker discovery is not only complementary to NMR 
[20], but also boasts several advantages over it, including 
greater sensitivity and ability to measure large number of 
both high and low-intense metabolites. Obtained results 
may help in classification of patient status and may reflect 
leukaemia progression in newly diagnosed patients. 

RESULTS

Quality control of the methodologies

Quality checking for fingerprinting data was 
performed separately for positive and negative ion modes. 
In both cases chromatograms obtained for participants serum 
samples and for quality control samples (QCs) were aligned 
together and filtered to obtain features present in > 50% of 
QCs and with relative standard deviations (RSDs) < 30% 
in QCs yielding datasets with 3170 features for ESI+ and 
1253 for ESI-mode. Principal components analysis (PCA) 
was used to provide an overview of the obtained data sets 
after Pareto-scaling. Close clustering of QC samples was 
observed in ESI+ (Figure 1A) and ESI- mode (Figure 1B) 
reflecting the system’s stability and performance, as well as 
the reproducibility of the sample treatment procedure. 

Quality of QQQ analyses was checked by 
calculation of RSD for metabolites in QC samples, which 
was between 3 and 17%.
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Results of fingerprinting study

In order to perform sample classification, the dataset 
obtained after filtering of the QCs was additionally filtered 
by choosing only metabolic features present in 100% of 
the samples in at least one of the groups (C, A, I). For these 
data sets (1175 features in ESI+, and 571 in ESI- mode) 
partial least squares discriminant analysis (PLS-DA) 
models were built showing clear classification of samples 
in ESI+ (Figure 1C) as well as in ESI- (Figure 1D) mode. 
The quality of the models was excellent with variance 
explained (R2 = 0.954) and variance predicted (Q2 = 0.737) 
for ESI+, and R2 = 0.985, Q2 = 0.662 for ESI- mode. 
Obtained models were validated by cross-validation using 
the leave 1/3 out approach[21]. In the models obtained 
for data recorded in ESI+ mode, all excluded samples 
were classified correctly in 94 ± 7%, while in the models 
obtained for data recorded in ESI- mode the percentage of 
samples classified correctly was calculated as 83 ± 7%.

Statistical analysis of fingerprinting data was 
conducted as described in the materials and methods 
section. Statistical analysis (p ≤ 0.05) was performed 
for the comparisons of C vs A, C vs I, and A vs I in each 
ionisation mode giving 284, 184 and 125 features in ESI+ 
and 147, 139, and 15 features in ESI- ionisation modes 
respectively. Identification of significant metabolites was 
confirmed by MS/MS fragmentation or analysis of the 
standards. Identified metabolites are summarised in Tables 
1–3 including retention time, theoretical mass and error of 
measured mass, MS/MS fragments and the percentage of 
change between the groups in the comparisons performed. 

Results of validation study

Out of ten metabolites selected for validation, six 
(Figure 2) were found significantly higher in the aggressive 
state of the disease compared to indolent or controls. 
These metabolites were acylcarnitines (acetyl, hexanoyl, 

Figure 1: Multivariate analyses of samples analysed by fingerprinting method in positive and negative ESI modes. 
(A) PCA model (R2 = 0.137) built for samples analyzed in ESI (+) mode with prediction of QC samples. (B) PCA model (R2 = 0.331) 
built for samples analyzed in ESI (−) mode with prediction of QC samples. Variables after QA protocol were used to build models from 
panels (A) and (B). (C) Classification of samples on PLS-DA model (R2 = 0.954, Q2 = 0.737) built for filtered data generated in ESI (+) 
mode. (D) Classification of samples on PLS-DA model (R2 = 0.985, Q2 = 0.662) built for filtered data generated in ESI (−) mode. n - QC, 
r - control, q - indolent, ¡ - aggressive. 



Oncotarget22327www.impactjournals.com/oncotarget

Table 1: Identification of lysophospholipids that were significantly differentiating plasma profiles 
of CLL patients from controls

Compound RT 
(min)

Theoretical 
mass (Da)

Mass 
error 
(ppm)

Identification
Change [%] (p-value)

I vs C A vs C A vs I

Lyso PC (16:0) 20.1 481.3532 −2.1 P: 184.072, 104.107, 
86.096 −32 (0.0005*) −35 

(0.00004*) NS

Lyso PC (16:1) 17.4 493.3168 −3.2 P: 476.309, 184.071, 
104.107, 86.096 −26 (0.008*) −28 (0.005*) NS

Lyso PC (17:0) 21.3 509.3481 0.2 P: 492.341, 184.071, 
104.107, 86.096 NS −23 (0.004*) NS

Lyso PC (18:0) 24.5 509.3845 −2.6 P: 184.073, 104.107, 
86.097 −32 (0.003*) −34 

(0.0003*) NS

Lyso PC (18:1) 21.0 507.3689 −1.4 P: 184.072, 104.107, 
86.096 −34 (0.0002*) −33 

(0.0002*) NS

Lyso PC (18:2) 17.7 519.3325 3.3 P: 502.327, 184.072, 
104.107, 86.096 −19 (0.04) −19 (0.03) NS

Lyso PC (20:0) 25.1 535.4001 −3.5 P: 184.071, 104.107, 
86.096

−45 
(0.000005*) −38 (0.001*) NS

Lyso PC (20:1) 24.0 549.3794 −2.2 P: 184.072, 104.107, 
86.096 NS −25 (0.009*) NS

Lyso PC (20:4) 17.7 543.3325 1.3 P: 526.329, 184.073, 
104.107, 86.097 −21 (0.05) −17 (0.08) NS

PC (17:0/2:0) 21.1 551.3587 −5.3 N: 492.345, 269.248, 
224.069, 78.96

−61 
(0.00000009*)

−53 
(0.000001*) NS

Lyso PE 
(O-16:0) 19.8 439.3063 −3.4 N: 377.241, 196.036, 

140.011, 78.959 −42 (0.02) −41 (0.03*) NS

Lyso PE (16:0) 20.0 437.2906 −4.1 N: 239.235, 196.036, 
140.009, 78.959 −45 (0.0002*) −51 

(0.0001*) NS

Lyso PE (18:1) 24.3 465.3219 −2.4
N: 403.26, 267.267, 
196.037, 140.011, 
78.959

−43 (0.001*) −46 
(0.0009*) NS

Lyso PE (20:0) 28.8 493.3532 −2.8 N: 295.297, 196.038, 
140.013, 78.959 −48 (0.0001*) −45 

(0.0003*) NS

Lyso PE (20:3) 19.0 503.3012 −2.0 P: 363.289 + 39 (0.02) NS - 25 
(0.05)

Lyso PA (20:4) 24.3 458.2433 1.1

N: 303.233, 259.242, 
171.006, 152.996, 
96.969,
78.959

−67 (0.002*) −63 
(0.00006*) NS

Lyso PI (16:0) 23.0 572.2962 −2.4

N: 391.224, 315.048, 
255.232, 241.011, 
152.996,
78.959

−46 (0.002*) −52 
(0.0002*) NS
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Lyso PI (18:1) 25.0 598.3118 −3.3
N: 417.239, 315.048, 
281.247, 241.011, 
152.995

−31 (0.04) −32 (0.02) NS

Lyso PI (18:2) 20.6 596.2961 −3.9
N: 415.222, 279.231, 
241.01, 152.995, 
78.959

−37 (0.008*) −38 
(0.0004*) NS

P, N – metabolite identified in positive or negative ESI mode, respectively; NS – non-significant; * - these p-values remain 
< 0.05 after correction by FDR; N vs C - (+)/(−) means increased/decreased abundance in CLL patients who do not require 
treatment in comparison to controls; A vs C - (+)/(−) means increased/decreased abundance in CLL patients in aggressive state 
of the disease in comparison to controls; A vs I - (+)/(−) means increased/decreased abundance in CLL patients in aggressive 
state as compared CLL patients in indolent state of the disease. 

Table 2: Identification of fatty acid amides, sphingolipids and fatty acids significantly differentiating 
plasma profiles of CLL patients from controls

Compound RT 
(min)

Theoretical 
mass (Da)

Mass 
error 
(ppm)

Identification
Change [%] (p-value)

I vs C A vs C A vs I

dodecanamideS 16.8 199.1936 −2.0 P: 116.104, 102.09, 
88.076 −NS + 64 (0.05) + 87 

(0.01*)

LinoleamideS 24.8 279.2562 −3.6

P: 263.235, 245.224, 
175.146, 161.132, 
133.098, 109.1, 
95.085, 81.07, 
69.07, 57.07, 43.055

NS + 90 
(0.0008*)

+ 83 
(0.05)

OleamideS 28.0 281.2719 1.1

P: 265.251, 247.24, 
177.162, 163.146, 
149.131, 135.116, 
97.101, 83.086, 
69.07, 57.071

NS + 28 (0.05) NS

Palmitoylethanolamide 25.2 299.2824 −4.0 P: 283.262, 62.061, 
44.051 + 18 (0.01) NS NS

Hydroxysphingosine 13.5 315.2773 −6.7 P: 106.086, 88.075, 
57.071

−32 
(0.003*)

−39 
(0.002*) NS

Sphingosine-1-
phosphate 14.9 379.2488

−1.6 P: 264.267, 82.065 −40 
(0.000007*)

−35 
(0.0001*) NS

−2.6 N: 78.959 −52 
(0.00008*) −37 (0.01*) NS

Sphinganine-phosphate 15.8 381.2644
−0.5 P: 364.247, 284.293, 

266.28
−47 

(0.00002*)
−37 

(0.001*) NS

−4.2 N: 78.959 −43 
(0.00007*)

−40 
(0.002*) NS

Leukotriene B4 14.2 336.2301 −3.9

N: 335.221, 
317.211, 195.101, 
129.054, 71.014, 
59.014

Not 
detected 
in CLL 

samples (< 
0.000001*)

Not 
detected 
in CLL 

samples (< 
0.000001*)

−
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hydroxy-
eicosatetraenoic acid 20.3 320.2285 7.2

N: 319.223, 
301.214, 275.233, 
257.225, 179.106, 
163.11, 135.116, 
59.014

−81 
(0.0001*)

−74 
(0.0001*) NS

Eicosapentaenoic acid
(dehydroarachidonic) 25.7 302.2246 −2.6

N: 301.216, 
283.208, 257.227, 
229.194, 203.179, 
177.092, 59.014

NS −59 
(0.0004*)

−54 
(0.03)

Eicosatetraenoic acid 28.1 304.2402 −4.6 N: 303.231, 285.22, 
259.242, 59.015

−47 
(0.0002*)

−55 
(0.00001*) NS

Docosapentaenoic acid 28.7 330.2559 −3.3 N: 285.255, 59.014 + 50 (0.04) NS −33 
(0.05)

Palmitic acidS 31.3 256.2402 0.0

P: 239.118, 212.234, 
135.117, 117.091, 
103.075, 89.06, 
71.086, 57.071, 
43.056

+ 17 (0.06) + 28 (0.02) NS

S – Identity of these metabolites was confirmed by the LC-MS/MS analysis of the standards; P, N – metabolite identified 
in positive or negative ESI mode, respectively; NS – non-significant; * - these p-values remain < 0.05 after correction by 
FDR; I vs C - (+)/(−) means increased/decreased abundance in CLL patients in indolent state of the disease in comparison to 
controls; A vs C - (+)/(−) means increased/decreased abundance in CLL patients in aggressive state of the disease as compared 
to controls; A vs I - (+)/(−) means increased/decreased abundance in CLL patients in aggressive state in comparison to CLL 
patients in indolent of the disease.

Table 3: Identification of other metabolites significantly differentiating plasma profiles of CLL 
patients from controls

Compound RT 
(min)

Monoisotopic 
mass (Da)

Mass 
error 
(ppm)

Identification
Change [%] (p-value)

I vs C A vs C A vs I

AcetylcarnitineS 0.7 203.1158 −2.9 P: 145.048, 85.028, 
60.081

+ 36 
(0.02*)

+ 52 
(0.0008*) NS

HexanoylcarnitineS 1.1 259.1783 −4.2 P: 201.111, 85.028, 
60.08 NS + 107 

(0.02)
+ 102 
(0.04)

Oxo-
methylthioheptanoic 
acid

0.6 190.0663 4.7 P: 173.027 NS NS −26 
(0.05)

ornithineS 0.6 132.0899 −0.8 N: 86.977, 44.999 NS −26 
(0.02) NS

piperidine 0.9 85.0891 −10.6 P: 69.07, 44.05, 
43.055, 41.04, 30.035

−22 
(0.04) 

−28 
(0.04) NS

Phe Phe 1.0 312.1474

−3.8 P: 166.085, 120.08 NS −39 
(0.006*) NS

−1.9
N: 250.122, 175.087, 
164.071, 147.044, 
91.055, 71.026

NS −31 
(0.04) NS
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octanoyl, decanoyl, hexadecanoyl) and linoleamide. 
Among them acetylcarnitine and hexanoylcarnitine can 
be used to discriminate between controls and indolent 
patients. To evaluate the clinical utility of these metabolites 
as potential biomarkers to diagnose CLL, ROC curves 
were used. ROC analyses were performed to check the 
utility of metabolites selected for validation (individually 
or grouped) to classify patients as having CLL in general or 
as having an aggressive state of the disease (Table 4). As it 
can be seen in Table 4, metabolites best classifying patients 
as having CLL are acetylcarinite, hexanoylcarnitine and 
octanoylcarnitine. Obtained results of area under the 
curve (AUC), sensitivity, and specificity slightly improved 
when these acylcarnitines were grouped. Similarly, 
ROC analyses indicate that acylcarnitines are promising 
biomarkers of CLL status; however better results were 
obtained for combination of selected acylcarnitines and 
fatty acid amides (Table 4). 

DISCUSSION

CLL, one of the most common adult blood cancer 
in the western world [22] is described as exhibiting 
heterogeneous clinical behaviour such that survival can 
range from months to decades and that the disease can be 
presented in aggressive (requiring immediate treatment) 
and indolent forms [17]. Despite a plethora of risk factors, 
CLL therapy initiation is still based on clinical features 
and currently the diagnosis of CLL does not always lead to 
prompt treatment due to potentially harmful consequences 
for the patient. Metabolomics and lipidomics strategies 
have been previously applied to study CLL [18, 19]. 
However we present, to the best of our knowledge, the 
first comparison of serum fingerprints from patients that 
possess either the indolent or aggressive form of CLL as 
well as serum from healthy volunteers in order to observe 
the differences caused by the disease, that have led to 

phenylacetylglutamine 1.0 264.111
−4.5 N: 145.061, 127.05, 

109.039 NS −45 
(0.01*) NS

0.8 P: 130.051, 147.074 −28 
(0.06)

−49 
(0.001*) NS

Cresol sulfate 1.7 188.0143 −2.7 N: 107.05, 79.958 NS −60 
(0.007*) NS

Propionaldehyde 4.2 58.0419 9.1 P: 43.019, 31.019 NS −18 
(0.03) NS

Unsaturated hydroxy  
(or oxo) fatty aldehyde 
OR Hexynoic/
hexadienoic acid

4.2 112.0524 −1.8 P: 55.019 NS −16 
(0.03) NS

9.6 112.0524 −1.8 P: 55.018 NS −31 
(0.004*) NS

Biliverdin 10.3 582.2478 −2.7 P: 297.123 −40 
(0.08)

−47 
(0.03) NS

hexadecatrienol 23.3 236.214 −3.4
P: 219.209, 149.129, 
135.117, 109.101, 
95.085, 83.085, 57.07

NS + 32 
(0.05) NS

hydroxy-
phosphonooxy-
octadecanoic acid

27.5 396.2277 −2.3 N: 327.232, 283.242, 
44.999 NS NS −35 

(0.03)

Octadecatrienol 28.0 264.2453 −0.4

P: 247.24, 163.146, 
149.13, 135.116, 
121.1, 109.1, 95.085, 
81.07, 69.07, 57.071

NS + 27 
(0.03) NS

S – Identity of these metabolites was confirmed by the LC-MS/MS analysis of the standards; P, N – metabolite identified 
in positive or negative ESI mode, respectively; NS – non-significant; * - these p-values remain < 0.05 after correction by 
FDR; I vs C - (+)/(−) means increased/decreased abundance in CLL patients in indolent state of the disease in comparison to 
controls; A vs C - (+)/(−) means increased/decreased abundance in CLL patients in aggressive state of the disease as compared 
to controls; A vs I - (+)/(−) means increased/decreased abundance in CLL patients in aggressive state in comparison to CLL 
patients in indolent of the disease.
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Figure 2: Fold change of selected metabolites quantified in validation study. Each bar represents median of fold change with 
inter quartile range for metabolites as calculated for indolent (I) or aggressive (A) CLL patients in comparison to controls. Significant 
differences between I and A are indicated by p-value, while between controls and A or I by asterisks. *p ≤ 0.001, **p ≤ 0.0001, 
***p ≤ 0.00001, ****p ≤ 0.000001, no indication means not significant. 
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the proposal of a panel of biomarkers with the required 
sensitivity and specificity to improve diagnosis, prognosis 
and proposed treatment of the disease. The significant 
differences identified from this global examination of 
serum-derived metabolites in the context of CLL are 
highlighted in Tables 1–3.

In a previous study comparing different B-cell 
malignancies, we revealed characteristic metabolites of 
CLL that followed the same trends as in the present study 
with respect to the disease versus controls and additionally, 
here, with respect to aggressive subjects compared to 
indolents. These include acetylcarnitine, leukotriene B4 

Table 4: ROC analysis to evaluate utility of validated metabolites as biomarkers of CLL in general 
and in its aggressive state

Utility of validated metabolites as biomarkers of CLL

Metabolite AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Acetylcarnitine 0.773 97.8 48.9 65.7 95.7

Butyrylcarnitine 0.599 100 0 50.0 0.0

Hexanoylcarnitine 0.697 88.0 42.2 60.4 77.9

Octanoylcarnitine 0.616 85.9 31.1 55.5 68.8

Decanoylcarnitine 0.623 95.6 11.1 51.8 71.6

Palmitoylcarnitine 0.57 100 2.2 50.6 100.0

Dodecanamide 0.324 100 0 50.0 0.0

Hexadecanamide 0.397 98.9 2.2 50.3 66.7

Oleamide 0.492 98.9 2.2 50.3 66.7

Linoleamide 0.601 100 0 50.0 0.0

Acetylcarnitine Hexanoylcarnitine 
Octanoylcarnitine 0.769 97.8 53.3 67.7 96.0

Acetylcarnitine Hexanoylcarnitine 0.766 96.7 51.2 66.5 93.9

Utility of validated metabolites as biomarkers of aggressive state of CLL

Acetylcarnitine 0.695 43.2 93.0 86.1 62.1

Butyrylcarnitine 0.548 10.8 98.0 84.4 52.4

Hexanoylcarnitine 0.690 27.0 96.0 87.1 56.8

Octanoylcarnitine 0.651 29.7 95.0 85.6 57.5

Decanoylcarnitine 0.662 27.0 94.0 81.8 56.3

Palmitoylcarnitine 0.719 40.5 94.0 87.1 61.2

Dodecanamide 0.497 8.1 100.0 100.0 52.1

Hexadecanamide 0.516 5.4 100.0 100.0 51.4

Oleamide 0.600 18.9 96.0 82.5 54.2

Linoleamide 0.672 16.2 98.0 89.0 53.9

Acylcarnitinesa 0.743 32.4 95.0 86.6 58.4

FAAb 0.662 13.9 96.0 77.6 52.7

Acylcarnitines and FAA 0.750 54.0 89.0 83.1 65.9

ROC - receiver operating characteristic; AUC - area under the curve; PPV - positive predictive value; NPV - negative 
predictive value, FAA – fatty acid amides. aFollowing acylcarnitines were grouped for ROC analysis: acetyl-, hexanoyl-, 
octanoyl-, decanoyl- and palmitoyl-. bFollowing fatty acid amides were grouped for ROC analysis: oleamide and linoleamide.
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(LTB4), eicosapentaenoic acid (dehydroarachidonic) 
acid, eicosatetraenoic acid, sphingosine-1-phosphate 
and phenylacetylglutamine in addition to some (lyso)
phospholipids [18].

One particularly interesting marker revealed for the 
first time in the present study that was able to significantly 
discriminate all groups from each other was biliverdin. Its 
concentration (that changed with a remarkable percentage 
between groups) is likely to be inversely related to 
aggressiveness of CLL. Human biliverdin reductase has 
been described as a cytoprotectant and its expression in 
multidrug resistant leukaemic HL60 cells has been reported 
to be significantly increased [23]. Expression of haem 
oxygenase-1 (HO-1) is also found to be increased in cancer 
cells and is further enhanced following chemotherapeutic 
treatment [24]. It provides protection against cellular 
stress and converts haem into carbon monoxide, free iron 
and biliverdin, the latter of which that is later converted to 
potent antioxidant bilirubin [25]. Moreover, in a study of 
acute myeloid leukemia, it has been reported that silencing 
HO-1 significantly increases in vitro chemosensitivity [26]. 
Through one or both of these mechanisms, our data suggest 
that biliverdin is rapidly reduced in CLL that is dependent 
on the aggressiveness of the disease. 

Other key metabolites were fatty acids. Among 
them, two saturated fatty acids (myristic and palmitic 
acids) were found significantly higher in aggressive CLL 
than in controls. Regarding polyunsaturated fatty acids 
(PUFAs) hydroxy-eicosatetraenoic, Eicosapentaenoic, 
and Eicosatetraenoic were significantly lower in CLL 
relative to controls and moreover lower in aggressive 
relative to indolent patient samples. Another PUFA - 
docosapentaenoic acid was found showing paradoxical 
results, because it was not significantly different between 
controls and aggressive CLL, but it was higher in indolents 
as compared to both to aggressive and CLL. Despite the 
fact that more data are needed to confirm this trend, the 
differences found in the present study in the metabolism of 
PUFA deserve further attention, because several cancers, 
including CLL have been previously associated with 
activating the oxidative cascade of PUFAs [22]. Fatty acids 
and their involvement in leukaemia have received much 
attention in the literature. For example it was recently 
proposed that leukaemia cells oxidise fatty acids and that 
they uncouple oxidative phosphorylation in order to shift 
ATP production from fatty acid oxidation to glycolysis. 
This would be in accordance with the increase in the most 
abundant saturated fatty acids seen in the present study, 
and therefore modulation of fatty acid metabolism may 
provide a novel strategy to treat leukaemia [27]. Through 
investigating the effects of lipoprotein lipase knock-down, 
it has been elucidated that this enzyme, a strong biomarker 
of CLL with previously understudied function, is involved 
in the regulation of fatty acid metabolism in the disease 
[28]. However, PUFAs are involved not only in energy 
metabolism, but in contributing to chemo-sensitivity 
in CLL [29], and therefore the different trends seen in 

different PUFA may be the consequences of specific 
signaling metabolism.

LTB4 was found to be significant owing to its 
apparent complete depletion in serum of CLL patients. 
LTB4 is in the eicosanoid family of lipids, most of which 
formed by the oxidation of 20-carbon essential fatty acids, 
that comprise prostaglandins along with prostacyclins, 
thromboxanes and endocannabinoids in addition to 
leukotrienes. Methods for profiling bioactive lipids such 
as eicosanoids in CLL cells to better understand the 
signalling cascade has been previously performed [30]. 
Leukotrienes are biosynthesised from arachidonic acid via 
5-lipoxygenase (5-LO) in the body by myeloid cells and 
B lymphocytes [31]. Despite the abundant expression of 
5-LO in B-CLL cells, LTB4 biosynthesis is believed not to 
occur in low differentiated malignant B lymphocytes [32].  
In a recent study based on a model system imitating T-cell 
dependent activation of B cells, the function of the 5-LO 
pathway in B-CLL cells was investigated. It was revealed 
that under certain conditions, B-CLL cells have equal 
capacity to myeloid cells to biosynthesise and release 
LTB4. Moreover, it was proposed that LTB4 is involved 
in B-CLL cell activation and that leukotriene biosynthesis 
inhibitors similar to those employed in the treatment of 
asthma could be applicable in the treatment of CLL [33]. 
In another study, it was revealed that while intracellular 
concentrations of LTB4 can be higher in B-CLL cells 
relative to their normal counterpart, plasma concentrations 
of LTB4 may not be statistically different between 
patients and controls, the reason being that LTB4 can be 
metabolised into 20-OH-LTB4 that is a non-circulating 
metabolite [22]. It was further suggested from this study 
that, at least for patients with slowly proliferating tumour 
cells, the balance between LTB4 synthesis and inactivation 
can be constant. Through inactivation or immediate 
metabolism to 20-OH-LTB4, this could explain the absence 
of LTB4 in the serum samples from patients studied in our 
investigation. 

Lipids are involved in many carcinogenic processes 
including cell dislodgement, invasion, migration, and 
proliferation. Other lipids that significantly differentiated 
patient groups in this study were (lyso)phospholipids. In 
a comparison between CLL and normal lymphocytes, it 
has been shown previously that phospholipid levels are 
significantly altered with the disease and that CLL can be 
characterised by phospholipid metabolism activation, with 
different phospholipids being increased and decreased 
with the disease [34]. The increased demand for lipids by 
tumour cells is reflected by the decreased levels of several 
lipids in blood. For example, lysoPC can be a useful 
marker of cancer progression for a range of cancers [35]. A 
decrease in LysoPC has already been observed in lung [36] 
and liver [37] cancer, phosphatidylinositols in pancreatic 
cancer [38] and for several types of lysophospholipids 
in B-cell malignancies (including CLL) [18]. LysoPCs, 
in contrast to PCs that function in membrane formation, 
perform membrane lysis and have been observed to be 
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generally decreased in patients with leukaemia relative to  
controls [39]. Different lyso PCs in addition to oleamide 
and eicosatrienoic acid that were also found to be significant 
in our study have been previously included in a panel of 
biomarkers for differentiating early stage colorectal cancer 
patients from healthy controls that was shown to be more 
effective than the carcinoembryonic antigen biomarker 
usually utilised in diagnosis of the disease [40].

Signalling lipids including sphingolipids were also 
highlighted. Sphingolipids are critical bioactive lipids 
involved in proliferation, differentiation, apoptosis, 
inflammation, migration and autophagy, whose 
metabolism is altered in a range of diseases including but 
not limited to leukaemia [41]. They are also involved in 
lymphocyte trafficking via egress signals provided by 
spingosine-1-phosphate (S1P). With respect to leukaemia, 
sphingolipids are studied due to their part in the process 
of lymphocyte release into the circulation; leukemic clonal 
exit is modulated by the expression of sphingosine-1-
phosphate receptor 1 (S1PR1) and levels of S1P in plasma 
of non-diseased subjects are normally high to instigate 
the migration of lymphocytes into circulation. S1PR1 
is differentially expressed on CLL cells and is reduced 
when cells are in a tumour supportive microenvironment 
compared to when cells are free in circulation [42]. It has 
also been shown that the expression of S1P1 is reduced 
in CLL B cells, causing defective egress of CLL B-cells 
contributing to their enhanced survival [43]. When cells 
are in free circulation they migrate towards S1P which 
coincides with their increased chemosensitivity [42].  
In a model targeted to reduce CLL malignancy via 
deficiency in XBP-1, the transcription factor associated to 
endoplasmic reticulum stress that promotes progression of 
CLL, increased surface expression of S1P1 was induced, 
rendering disadvantage to CLL cell survival [44]. S1P 
was significantly lower in both A and I relative to C. 
This is consistent with the notion that plasma levels of 
non-diseased subjects are normally higher than in CLL 
patients.

Ten metabolites were selected for further investigation 
through validation with an independent analytical technique, 
six of which were significantly increased in patients 
with the aggressive form of the disease relative to either 
indolents or controls and two of which were also able to 
discriminate indolents from controls. Linoleamide in 
addition to acylcarnitines (acetyl-, hexanoyl-, octanoyl-, 
decanoyl-, hexadecanoyl-) were validated as significant 
markers of CLL in its aggressive form relative to the 
indolent form or controls. As well as being markers of the 
aggressive form, acetylcarnitine and hexannoylcarnitine 
were also distinguishable markers of indolent and control 
subjects. This could implicate the utility of screening 
these compounds both to diagnose CLL (irrespective of 
aggressiveness) and also to potentially distinguish patients 
with the more aggressive form of the disease by way of 
stratification. Moreover, from ROC analysis, acetylcarinite, 
hexanoylcarnitine and octanoylcarnitine were revealed 

as being the best markers of CLL, owing to an increased 
significance when grouped together as a panel of markers. In 
terms of depicting biomarkers for classifying the aggressive 
state of CLL, grouping acetylcarnitines was promising; 
however this panel was surpassed by the combination of 
selected acylcarnitines and fatty acid amides. Abnormal 
expression of carnitines in patients with malignancies is 
well known. Furthermore, although not to the level of 
insufficiency, significant transient decreases in free carnitine 
and total carnitine in different stages of leukaemia that can 
affect the evolution of the disease have been previously 
reported [45]. Changes in carnitine levels are related to fatty 
acid metabolism. CLL cells have been reported to exhibit 
a greater dependency on peroxisome proliferator activated 
receptor – alpha (PPAR-α) regulated oxidation of fatty 
acids leading to these cells having a higher fat-burning rate 
than such as myocytes, that is not related to diet [46]. In 
CLL cells, PPAR-α is thought to aid in CLL cell survival 
against cytotoxic stressors including chemotherapeutic 
drugs as well as hypoxia and lack of nutrients [46]. PPAR-α 
is also closely associated to the metabolism of fatty acid 
amides. For example PPAR-α agonist oleoylethanolamide 
was observed to be significantly high in patients such that 
its plasma concentration was directionally related to the 
number of circulating leukemic cells [47]. In that study, 
it was suggested that oleoylethanolamide is produced 
in CLL cells as a lipolytic factor that later plays a role in 
drug resistance as well as cachexia. Another discovered 
therapeutic target with respect to fatty acid amides in 
leukaemia is fatty acid amide hydrolase (FAAH) [48]. 
Fatty acid amides are bioactive signalling lipids and FAAH 
catalyses the hydrolysis of these bioactive compounds such 
as oleamide and palmitoylethanolamide [49].

With the aim of elucidating potential biomarkers 
to be used in the screening of serum from potential CLL 
patients in order to improve diagnostics, prognostics and 
treatment perspective, metabolomics has been applied 
through LC-MS based technology to both fingerprint 
metabolomes of patients with the aggressive form or 
indolent form of CLL in addition to healthy volunteers 
and to validate a panel of biomarkers that could be used 
clinically. Fingerprinting revealed a host of significant 
differences in serum samples that could distinguish patients 
with the disease and also, in most cases differentiate the 
stage of the disease that could be crucial in improving 
treatment. Six of the ten metabolites used in validation were 
significantly increased in patients with the aggressive form 
of the disease relative to either indolents or controls and 
two of which were also able to discriminate indolents from 
controls. Forming a panel of selected acylcarnitines and 
fatty acid amides, it was possible to reach a highly specific 
and sensitive diagnostic approach. Although treatment may 
not always be the best outcome for leukaemia patients, 
and may even promote tumour progression [50, 51], our 
research offers the potential to improve diagnosis which 
could aid in the decision if and when treatment is in fact a 
viable option. 
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MATERIALS AND METHODS

Ethics statement

Patients and controls were recruited in the 
Department of Haematology at the Medical University in 
Bialystok (Poland), with the approval of the Local Ethics 
Committee. Written informed consent from all participants 
involved in the study was obtained. The study group 
was composed of Caucasians of European ancestry, so 
obtained results cannot be generalized to other ethnicities, 
as the effect of genetic variations on metabolism needs to 
be considered [52]. 

Blood collection 

Blood was collected from two groups of patients 
with newly diagnosed chronic lymphocytic leukaemia: 
patients with a stable state of the disease (I, “indolent”) 
n = 51, and patients with a progressive state of the disease 
(A, “aggressive”) n = 42, requiring treatment (treatment 
indication according to IW CLL 2008 recommendation) 
Detailed characteristics of patients in presented in Table S2  
(found in supplementary information). A control group 
contained 45 healthy subjects (C), sex and age matched to 
the patient’s group. In total, blood samples of 138 humans 
were collected.

Venous fasting blood samples were drawn into 
syringes containing clotting activator. Blood samples were 
allowed to clot and serum was obtained by centrifugation 
at 1300 × g for 30 min at 4°C. Aliquots of the serum were 
stored at –80°C until analysis. 

Chemicals and reagents

Ultrapure water, used to prepare all the aqueous 
solutions was obtained “in-house” from a Milli-Qplus185 
system (Millipore, Billerica, MA, USA). Standards used 
for confirmation of metabolite identity in the fingerprinting 
study as well as LC-MS grade acetonitrile and analytical 
grade formic acid were purchased from Fluka Analytical 
(Sigma-Aldrich Chemie GmbH, Steinheim, Germany). 
Deuterated (D3) standards of acylcarnitines (acetylcarnitine, 
butyrylcarnitine, hexanoylcarnitine, octanoylcarnitine, 
decanoylcarnitine and palmitoylcarnitine) used in validation 
study were purchased from Chromsystems (Munich, 
Germany). 

Metabolic fingerprinting with ESI-QTOF-MS

Method

Metabolic fingerprinting of serum samples 
was performed with LC-QTOF-MS (6520, Agilent 
Technologies) method previously applied to study serum 
of patients with B-cell malignancies [18]. Detailed 

description of this methodology can be found in 
supplementary information. To control system’s stability 
and performance [53] and the reproducibility of the 
sample treatment procedure QC samples were prepared 
by pooling equal volumes of serum from each investigated 
sample. Seven QC samples were prepared independently 
of this pooled serum, following the same procedure as for 
the rest of samples. Each QC sample was injected only 
once, QCs were injected at the beginning of the run and 
after every 8th sample.

Data treatment

The resulting data file was cleaned of background 
noise and unrelated ions by the Molecular Feature 
Extraction (MFE) tool in Mass Hunter Qualitative Analysis 
Software B.04.00 (Agilent). The MFE algorithm uses the 
accuracy of mass measurements to group ions related by 
charge-state envelope, isotopic distribution and/or the 
presence of adducts and dimmers. The MFE parameters 
were the same as described previously [18]. Briefly, the 
limit for the background noise was set to 200 counts, and 
to find coeluting adducts of the same feature, the following 
adduct settings were applied: +H, +Na, +K in positive 
ionization, and: −H, +HCOO in negative ionization. 
Dehydratation neutral losses were also allowed. The MFE 
then created a list of all metabolic features described by 
accurate mass, retention time and abundance. Exact mass 
databases quoted below were then searched for hits to 
identify compounds. 

Data treatment was performed according to current 
standards for the treatment of LC-MS metabolomics 
data [53]. Alignment, filtering and statistical analysis 
were performed with Mass Profiler Professional 2.2 
(Agilent) software. Parameters applied for the alignment 
were 1% for retention time correction and 20 ppm for 
correction of the mass. Differences between serum 
metabolites in all comparisons (C vs A, C vs I, and A vs 
I) were evaluated for individual metabolites by means 
of a Welch’s t-test assuming unequal variance. p-values 
were calculated for the data transformed by applying log 
(base 2) for intensities in order to approximate a normal 
distribution. Multiple testing correction was performed 
by use of Benjamini Hochberg FDR test. The normality 
of distribution was assessed using the Shapiro-Wilk test 
performed with STATISTICA 9.1 (StatSoft) software. 
Accurate masses of statistically significant features were 
searched against the METLIN, KEGG, LIPIDMAPS and 
HMDB databases. SIMCA-P+ 12.0 (Umetrics) was used 
for multivariate statistical analysis.

Compound identification

The identities of compounds that were found to be 
significant for class separation (Tables 1–3) were confirmed 
by LC-MS/MS analysis as described previously  [18].  
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Confirmation with standards was performed by comparing 
retention time, isotopic distribution and fragments of 
commercially (Sigma–Aldrich Chemie GmbH, Steinheim, 
Germany) available reagents with those obtained in real 
samples.

Validation of selected metabolites by 
LC-QQQ-MS

Method

To analyse the samples a new methodology was 
developed, based on reversed-phase UHPLC (1290 Infinity, 
Agilent Technologies) coupled to an ESI(AJS)-QQQ-MS 
(6460, Agilent Technologies) mass spectrometer. During 
the method development, standards of acylcarnitines 
(acetylcarnitine, butyrylcarnitine, hexanoylcarnitine, 
octanoylcarnitine, decanoylcarnitine, palmitoylcarnitine) 
and fatty acid amides (dodecanamide, hexadecanamide, 
oleamide, linoleamide) were used. Detailed description 
of developed method can be found in supplementary 
information. Analyses were controlled with QC samples 
consisted of equal volumes of serum from each investigated 
sample. QCs were prepared following the same procedure 
as the rest of samples for QQQ analysis and were injected 
after every 10th sample.

Data treatment 

Acylcarnitines were quantitated according to the 
response factor of the respective internal standard. Labelled 
fatty acid amides were not commercially available, therefore 
the amount of free fatty acid amides (FFAAs) in the samples 
were expressed as areas under the respective peaks. For 
data generated by LC-QQQ, normality of distribution 
was tested by the Shapiro-Wilk test, and depending on 
normality, Welch’s t-test or Mann Whitney U-test were used 
to evaluate differences for the comparisons of C vs A, C vs 
I, and A vs I. 

Data filtering and statistical analysis of fingerprinting 
data was performed with Mass Profiler Professional 2.2 
(Agilent). The Shapiro-Wilk test and statistical analysis 
of validation data and receiver operating characteristic 
(ROC) curves were performed with MATLAB 7.10 
R2010a (MathWorks Inc., Natick, MA, USA).
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